
A Practical Method of Comparing
Computer Bureau Costs

.By K. Reed*

1. INTRODUCTION
The reduction of computing costs is a problem to

which management does not seem to addresi itself very
often. Many organisations live with their EDP departmenti,
whether large or small, without adopting cost-control
measures. A number of quite large organisations do not
charge in-house users for EDP seryices; the computer and
staff are there and if resources are available then the job
required by department X wiil be don€, otherwise it will
not.

An entirely different situation will exist if the
organisation is using a computer bureau. Most bureaux will
proyide costing information on a job-byjob basis and hard
cash will be paid by the company at regular intervals. The
costs become yisible to management in a rather direct and
forceful way.

The methods presented here allow bureau charging
algorithms to be compared and the results are applicable to
all computing situations.

The work reported was performed as part of the
bureau selection procedure adopted by L.M. Ericsson Pty.
Ltd. during l97l when seeking computer time for the
development of its AKX l3l stored Program Controlled
Telephone Exchange project for the OTC(A) installation in
Sydney, Some techrique for compadng different computer
charging schemes was needed since it was expected that
Grosch's l-aw. (Adams (lqb2)). may have been applied ro
achieve cost savings. The packages concerned ran on the
IBM 360/370 range and we had. therelore, machines o[
yarying, power to choose from. There was also the
possibility that Grosch's Law may not apply, i.e. that a
smaller computer may prove cheaper to use.

2. CHARGTNG METHODS AND COMPUTER USAGE
2.1 ChargingPhilosophies

Methods of charging for computer utilisation are
extremely important to installation management. Their
effects are critical in the higbly competitive bureau market
in which real profits must be made.

Charging algorithms must therefore ensure that the
vefldor obtains an adequate return on his investment and
that the user is charged only for resources actually used.

The charging methods are also importallt to the

"Copyright 1978, Australian Computer Society Inc.
General peimission to republish, but not for profit, all or part of
this mate"ial is granred. provided thaL ACJ's copyright notice is
given and lhal relerence is made ro lhe publicrrion. to ir! ddte of
issu€, and to the fact that reprinting privileges were granted by
permission of the Australian Computer Society."

This paper presents a simple technique for comparing the computer usage accounting techniques
on computer bureaux. The paper restricts itself to considedng charges for cpu and I/0 time. ihe
technique allo\r6 different chargilu a.lgorithms to be compared witfi varying precision, and allo\rs
assessment of lhe alternatjves of hiring a complete instaltldon and paying foi each job according to
lhe resources (cpu time, l/O time) used.

KEYWORDS AND PHRASES: Computing usage, accounting, cost compa son, chuging
al8orithms.

CR CATEGORIES: 2.41, 2.44, 4.39, 4,6,

computer bureau user who will want to limit his costs as

much as possible. The literature is not short of papers on
the philosophy of cost recovery (for this is what a charging
method attempts), two recent papers, being Borovitz and
Ein-Dor (1977), and Nolan (1977). There are also
interesting attempts by Knight (1966, 1968), Arbuckle
(1966) and Solomon (1966) to develop useful techniques
for comparing computer performance.

The problem of bench marking is dealt with usefully
by Cumow and Wichman (1977) and Walters (1977),whie
Lngg (1972\ contains a survey of charging algorithms.
Equipment utilisation and procurement receives a deeper
treatment in Drummond (1973) and Svobdova (1976), but
comparing the charging techniques used by computer
installations from the view-point of the effect upon tle cost
of running the same job on different installations has not
been treated.

2.2 Charging Schemes
We discovered what we believed were four basic

methods of charging. Only computer equipment charges are
considered in what follows. I-egg (1972) describes a number
of charging algorithms, all of which fit the following
categories:

2.2. 1 Resources Utilisation Charging
Resource utilisation charging (RUC) attempts to

ensure that the user is charged for actual resources used.
Such schemes, in some measure or other, charge the

user for cpu time, core occupied and I/O transfers
performed. The result is that many vendors make fixed I/O
transfer time charges which approach the average access
time for the most common device.

2.2.2 Process Time Charging
The RUC methods have some problems from the

vendor's point of view since they may allow the user to
optimise his expenditure to a very high degree. It may also
make charging a little difficult, and, as willbe seen, creates
difficulties when compadng various types of RUC offers.

Process time charging simplifies the charging situation
enormously. The user is charged only for cpu time and a
measure of I/O time used - independent of core al a
fixed rate. The process time charging @TC) method has the
element of a gamble, and can be made to appear
particularly attractive when benchmarking. Costs are easier
to measure and are more predictable. This will tend to
influence the inexperienced purchaser.

PTC charging cgnsists of calculating tJle sum of cpu
time and I/O times and multiplying by a suitable unit cost.

*Monash University Computer Centte. Manusctipt receireil 25th Decembet 1975 Reised versio received 12th,IuIy 1977.

The Australian Computer lournal, yol. 10, No. l, February 1978

Conputet Burcou Costs

Figure I Actual Overlap of I/O and Computing as may occur

2.2.4 Hiring A Complete Installstioft
__The fourth possibility is to hire a complete

installation. Vary bureaux permit the user to do this
provided drat some minimum period of time is involved.
The user can then arrange his own scheduling and, one
would hope, reduce his costs because of thi irherent
difference between the elapsed time for the job mix ald the
sum of the individual elapsed times obtained by any of the
previous methods. It should be noted that the previously
presented ac-counting techniques are based upon a
calculation of some form of elapsed time as mentioned in
section 2.2.3.

2.3 Some Comrnents on Ovetheads
All jobs run on a computer incur initialisation

overheads which are difficult to measure. Manv resource
charging systems add a fixed amounr to the accounts, in
money or resources. lor each job (and job-slep where
appropriale). There are systems'in use wliich charge *te
step _overhead irrespective of whether or not a slep is
actually run,

It should be nored thar jobs charged under ETC have
the actual slep overhead in elapsed time added to rheir
accounts.

3. CIIARGING FOR OTHER ITEMS
The discussion to date has been restricted to

computer system charges, that is, cpu time, I/O time, core
usage etc.

- In practice, the user will be confronted with a yadety
of additional charges and will be asked to pay for all or
some of the items in Table 1. The author has found the
following items particularly pernicious and would

2.2.3 Elapsed Time Charging
Elapsed time charging (ETC) may apply in some

circumstarrces. Charges are made using elapsed time as
shown in the computer log with allowance for operator
errors etc.

One might think that this method has little to
recommend it, but the RUC and PTC approaches rob the
user of savings due to overlapped I/O operations. This is
because they involve the sum of cpu lime and the notional
lime fot each transaction. Cood modern operaling sysrems
will provide automatic overlapping of I/O in applicaiions
involving blocked. buffered files. and some overlapping of
I/O produced by swapping differenr jobs. this mdahs

"thar

job times calculated for accounring purposes may exceed
elapsed times when the job is run on ils own. Figures I and
2 below show the effect upon real and "notional" waiting
times.

In Figure l, the idle time is:

tr = max (tirtiz) - ptc

and real elapsed time is:

ter = (1 - p)tc + max (tirtlr).

In Figure 2 however, the notional elapsed time is;

ten=tc+\+q
where ti is rhe time measured for t}e l/O operarions. The
notional elapsed time te- can exceed te_, rhe real elapsed
time for suilable values ofthe various l/O'iimes.

t,

Figure 2 Effect of Counting I/O Transfers on Elapsed Time

4

t- t;-

-ittr--T-.t,

Ihe Australia Computer Journal, Vol. 10, No. 1, Februarv 1978

Cornputet Bureeu Costs

overdue whererecomnend avoiding contracts which place
emphasis on them:

- unit record charges, particularly cards read and lines
printed, if program development work is involved,

- online disk storage under similar conditions,
- stationery changes where these are likely to occur

frequently,

- device mounting charges.

t,, is the process time for a job which used,
t" seconds of cpu time
I I/O transfers performed.

If w€ let
Cc be the cpu time cost in dollars/sec.
CD be the process time cost in dollars/sec.
Ci be the storage cost in dollan/2 kilobytes/sec. of

process time,
and Ct be the fixed component cost of each I/O transfer,
then the accounting charge C for a given job is:

c = cct" + cp (tc +.025 I)
+ ck (tc + .o2s D (=ie) + crr e)

which reduces to

c = [cc + Ce + ck (e;-!!)] tc

+ [.02s ce + .025 ck tL;-el) + c,]r (3)

where K is the nominal number of kilobytes used by the
job in question. If the actual job size is k kilobytes then;

,, _fk ,k>80
^ -180 -k < 80

ITEM

Cards rcad/punched

Lines printed

Forms chang€d

Devices mounted

Drives Used

Device Rental

Device Storag€

On-line Storage

4. DETAIIS Of CHARGING METHODS
Without wishing to introduce a lot of mathematics,

we must however, examine statements of charging
lechniques and formulate them into simple equations.

4.1 Resource Usage Charges
IJt us consider the complete type of RUC charging

system which was stated in the form of a table for two
computeIs.

Computer
Item

METHODS OF CHARGING

Fe! thousald cards rcad, with
reduction for bulk.

As abovo.

Charg€ for chang€ bas€d otl vhother or
not staldard stationery.

Chalge fot mountitu each device used.

May be charged by occupancy i,e.
totd rumber of ddv€-hours.

Monthly rcntal for devices e.g.
disks.

Monthly charg€ for storage of
disks, tap€s, otc.

CharSe inade fo! permanenlly mountod
ahsk-space, or spac€ us€d while on-

5.00 per hr.

(3")

so that the smallest chargeable amount of memory is 80
kilobytes.

Substituting the constants from Table 2 we get:

CM r = [.0624 + .00004i7 K] tc
+ [.00170 +.0000104 K] r (4)

and

Cy, = [.182 +.0000544 K] tc

+ [.00296 +.0000136 K] r (s)

where K) 80 as defined in (3a).
Deciding what type of jobs to run on which machine

is quite straight forward - we note that the cost C of a job
taking t seconds and having used I l/O transfers has in this
case th€ form:

C=Ht+BI

wherc the constants H and B are obtained from the costing
data provided, and are ,otl, functions of core used.

4.1.1 Rotio of cpu speeds
The next point that we notice is that if the job was

actually run on both machines, we would find that the
metered cpu time used on machine M,, might be tr and
that on M2 might be t2. The term "metered" cpu time is
stressed.

However, the number of I/O transfers (I) is going to
be the same, since we have the same.machine family,
operating system etc. The cost of the job on M, is:

Ct=Httl+BrI

and on Mr:

C|= H..t2 + Bzl

M2

1) cpu time

2) Processing time - plus
for each 2K bytes of
storage in cxcess of 80K

3) Number of l/O transfers

$165.00 per hr.

$3.92 per hr.

$2.90 per 1000

These figures are actually taken from a bureau
offering services on two differcnt computers in the same
range where Ml was less powerful tfuin M2. The figures are
now some yea$ old and are not applicable today, but are
indicatiye of the type of situation a purchaser can
encounter, even in one bureau.

The following accounting records are kept by the
operating system - cpu time, I/O transfers, job core usage.

The quantity described as. "processtime" was defined
to be th€ sum of cpu time and 25 milliseconcls for each I/O
transfer. Therefore,

tp=rc +.025 I (1)

The Australian Cotltputer lou tal, VoL 10, No. 1, Febtuary 1978

(6)

(7)

J

TASLE I

TABLE 2

$120.00 per hr.

$3.00 per hr.

$1.70 per 1000

This last equation can be altered, if we introduce the ratio

R., =! then we have:

C2 = H2R21tr + B2I (8)

R? | is Lhe rar io oI cpu rime on M 2 ro rhar on V, .

So the cosr of rhe lob on M1 cin be eslablish;d in terms
of measurements made on Ml once a reasonable value of
R21 has been agreed upon.

The equation of form (7), or rather a palr of such
equations, are the key to the approach which we will
develop further.

4.2 PTC
Typically. lor a given machine (say. in lact M,1we

mighl lind anotler bureau oltering ro charge as follows:

TABLE 3

Item M1

1) Process time $220.00 per hr.

where procass tim€ is calculated as

cpu time + 45 ms per I/O transfer

te = tc +.045 I (e)

To show this, we will consider two other charging
methods.

4.4.1 IIO Scaled Charges
One bureau charges in rie following malner:

Cost for system second = K, dollars
System second is: 1 second bf cpu time,

or l0 I/O transfers to disk
multiplied
by .the fraction of core
used.

System seconds are also obtained by:

Channel rime on magnetic tape mulriplied by fracrion
of core rrsed.

Using the following nomenclature:

= metered cpu time
= cost of system second in dollars
= number of I/O translers to disc
= nominai I/O time per disk transfer
= channel time for magnetic tape
= ratio of core used to core available

Computet Burcau Costs

(12)

t
K1
Id
tr
T-
f

Adopting the same approach as that used earlier, we find
rhat a job taking l seconds ofcpu rime {ar measured) and
using I I/O transfers, wouid cost:

C=.0611t+.00275 I (10)

which clearly can be written in the same form as equation
(6), i.e.

Ca=Hct+B3I (11)

4.3 Elapsed Time Charges
The eiapsed time charges cannot be related so readily

to the above equations and costing methods for a number
of reasons among which are:
1) The user's elapsed time gets the full benefit of any

overlapping amongst I/O operations and between I/O
operations and computing in a stand-alone
environment.

2) Elapsed times will show the full effects of the
variability of I/O operation times relating to file
positioning. lhar i!. seek times.
We can however, relate elapsed times for stand-alone

jobs to the two charging methods above as we will show
later although the accuracy of the comparison is
weakened-

4.4 Other RUC Formula
Most of the charging methods that the author has

encountered can be reduced to the:

(13)

(14)

which admittedly is not quite in the required form!
This particular system has real possibiliti€s for cost

optimisation since the "f' used varies as the amount of core
yaries during the job and th€ system seconds due to l/O
alrer rherefore during the job. Srricrly rhen. if T,,, seconds
of channel time are used and l6 dr'k l/O translers'are made
when rhe core fraclion is I, rlre job cosr uill be:

(l s)

(16)

Obviously, a p{ogram which can confine its I/O activity to
periods when f, is "mallwill have a lower cost than a simiiar
program which'cannot.

4.4.2 IfO Rdtes Charged Differently
Another bureau charges ar separate rares [ol different

l/O devices. differentiating berwein rhose used for unit
record and other I/O. This will give us an equation of the
kind

then we have:

c=Kl [t+f(tr + Id + Tm)]

C=Klt+KlftlId+KrfTm

c=Kr [t+tr] 1ro, *r, 1-,1

I = Kr [r +
? fj (\Idj + T-j)]

C=C,t+H,,I"+H"^l (r7)

where I, is the number ot. "fasl" device I/O rranslers. and I,
the number ofunir record l/O Iransiers.

5. COST COMPARISON TECHNIQUE
5.1 General

The approach used is to consider only those I/O
transactions ,?ot due to unit record activity - these can be
estimated from the blocking factors of the input/output
queues which are generally available, and subtracted from

The AustruIian Computer Journal, Vol. 10, No. I, Februar! 1978

C=Ht+BI

(where t is metered cpu time and I the number of I/O
operations) form provided that each individual I/O
operation, not the actual channel time is measured.

6

Cotfiputer Bureau Costs

where t is acirral recorded. cpu time, and I recorded IIO
ilansactions.

We can consider that each cpu second had a number
of I/O transfers associated with it dividing by the cpu
time, we obtain:

(1e)

the cost of one second of cpu time during which i I/O
traasfers were performed.

Alternatively, the number of I/O transfers per cpu
second determines the cost of the job. This function has a
graph which is a straight line and involves only two
constants which will be fixed for the job in question.

Equation (18) has two independent variables - we
have just dropped one of tlem.

Returning to the equation pair (6), (7)

the total I/O transfer figure.
Our equation is of the form:

C=Ht+BI

c=H+Bi

Cr = Hlt1 + BrI

c2=H2R21t1 + 82I

*here R^, =!rl
we obtain, on normalisation

c1 = Hl + Btir
and

c2 = H2 R2l + B2il

and it is easy to see when
without even running a job!
accurate!)

machine M1 is cheaper to use than machine M2, even
though M2 is the more powerful of the two.

We require:

. c, {c,
t.e.

Ht +Brir <H2R21 + B2il

which can be re-arranged to give

",(+ Rz,)(i,(1-+)B, (26)

We can make l.he following assumptions. since M, is
the more expensive machine, which means that the ven-dor
attempts to charge more for resources. These are:

(27)

(28)

n, (fi Rrr)<oirRr1 >+,

H, (H, Ar:

reflecting a more powerful cpu, and

B, (Bz Azl

(30)

i(1-*)8,<o (3 1)

so that M2 may a.lways be cheaper than M, .

Taking the particular example choie, and assuming

)t---

(18)

(20)

(21)

(22)

(23)

either machine is ch€apest,
(If the cpu time clocks are

(:24)

(2s)

reflecting relatively higher costs of I/O activity.
We note that condition A2 means that:

ir (t - !r) B, >o (2q)
B,

So thar. provide-d nr, > p itrvitt aLways be cheaper to userl.
Mr since:

Similarly, rf B,) B, which can happen on installations
wilh very high speed drums (e.g. 5 mS drums on some local
utililies), we have lhe possibility lhat:

5.2 Details of Comparison
We wish to know the conditions under which

Groph of unit cost vs I/0 rote on X/M1

-

if run on M2

--- it run on M.1

$

c

l(Lo
.$

:
!

;$q

=$
f

a--

Figpre 3 I/O Rrte in tsansfers per CPU s€cond Ml

The Austtalian Computer loumaL Vol. 10, No. I, February 1978

Computet Bweau Costs

that 220K bytes are required, and thal R,, is .286 (i.e. M"
is 3.5 times faster t-han M,). and doing 'tlie arithmeric wi
see that provided i) 35 I/b rransfers pir cpu second. then
machine M, wilJ be cheaper to use than l\4, i-

This is shown in rhe graphs of the u-nit costs for each
machine (Ref. Fig.3).

Note that we can introduce a ratio. or increment so
that we can require M, to be cheaper by a certain amount.
e.g.

cannot be found, we can relate an equation of our standard
form C = Ht + BI to elapsed tima charges so that the
conditions under which equality may be achieved can be
examined.

Assume that the unit charge for ETC is Cs per unit:
tirne. Ajob taking T units costs therefore:

9.o
L2

(32)

where D can be greater or less t.han 1, which alters our basic
equation to:

C= CLT

Define actual degree of computer boundedness to be:

^ cDu time t
"' Elapsed time T

We wish to examine the conditions under which:

C= C
i.e.

CLT=Ht+BI

which reduces to:
T

C,:=H+Bi

n, (l - oo,,)''i;il -

(3e)

(40)

(41)

(42)

(43)

(44)

So rhat knowing the constants Ht. Bt. H2 and B, we can
plot the straight lines corresponding to rhi values'of i and
R, for which (30) holds for fixed values of D (or vice
versa).

5.3 Relationship with Elapsed Times
5.3.1 Single Job Elapsed Times

^ IJI us assume Lhat each l/O lransfer uses an average
ol Ii seconds perhaps this is an actual constanl in many
cases.

For a single job taking T seconds we have:

(33)

(36)

(37)

We can convert this back to a form involving i, the
number of I/O transfers per cpu second:

(38)

f,=n*nt

T=t"+>I/Otime (34)

If I I/O transfers occurred at an average ofi seconds each,
we have:

T=t"+Ii (3s)

where tc seconds of cpu time are charged to the job.
We can define fte rario of cpu lime to toral time, rhe

"compute boundedness", to be:

Pr= f{ L, i)

L= cost of elopsed
wiih pqrqmeters

Constont L curves
-- on model H,

-
on model H,

hour irr job

Fr .i,

t-P-f
t-

" t. +ii,

I
p - ----^=l+iti

Relating this back to our case of supplier X. charging 25 mS
per I/O transfer. we find that jobs for which B (.533
should be run on the slower machine.

If we assume that this figure is realistic, allowing for
overlap of I/O, then we find that the machine M1 will be
cheaper for all but real number crunching jo'bs, and
certainly for any utility type functions!

These remarks apply, of course, to the charactedstics
ofjobs as they run on machine M, .

lt may be necessary to introduce a scaling factor in
(38) to allow for the situarion where a llxed figure i does
not correspond to elapsed time.

However, even assuming that a suitable constant

8

E

_s

E,
lc(![,

.9
ot

0u255075i
Figue 4 I/O Rate, ro EXCPS per second on model

The Australian Computel Joumal, Vol. 10, No. l, February 1978

Assuming an interest in constant costs, we get:

CL
ua - H+ Bi

ard we can plot the required hyperbola, which show the
conditions under which the two charging schemes are
equivalent, see Figure 4.

Obviously, more bench-marking may be needed -
except thal if two identical machines are involved, all data
may be obtained from one benchmark, if the job is run
"stand-alone".

a-
We note that the ratio ffi must be less or equal to

I orherwise 0, exceeds I and this is impossible it shows
that:

,, Ci.,
" H+Bi -'

, *.- Ca
Pu - Fl+ Bi*

then elapsed time charging is cheaper.

6. COMPARING COSTS
COMPUTERS

(s 1)

The method described is extuemelv accurate when
different machines in one manufacturer'i range are being
compared. It is also useful as a means of choosing between
different charging techniques offered on identical machines.

It can, however, be used to estimate the effects of
moving to a completely different computer although the
results will not necessarily be as accurate. The accuracy will
depend upon the extent to which the I/O activity can be
predicted on the new installation. If, for example, we can
assume that the logical I/O activity is unchanged, then the
new physical I/O rate can be obtained with a knowledge of
the operating system input/output subsystem. Allowance
must be made for I/O techniques such as indexed sequential
ard hash addressed access methods in which subsidiary I/O
transfers may be generated at diffedng rates.

The result will be some scaling factor for the I/O rate.
A similar situation exists with cpu time. A value of

RI applicable to the particular program needs to be
obtained. This figure is best oblained by writing a small
program with similar characteristics and running it on both
systems. This technique may help in obtaining an I/O
scaling factor. If 52 is the I/O scaling factor then:

Conputer Bureou Costs

(4s)

(46)

ON DIFFERENT

then ETC is dearer than either RUC or PTC!

5.3.2 Hiring the Complete Installation Job Mixes
In this case we seek a comparison between running a

number of jobs independently ard charging for them
independently, and hiring the installation and seeking the
gains due to multi-programming etc. by running jobs
concurrently.

Ifwe have njobs, then the total cost is:

C=2(Bt"p,.+HIi)

C=Br+Hrlt

where r is the sum of all cpu times
and V is the sum of all I/O transfers

We can now go direct to equaiion (43) and re-write it

is the cosr per unil cpu time on rhe first machine. where H,
and B, are lhe cosl factors for dre new machine.

Again, we require that:

. czlcr
Le.

ft,
* rrurr.

",
* u,,

{47)

(48)
H^

", =R', * srBri (s2)

(s3)

usmg:

a

T

i.e. the average I/O transfers/cpu seconds over all jobs.
Of course, we are relating all of this back to the

degree of compute-boundedness, Bu, and are introducing
0u*, the ratio of the sum of cpu times for the jobs in the
mix to the elapsed time for mix.

Returning to equation (45) we get:

,tl ,= C"
'! H+Bli

whlch li 6lot mote ureful, slnce an average value lorB^*
wlll often be ava{hblc for a glven lnltrllsrion! lr is afrer a'il,
only the degree of cpu utlllsation.

As demonstrstsd by Dorwtck (1975), thlr enables rhe
user to get thc bencflt of thc overlrpplng betwe€n cpu {nd
I/O scrors the whole job mlx. Al ulready remukcd, o&er
charglng methods auunc no overlap of any klnd,

The rvailability of thls {lgur€ ffsy enable a flrut
predlctlon to be mode concernlng the economlcl of crertlng
a lob mlx.' Certalnly, an {nalyBt would be well tdvlscd to
examlne cloBcly rny Job mlx produclng valucs ofp.i whlch
differcd slgniflcrntly from the lnrtrlhtion norh toi;trbllsh
the reason for the vsrlation md the effect on l t co!t!.

Of courge, lfr

fh. Austmlltn Co*tputat 'Iourul" yoL 10, No, 1, Fcbruary 1978

and we krow H.. B. and i so that we can produce constant
contour plots ofsr'as a funcrion ofR, ior values olc, =
Dc, where D < 1.It will then be possible to see whetheior
not the values of RI and S, which give c, (c, are likely
to occur. Thj) approach will not work in marginal situations
and needs to be used with considerable care.

7. CONCLUSION
A technique for comparing computer resource

charging proposals has been presented. This technique
works well in situations where different computers in one
manufacturer's range running identical software are being
considered. It can also be used to estimale the likely effect
upon running cost of moving a program from one machine
to dnoth€t pfoyided that vadous pammeters can be
e!dmrted.

The technique h slmple to use and requires only basic
rlgobr{.

It ls Nlio porslbl€ to mrke ruch management decisions
relsting to computlng procutem€nt a! when to rent a

complete inrtrllatlon anii when to pay for reaources ur€d
on 8 per job balis.

(4e)

(s 5)

Computet Bureau Costs

8. ACKNOWLEDGEMENTS
I am grateful to the management of L.M. Ericsson

(Australia) Pty. Ltd., for their patience, tolerance and
encouragement in this work which was undertaken between
August l97l an{ January 1972. My immediate supervisor
at fte time, Mr. D.W. Clarke. encouraged me greatly and I
acknowledge the permission granted -by

L.MlEricison to
publish this material.

I could not have completed this work without the
assistance of technical and sales staff of IBM (Australia),
Computer Resources Co Pty Ltd and Computer Sciences
Australia, who entered into the spirit of the investigations.
Messn. Peter Howell and Peter Richardson detected
significant errors in a preliminary draft and are gratefully
acknowledged.

An unknown referee is to be thanked for reading the
original paper and suggesting the addition of section t.2.3
which clarifies subsequent material. The same referee (I
presume) carefully read the revised paper and helded
numerous'small, but important errors.

Ms. C. Davern of tie Computer Centre, Monash
Unive$ity, is dlso to be thanked for her work in typing the
revised paper,

References
ADAMS, C.W. (1962): "Grosch's Law Repealed". Data/tution, Vol.

8, No. 7, pp. 38-39 JuIy 1962.

ARBUCKLE. R-.A. (1966r: "Compurer Analysis and Thrupur
tvaluation-'. Compute5 a4d Automatio , Ja\uary 1966. pp.
13-16.

BOROVITS, l. & EIN-DOR, P. (\977): "Cost/Urilisarion: A
Measure of System Performance". CACM, Vol. 20, No. 3,
March 1977, pp. 185-190.

CURNOW, H.J. & WICHMAN, B.A. (1977): "A Synrhetic
Brcnchmark". Computet JoumaL Vol. 19, No. l, 1977, pp.
43-49.

DORWICK. P.W. {1975): "Comparing Compuler Lsage: A Care
Study" Autvalian Computir lolurna!, Vol. 7, N;, l, March
197 5, pp. 12-14.

DRUMMOND, M.W. Jnr. (1973): "Evaluation and Measurement
Techniques for Digital Computer Systerns". Prentice-Hall Inc.
Enelewood Cliffs N.J. 1973.

KNIGHT, K.E. (1966): "Chang€s in Computer Performance".
Datamarion. Vol. I2, No. 9. Seprember 1966. pp. 40-54.

KNlcHT, K.E. ll968t: "Fvolving Computer Performance'.
Dotametion, Vol. 14, No. 1, January 1968, pp. 3l-35.

LEGG, M.P.C. -(1972): "Allocation and Costing of Computer
Resources'. Ptoc. th Au\tralian Comoutei Conferenc'e oo.
572-577. Ausrralian Complrler Society lirc. 1972. '

NOLAN, R.L. (1977): "Effects of Chargeout on Uset/Manager
Attitudes". CACM, Vol. 20, No.3,March 1977, pp.177-184.

SOLOMON, M.B. (1966): "Economics of Scale and the IBM
Sysiem/360". CACM, Vol. 9, No. 6, June 1966, pp. 435440.

SVOBDOVA, L. (1976): "Computer Performance Measurement and
Evaluation Methods: Analysis and Applications". Amedcan
Elsevier New York, 1976.

WALTERS, R.E- (1977): "Benchmark Techniques: A Constructive
Approach". Computer loutnal, Vol. lq, No. l, 1977, pp.
50-55.

Review
from "view". What a contrast from the method adopted by human
players who typically generate fewer than fifty moves during a
search for a best move while CHESS 4.5 may geneiate as mantas
500,000 before making its choice. But CHESS 4.5 designers ciose
their chapter with some doubts about the ultimate value of.'full
width" s€arching and subsequent contributors in Chapters 5, 6 and
? amplify those doubts with desqiptions of move ielection pro-
cedures wfuch prune away {hopefullyj useless moves and tieir
continuations so rhat more computer time wiU be available for a
deeper analysis of the remaining promising moves.

Finally in Chapter 8 the optimism of the earlier chapters is
balanced by a discussion of the enormity of the task aild the
naivety of today's pro$ams. lncluded in that chapter is a section
aimed at both those who considet chess ptogtamming a waste of
resources, and those who condone it.

Overall the book is well woith reading by anyone inter,
ested in chess. A little eflort was put into the text to make the
b_ook accessible to non-programmets, but three out of the eight
chapters _would make !€ry difficult reading without a piogr;m-
ming background. References in the back of the book p.roide a
good cross section of the titeraiute up to mid 1975.

P.M. Herman,
Monash University

Book
Chess SkiI in Man and Machine, ed. P.W. Frey, 19?7 (pubtish€d

Springer-Verlag). 217 pp, cloth, US916.00.

In 1957 Professor H.A. Sirnon (a complter scientist) pre-
dicte_d that a computer would be world chess champion within
the following ten years. Shortly after the time limit eipired David
Levy (later to become an international chess master) m;de a wager
with a number of computer scientists that he (Levy) would not
lose to a computer program before the 31st of August, 1978.
There is an outside chance that L€vy may lose that wager judging
from the most recent battle between him and CHESS 4J (iunning
on a giant CYBER 176). L€vy won the match when CHESS 4.5
resign€d on the 43rd move, but it was a hard fight (see SIGART
Newsletter, No. 62, Aprit, 1977). Incidentally, CHESS 4.5 was
enIercd. and won the 1971 Minnesota Open Chess Championship,
defeating along the way players rated as Class A and E_xpert o_ri
the USCF scale.

How can a program achieve such high standards of play;
can improvemeflts to Grand Master capacity be €xpected; rphat
results of a more geneml nature can be learned froh chess pro-
gramming? Such questions, and others, ate tackled by Ftey and
ihe contributors to this book. Th€ volume opens with a desqipt-
ion of inteiesting games played up to 1975 in tournaments whare
two programs or a human and a progmm were pitt€d against each
other (some games from the 1976 ACM Championshit appear in
the Appendix). This is fotowed by a chapter reviewing the litet-
ature dealing with the question of how people mak€ deaisions and
perceive positions during chess games. Inevitably the question
adses as to whether a progmm should try to piay like a human
being or use algorithms that are peculiarly suitad to machine im-
plementation.

The next two chapters might convince the reader that mach-
ine oriented algodthms are better. Chapter 3 looks at the basic
problems any. chess ptogram must iesolve: boald representation,
move generation, position e luation, creation of move trees,
pruning fiov€ ttees and so on. Chapter 4 is a detailed description
of the CHESS 4.5 program by irs designers. We find that-their
program uses "brute force" generation of all possible moves down
to a given d€pth, although some moves are followed a lit e
deeper to make sure no sudden capturcs ot checks \vere just hidden

10

CORRIGENDA
In the November 1977 issue, Volume 9,

Number 4, two names were incorrectlv cited on the
title page of lheir respective articles. They were:

Page 145 E.C. Cook should have read B.G.
Cook

Page 159 H.W. Hodaway should have read H.W.
Holdaway

The initials of Mr Cook were also incorectlv
shown on the index page.

The editor apologises for these mistakes.

The Austtalian Computer loumal, Vol. 10, No. I, February 1978

