A Practical Method of Comparing

Computer Bureau Costs

By K. Reed”

This paper presents a simple technique for comparing the computer usage accounting techniques
on computer bureaux. The paper restricts itself to considering charges for cpu and I/O time. The
technique allows different charging algorithms to be compared with varying precision, and allows
assessment of the alternatives of hiring a complete installation and paying for each job according to
the resources (cpu time, I/O time) used.

KEYWORDS AND PHRASES: Computing usage, accounting, cost comparison, charging

algorithms.

CR CATEGORIES: 2.41, 2.44, 4.39, 4.6.

1. INTRODUCTION

The reduction of computing costs is a problem to
which management does not seem to address itself very
often. Many organisations live with their EDP departments,
whether large or small, without adopting cost-control
measures. A number of quite large organisations do not
charge in-house users for EDP services; the computer and
staff are there and if resources are available then the job
required by department X will be done, otherwise it will
not.

An entirely different situation will exist if the
organisation is using a computer bureau. Most bureaux will
provide costing information on a job-by-job basis and hard
cash will be paid by the company at regular intervals. The
costs become visible to management in a rather direct and
forceful way.

The methods presented here allow bureau charging
algorithms to be compared and the results are applicable to
all computing situations.

The work reported was performed as part of the
bureau selection procedure adopted by L.M. Ericsson Pty.
Ltd. during 1971 when seeking computer time for the
development of its AKE 131 stored Program Controlled
Telephone Exchange project for the OTC(A) installation in
Sydney. Some technique for comparing different computer
charging schemes was needed since it was expected that
Grosch’s Law, (Adams (1962)), may have been applied to
achieve cost savings. The packages concerned ran on the
IBM 360/370 range and we had, therefore, machines of
varying: power to choose from. There was also the
possibility that Grosch’s Law may not apply, i.e. that a
smaller computer may prove cheaper to use.

2. CHARGING METHODS AND COMPUTER USAGE
2.1 Charging Philosophies

Methods of charging for computer utilisation are
extremely important to installation management. Their
effects are critical in the highly competitive bureau market
in which real profits must be made.

Charging algorithms must therefore ensure that the
vendor obtains an adequate return on his investment and
that the user is charged only for resources actually used.

The charging methods are also important to the

“Copyright 1978, Australian Computer Society Inc.

General permission to republish, but not for profit, all or part of
this material is granted, provided that ACJI’s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Australian Computer Society.”

computer bureau user who will want to limit his costs as
much as possible. The literature is not short of papers on
the philosophy of cost recovery (for this is what a charging
method attempts), two recent papers, being Borovitz and
Ein-Dor (1977), and Nolan (1977). There are also
interesting attempts by Knight (1966, 1968), Arbuckle
(1966) and Solomon (1966) to develop useful techniques
for comparing computer performance.

The problem of bench marking is dealt with usefully
by Curnow and Wichman (1977) and Walters (1977), while
Legg (1972) contains a survey of charging algorithms.
Equipment utilisation and procurement receives a deeper
treatment in Drummond (1973) and Svobdova (1976), but
comparing the charging techniques used by computer
installations from the view-point of the effect upon the cost
of running the same job on different installations has not
been treated.

2.2 Charging Schemes

We discovered what we believed were four basic
methods of charging. Only computer equipment charges are
considered in what follows. Legg (1972) describes a number
of charging algorithms, all of which fit the following
categories:

2.2.1 Resources Utilisation Charging

Resource utilisation charging (RUC) attempts to
ensure that the user is charged for actual resources used.

Such schemes, in some measure or other, charge the
user for cpu time, core occupied and I/O transfers
performed. The result is that many vendors make fixed I/O
transfer time charges which approach the average access
time for the most common device.

2.2.2 Process Time Charging

The RUC methods have some problems from the
vendor’s point of view since they may allow the user to
optimise his expenditure to a very high degree. It may also
make charging a little difficult, and, as will be seen, creates
difficulties when comparing various types of RUC offers.

Process time charging simplifies the charging situation
enormously. The user is charged only for cpu time and a
measure of I/O time used — independent of core — at a
fixed rate. The process time charging (PTC) method has the
element of a gamble, and can be made to appear
particularly attractive when benchmarking. Costs are easier
to measure and are more predictable. This will tend to
influence the inexperienced purchaser.

PTC charging consists of calculating the sum of cpu
time and I/O times and multiplying by a suitable unit cost.

*Monash University Computer Centre. Manuscript received 25th December 1975 Revised version received 12th July 1977.

The Australian Computer Journal, Vol. 10, No. 1, February 1978

Computer Bureau Costs

< e B —
(- 73— t Frere S N ©
I >[c Ie Pto 96 x c
" s -=| i e o e ees——
. A1 >
|
< ti2 >

Figure 1 Actual Overlap of I/O and Computing as may occur

2.2.3 Elapsed Time Charging

Elapsed time charging (ETC) may apply in some
circumstances. Charges are made using elapsed time as
shown in the computer log with allowance for operator
errors ete.

One might think that this method has little to
recommend it, but the RUC and PTC approaches rob the
user of savings due to overlapped /O operations. This is
because they involve the sum of cpu time and the notional
time for each transaction. Good modern operating systems
will provide automatic overlapping of 1/O in applications
involving blocked, buffered files, and some overlapping of
I/O produced by swapping different jobs. This means that
job times calculated for accounting purposes may exceed
elapsed times when the job is run on its own. Figures 1 and
2 below show the effect upon real and “notional” waiting
times.

In Figure 1, the idle time is:
tp = max (tj,ti,) — oy,
and real elapsed time is:
te, = (1 — p)tc + max (t; ,t;,).
In Figure 2 however, the notional elapsed time is:
ten:tc+ﬁl +t—iz
where . is the time measured for the 1/O operations. The

notional elapsed time te can exceed t._, the real elapsed
time for suitable values of the various I/O times.

2.2.4 Hiring A Complete Installation

The fourth possibility is to hire a complete
installation. Many bureaux permit the user to do this
provided that some minimum period of time is involved.
The user can then arrange his own scheduling and, one
would hope, reduce his costs because of the inherent
difference between the elapsed time for the job mix and the
sum of the individual elapsed times obtained by any of the
previous methods. It should be noted that the previously
presented accounting techniques are based upon a
calculation of some form of elapsed time as mentioned in
section 2.2.3.

2.3 Some Comments on Overheads

All jobs run on a computer incur initialisation
overheads which are difficult to measure. Many resource
charging systems add a fixed amount to the accounts, in
money or resources, for each job (and job-step where
appropriate). There are systems in use which charge the
step overhead irrespective of whether or not a step is
actually run.

It should be noted that jobs charged under ETC have
the actual step overhead in elapsed time added to their
accounts.

3 CHARGING FOR OTHER ITEMS

The discussion to date has been restricted to
computer system charges, that is, cpu time, I/O time, core
usage etc.

In practice, the user will be confronted with a variety
of additional charges and will be asked to pay for all or
some of the items in Table 1. The author has found the
following items particularly pernicious and would

e g >
| S P A
t | L T -
“""““*I e (' o e—
-ty gy
'l
.

Figure 2 Effect of Counting I/O Transfers on Elapsed Time

4

The Australian Computer Journal, Vol. 10, No. 1, February 1978

Computer Bureau Costs

recommend avoiding contracts which place overdue

emphasis on them:

— unit record charges, particularly cards read and lines
printed, if program development work is involved,

— on-line disk storage under similar conditions,

— stationery changes where these are likely to occur
frequently,

— device mounting charges.

TABLE 1

ITEM METHODS OF CHARGING

Per thousand cards read, with
reduction for buik.

Cards read/punched

Lines printed As above,

Forms changed Charge for change based on whether or
not standard stationery.

Devices mounted Charge for mounting each device used.

Drives Used May be charged by occupancy i.e.
total number of drive-hours.
Device Rental Monthly rental for devices e.g.
disks.

Monthly charge for storage of
disks, tapes, etc.

Device Storage

On-line Storage Charge made for permanently mounted
disk-space, or space used while on-

line to a system.

4. DETAILS OF CHARGING METHODS

Without wishing to introduce a lot of mathematics,
we must however, examine statements of charging
techniques and formulate them into simple equations.

4.1 Resource Usage Charges

Let us consider the complete type of RUC charging
system which was stated in the form of a table for two
computers.

TABLE 2

Computer

Item
M, M,

1) cpu time $225.00 per hr. |$645.00 per hr.
$120.00 per hr. |$165.00 per hr.
$3.00 per hr. $3.92 per hr.

$1.70 per 1000 |$2.90 per 1000

2) Processing time — plus
for each 2K bytes of
storage in excess of 80K

3) Number of 1/O transfers

These figures are actually taken from a bureau
offering services on two different computers in the same
range where M; was less powerful than M,. The figures are
now some years old and are not applicable today, but are
indicative of the type of situation a purchaser can
encounter, even in one bureau.

The following accounting records are kept by the
operating system — cpu time, I/O transfers, job core usage.

The quantity described as.“‘processtime” was defined
to be the sum of cpu time and 25 milliseconds for each I/O
transfer. Therefore,

t, =tc +.025 I €))

The Australian Computer Journal, Vol. 10, No. 1, February 1978

where
t,, is the process time for a job which used,
t. seconds of cpu time
I'1/O transfers performed.
If we let
C, be the cpu time cost in dollars/sec.
C,, be the process time cost in dollars/sec.
Cy be the storage cost in dollars/2 kilobytes/sec. of
process time,
and C; be the fixed component cost of each I/O transfer,
then the accounting charge C for a given job is:
C=C.t, +C, (t. +.025 I)

+C (t, +.025 1) (252 + ¢yl (2)

which reduces to

C=[C.+C, +C (X524,

+[.025 C, +.025 C; (X5-29)+ ¢;]1 3)

where K is the nominal number of kilobytes used by the
job in question. If the actual job size is k kilobytes then:

_fk k=80
K ={%0 k < 80 (32)
so that the smallest chargeable amount of memory is 80
kilobytes.

* Substituting the constants from Table 2 we get:

Cu, = [.0624 +.0000417 K] t,
+ [.00170 +.0000104 K] I (4)

and

Cu, = [182 +.0000544 K] t,
+ [.00296 +.0000136 K] I (5)

where K = 80 as defined in (3a).

Deciding what type of jobs to run on which machine
is quite straight forward — we note that the cost C of a job
taking t seconds and having used I I/O transfers has in this
case the form:

C=Ht+ BI

where the constants H and B are obtained from the costing
data provided, and are both functions of core used.

4.1.1 Ratio of cpu speeds

The next point that we notice is that if the job was
actually run on both machines, we would find that the
metered cpu time used on machine M,, might be t; and
that on M, might be t,. The term “metered” cpu time is
stressed.

However, the number of I/O transfers (I) is going to
be the same, since we have the same machine family,
operating system etc. The cost of the job on M, is:

C,=H,t, +B,I (6)

and on M,:
C, = H,t, +B,I (7
5

Computer Bureau Costs

This last equation can be altered, if we introduce the ratio

t
R,,; =T? then we have:
C2 =HaRy t; + Byl (8)

R, is the ratio of cpu time on M, to that on M, .

So the cost of the job on M, can be established in terms
of measurements made on M, once a reasonable value of
Rj; has been agreed upon.

~The equation of form (7), or rather a pair of such
equations, are the key to the approach which we will
develop further.

42 PTC
Typically, for a given machine (say. in fact M,) we
might find another bureau offering to charge as follows:

TABLE 3

Item My

1) Process time | $220.00 per hr.

where process time is calculated as
cpu time + 45 ms per /O transfer
tp =t +.0451 9)

Adopting the same approach as that used earlier, we find
that a job taking t seconds of c¢pu time (as measured) and
using 1 I/O transfers, would cost:

C=.0611t+.00275 I (10)

which clearly can be written in the same form as equation
(6),i.e.

C; = H.t + B, (11)

4.3 Elapsed Time Charges
The elapsed time charges cannot be related so readily

to the above equations and costing methods for a number

of reasons among which are:

1) The user’s elapsed time gets the full benefit of any
overlapping amongst I/O operations and between I/O
operations and computing in a stand-alone
environment.

2) Elapsed times will show the full effects of the
variability of 1/O operation times relating to file
positioning, that is, seek times.

We can however, relate elapsed times for stand-alone
jobs to the two charging methods above as we will show
later — although the accuracy of the comparison is
weakened.

4.4 Other RUC Formula
Most of the charging methods that the author has
encountered can be reduced to the:

C=Ht+BI (12)
(where t is metered cpu time and I the number of I/O
operations) form provided that each individual /O
operation, not the actual channel time is measured.

6

To show this, we will consider two other charging
methods.

4.4.1 I/O Scaled Charges
One bureau charges in the following manner:
Cost for system second = K, dollars
System second is: 1 second of cpu time,
or 10 1/O transfers to disk

multiplied
by the fraction of core
used.

System seconds are also obtained by:

Channel time on magnetic tape multiplied by fraction
of core used.

Using the following nomenclature:

t = metered cpu time
K; = cost of system second in dollars

Iy =number of 1/O transfers to disc
t; =nominal I/O time per disk transfer
T, =channel time for magnetic tape
f = ratio of core used to core available

then we have:
C=K; [t+f(t; +I3+T,)] (13)
C=K;t+ K, ft,I; +K T, (14)

which admittedly is not quite in the required form!

This particular system has real possibilities for cost
optimisation since the “f” used varies as the amount of core
varies during the job — and the system seconds due to 1/O
alter therefore during the job. Strictly then, if T, . seconds
of channel time are used and 4. disk I/O transfers Are made
when the core fraction is f; the j]ob cost will be:

C=K; [ttt ? fila; + fj Tmj] (15)
[=K; [t+ % (trlg; + Trnj)] (16)

Obviously, a program which can confine its I/O activity to
periods when f; is small will have a lower cost than a similar
program which cannot.

4.4.2 I/O Rates Charged Differently

Another bureau charges at separate rates for different
1/O devices, differentiating between those used for unit
record and other I/O. This will give us an equation of the
kind

C=Cat+Hyyle + Hy, I (17)

where I is the number of “fast” device I/O transfers, and I,
the number of unit record I/O transfers.

5. COST COMPARISON TECHNIQUE
5.1 General

The approach used, is to consider only those I/O
transactions not due to unit record activity — these can be
estimated from the blocking factors of the input/output
queues which are generally available, and subtracted from

The Australian Computer Journal, Vol. 10, No. 1, February 1978

Computer Bureau Costs

the total IO transfer figure.
Our equation is of the form:

C=Ht+BI (18)

where t is actual recorded cpu time, and 1 recorded 1/O
transactions.

We can consider that each cpu second had a number
of 1/O transfers associated with it — dividing by the cpu
time, we obtain:

c=H+Bi (19)

the cost of one second of cpu time during which i I/Q
transfers were performed.

Alternatively, the number of I/O transfers per cpu
second determines the cost of the job. This function has a
graph which is a straight line and involves only two
constants which will be fixed for the job in question.

Equation (18) has two independent variables — we
have just dropped one of them.

Returning to the equation pair (6), (7)

C, =H;t; +B,1 (20)
C,=H,R,,t; +B,1I 21)

t

where R, _Tz

we obtain, on normalisation

g, = Hy + Byi, (22)
and
¢, =HyRy, + B, (23)

and it is easy to see when either machine is cheapest,
without even running a job! (If the cpu time clocks are
accurate!)

5.2 Details of Comparison

We wish to know the conditions under which
A

$ 15T

Graph of unit cost vs I/0 rate on X/Mj

——if run on My

———if run on My

4 10

t +-————-—5

Unit cost in dollars per CPU second

machine M; is cheaper to use than machine M,, even
though M, is the more powerful of the two.

We require:

¢, <e, (24)
ie.

H, +B,i; <H,R,; +B,i, (25)

which can be re-arranged to give
H B
H, (f —Ra)<iy (1-5')B, (26)
H, B,

We can make the following assumptions, since M, is
the more expensive machine, which means that the vendor
attempts to charge more for resources. These are:

H, <H, Ay (27)
reflecting a more powerful cpu, and
B, <B, Ay (28)

reflecting relatively higher costs of I/0 activity.
We note that condition A, means that:

B
i (1mi}J)BQ>o (29)
2
H
So that, provided R,; > ﬁl it will always be cheaper to use
M; since: 2
H H
Hy (. — Ry)<Oif Ry > (30)
2 H,

Similarly, if B, > B, which can happen on installations
with very high speed drums (e.g. 5 mS drums on some local
utilities), we have the possibility that:

B
i(l—Bi)B2<0 (31)
2

so that M, may always be cheaper than M, .
Taking the particular example chose, and assuming

0 35 50 100 150

Figure 3 1/O Rate in transfers per CPU second M,

The Australian Computer Journal, Vol. 10, No. 1, February 1978

200 250

Computer Bureau Costs

that 220K bytes are required, and that R, is .286 (i.e. M,
is 3.5 times faster than M,), and doing the arithmetic we
see that provided i > 35 I/O transfers per cpu second, then
machine M, will be cheaper to use than M, !
This 1s shown in the graphs of the unit costs for each
machine (Ref. Fig. 3). '
Note that we can introduce a ratio, or increment so
that we can require M; to be cheaper by a certain amount,
e.g.
b <D (32)
C,
where D can be greater or less than 1, which alters our basic
equation to:

(i
Hy\H, —

Hoa)
Bay

So that knowing the constants H,, B;, H, and B, we can
plot the straight lines corresponding to the values of i and
R,; for which (30) holds for fixed values of D (or vice
versa).

i> (33)

5.3 Relationship with Elapsed Times
5.3.1 Single Job Elapsed Times
. Let us assume that each I/O transfer uses an average
of t; seconds perhaps this is an actual constant in many
cases.
For a single job taking T seconds we have:

T=t,+Z1/0 time (34)

If I I/O transfers occurred at an average of ‘t\i seconds each,
we have:

T=t, +If (35)

where t. seconds of cpu time are charged to the job.
We can define the ratio of cpu time to total time, the
“compute boundedness”, to be:

B=7 t (36)
b= t, + It; 37

We can convert this back to a form involving i, the

number of I/O transfers per cpu second:
1
= 38

. i, 38)
Relating this back to our case of supplier X, charging 25 mS
per I/O transfer, we find that jobs for which g < .533
should be run on the slower machine.

If we assume that this figure is realistic, allowing for
overlap of I/0, then we find that the machine M, will be
cheaper for all but real number crunching jobs, and
certainly for any utility type functions!

These remarks apply, of course, to the characteristics
of jobs as they run on machine M, .

It may be necessary to introduce a scaling factor in
(38) to allow for the situation where a fixed figure T does

not correspond to elapsed time.
However, even assuming that a suitable constant

cannot be found, we can relate an equation of our standard
form C = Ht + BI to elapsed time charges so that the
conditions under which equality may be achieved can be
examined.

Assume that the unit charge for ETCis Cp per unit:
time. A job taking T units costs therefore:

Gs 8T (39)

Define actual degree of computer boundedness to be:
_ Cpu time _t

2" Elapsed time T 0}
We wish to examine the conditions under which:
Cc=C (41)
ie
C_.T=Ht+BI (42)
which reduces to:
T_ .
C
—L =H+ Bt (44)
Ba
4 $230T . 28
B¢ ‘ Be=flL.i)
$ 2201‘\ L=cost of elapsed hour for job
" $2101\\ with parameters Bg . i.
\\\ Constant L curves
$20
B GW\ —-— on model M,
‘\\\\\\\ — on model M
“\\\\\ _—$ 230
i) : $ 220
$ 210

w

[=R

=)

@
2+ ©

e

Q

E

=

-

2m

% @ =
; w B \:\:\SQ\
T~ S

=}

a4

| ' ' >
T 1 >

0 25 50 75 i

Figure 4 1/0 Rate, no EXCPS per second on model

The Australian Computer Journal, Vol. 10, No. 1, February 1978

Computer Bureau Costs

Assuming an interest in constant costs, we get:

-G
b= g7 E (45)
and we can plot the required hyperbola, which show the
conditions under which the two charging schemes are
equivalent, see Figure 4.

Obviously, more bench-marking may be needed —
except that if two identical machines are involved, all data
may be obtained from one benchmark, if the job is run
“stand-alone”.

W st that e el L

E-I'IOG da e ra]0H+_Bi
1 otherwise §, exceeds 1 and this is impossible — it shows
that:

must be less or equal to

CL
H+ Bi
then ETC is dearer than either RUC or PTC!

if 21 (46)

5.3.2 Hiring the Complete Installation — Job Mixes

In this case we seek a comparison between running a
number of jobs independently and charging for them
independently, and hiring the installation and seeking the
gains due to multi-programming etc. by running jobs
concurrently.

If we have n jobs, then the total cost is:

o .

C=Z(Btyp,, +HI) (47)
i=1

C=Br+Hy (48)

where 7 is the sum of all cpu times
and is the sum of all I/O transfers.

We can now go direct to equation (43) and re-write it
using:

i*= % (49)

&
i.e. the average 1/O transfers/cpu seconds over all jobs.

Of course, we are relating all of this back to the
degree of compute-boundedness, $,, and are introducing
B,*, the ratio of the sum of cpu times for the jobs in the
mix to the elapsed time for mix.

Returning to equation (45) we get:

fu = ok

8 H+Bi*
which is a lot more useful, since an average value for g, *
will often be avallable for a given installation! It is after all,
only the degree of cpu utilisation.

As demonstrated by Dorwick (1975), this enables the
user to get the benefit of the overlapping between cpu and
I/O across the whole job mix. As already remarked, other
charging methods assume no overlap of any kind.

The availability of this figure may enable a first
prediction to be made concerning the economics of creating
a job mix.

Certainly, an analyst would be well advised to
examine closely any job mix producing values of 8,* which
differed significantly from the installation norm to establish
the reason for the variation and the effect on his costs.

Of course, if:

(55)

The Australian Computer Journal, Vol. 10, No. 1, February 1978

G

*
b H + Bi* &l
then elapsed time charging is cheaper.
6. COMPARING COSTS ON DIFFERENT

COMPUTERS

The method described is extremely accurate when
different machines in one manufacturer’s range are being
compared. It is also useful as a means of choosing between
different charging techniques offered on identical machines.

It can, however, be used to estimate the effects of
moving to a completely different computer although the
results will not necessarily be as accurate. The accuracy will
depend upon the extent to which the I/O activity can be
predicted on the new installation. If, for example, we can
assume that the logical I/O activity is unchanged, then the
new physical I/O rate can be obtained with a knowledge of
the operating system input/output subsystem. Allowance
must be made for I/O techniques such as indexed sequential
and hash addressed access methods in which subsidiary I/O
transfers may be generated at differing rates.

The result will be some scaling factor for the I/O rate.

A similar situation exists with cpu time. A value of
R,, applicable to the particular program needs to be
obtained. This figure is best obtained by writing a small
program with similar characteristics and running it on both
systems. This technique may help in obtaining an I/O
scaling factor. If S, is the I/O scaling factor then:

H,
Ry,
is the cost per unit cpu time on the first machine, where H,

and B, are the cost factors for the new machine.
Again, we require that:

¢y =% +8,B,i (52)

) ¢y <o
Le.

H,) .

— +8,B,i<H; +Bi (53)
Ry,

and we know H,, B, andiso that we can produce constant
contour plots of2 S, as a function of R, for values of ¢, =
Dc, where D < 1. It will then be possible to see whether or
not the values of R, and S, which give ¢, <c; are likely
to occur. This approach will not work in marginal situations
and needs to be used with considerable care.

7. CONCLUSION

A technique for comparing computer resource
charging proposals has been presented. This technique
works well in situations where different computers in one
manufacturer’s range running identical software are being
considered. It can also be used to estimate the likely effect
upon running cost of moving a program from one machine
to another provided that various parameters can be
estimated.

The technique is simple to use and requires only basic
algebra.

It is also possible to make such management decisions
relating to computing procurement as when to rent a
complete installation and when to pay for resources used
on a per job basis.

Computer Bureau Costs

8. ACKNOWLEDGEMENTS

I am grateful to the management of L.M. Ericsson
(Australia) Pty. Ltd., for their patience, tolerance and
encouragement in this work which was undertaken between
August 1971 and January 1972. My immediate supervisor
at the time, Mr. D.W. Clarke, encouraged me greatly and I
acknowledge the permission granted by L.M. Ericsson to
publish this material.

I could not have completed this work without the
assistance of technical and sales staff of IBM (Australia),
Computer Resources Co Pty Ltd and Computer Sciences
Australia, who entered into the spirit of the investigations.
Messrs. Peter Howell and Peter Richardson detected
significant errors in a preliminary draft and are gratefully
acknowledged.

An unknown referee is to be thanked for reading the
original paper and suggesting the addition of section 2.2.3
which clarifies subsequent material. The same referee (I
presume) carefully read the revised paper and fielded
numerous-small, but important errors.

Ms. C. Davern of the Computer Centre, Monash
University, is also to be thanked for her work in typing the
revised paper.

References

ADAMS, C.W. (1962): “Grosch’s Law Repealed”. Datamation, Vol.
8, No. 7, pp- 38-39 July 1962.

ARBUCKLE, R.A. (1966): “Computer Analysis and Thruput
Evaluation”. Computers and Automation, January 1966, pp.
13-16.

BOROVITS, I. & EIN-DOR, P. (1977): “Cost/Utilisation: A
Measure of System Performance”. CACM, Vol. 20, No. 3,
March 1977, pp. 185-190.

CURNOW, H.J. & WICHMAN, B.A. (1977): “A Synthetic
Benchmark”. Computer Journal, Vol. 19, No. 1, 1977, pp.
43-49.

DORWICK, P.W. (1975): “Comparing Computer Usage: A Case
Study™ Australian Computer Journal, Vol. 7, No. 1, March
1975, pp. 12-14.

DRUMMOND, M.W. Jnr. (1973): “Evaluation and Measurement
Techniques for Digital Computer Systems”. Prentice-Hall Inc.
Englewood Cliffs N.J. 1973.

KNIGHT, K.E. (1966): “Changes in Computer Performance”.
Datamation, Vol. 12, No. 9, September 1966, pp. 40-54.
KNIGHT, K.E. (1968): “Evolving Computer Performance”.

Datamation, Vol. 14, No. 1, January 1968, pp. 31-35.

LEGG, M.P.C. (1972): “‘Allocation and Costing of Computer
Resources”. Proc. Sth Australian Computer Conference pp.
572-577, Australian Computer Society Inc. 1972.

NOLAN, R.L. (1977): “Effects of Chargeout on User/Manager
Attitudes”. CACM, Vol. 20, No. 3, March 1977, pp. 177-184.

SOLOMON, M.B. (1966): ‘“‘Economics of Scale and the IBM
System/360”. CACM, Vol. 9, No. 6, June 1966, pp. 435-440.

SVOBDOVA, L. (1976): “*Computer Performance Measurement and
Evaluation Methods: Analysis and Applications”. American
Elsevier New York, 1976.

WALTERS, R.E. (1977): “Benchmark Techniques: A Constructive
Approach”. Computer Journal, Vol. 19, No. 1, 1977, pp.
50-55.

Book

Chess Skill in Man and Machine, ed. P.W. Frey, 1977 (published
Springer-Verlag). 217 pp, cloth, US$16.00.

In 1957 Professor H.A. Simon (a computer scientist) pre-
dicted that a computer would be world chess champion within
the following ten years. Shortly after the time limit expired David
Levy (later to become an international chess master) made a wager
with a number of computer scientists that he (Levy) would not
lose to a computer program before the 31st of August, 1978.
There is an outside chance that Levy may lose that wager judging
from the most recent battle between him and CHESS 4.5 (running
on a giant CYBER 176). Levy won the match when CHESS 4.5
resigned on the 43rd move, but it was a hard fight (see SIGART
Newsletter, No. 62, April, 1977). Incidentally, CHESS 4.5 was
entered and won the 1977 Minnesota Open Chess Championship,
defeating along the way players rated as Class A and Expert on
the USCF scale.

How can a program achieve such high standards of play;
can improvements to Grand Master capacity be expected; what
results of a more general nature can be learned from chess pro-
gramming? Such questions, and others, are tackled by Frey and
the contributors to this book. The volume opens with a descript-
ion of interesting games played up to 1975 in tournaments where
two programs or a human and a program were pitted against each
other (some games from the 1976 ACM Championship appear in
the Appendix). This is followed by a chapter reviewing the liter-
ature dealing with the question of how people make decisions and
perceive positions during chess games. Inevitably the question
arises as to whether a program should try to play like a human
being or use algorithms that are peculiarly suited to machine im-
plementation.

The next two chapters might convince the reader that mach-
ine oriented algorithms are better. Chapter 3 looks at the basic
problems any chess program must resolve: board representation,
move generation, position evaluation, creation of move trees,
pruning move trees and so on. Chapter 4 is a detailed description
of the CHESS 4.5 program by its designers. We find that their
program uses “brute force” generation of all possible moves down
to a given depth, although some moves are followed a little
deeper to make sure no sudden captures or checks were just hidden

10

Review

from “view”. What a contrast from the method adopted by human
players who typically generate fewer than fifty moves during a
search for a best move while CHESS 4.5 may generate as many as
500,000 before making its choice. But CHESS 4.5 designers close
their chapter with some doubts about the ultimate value of “full
width™ searching and subsequent contributors in Chapters 5, 6 and
7 amplify those doubts with descriptions of move selection pro-
cedures which prune away (hopefully) useless moves and their
continuations so that more computer time will be available for a
deeper analysis of the remaining promising moves.

Finally in Chapter 8 the optimism of the earlier chapters is
balanced by a discussion of the enormity of the task and the
naivety of today’s programs. Included in that chapter is a section
aimed at both those who consider chess programming a waste of
resources, and those who condone it.

Overall the book is well worth reading by anyone inter-
ested in chess. A little effort was put into the text to make the
book accessible to non-programmers, but three out of the eight
chapters would make very difficult reading without a program-
ming background. References in the back of the book provide a
good cross section of the literature up to mid 1975,

' P.M. Herman,
Monash University

CORRIGENDA

In the November 1977 issue, Volume 9,
Number 4, two names were incorrectly cited on the
title page of their respective articles. They were:

Page 145 E.C. Cook should have read B.G.
Cook

Page 159 H.W. Hodaway should have read H.W.
Holdaway

The initials of Mr Cook were also incorrectly
shown on the index page.

The editor apologises for these mistakes.

The Australian Computer Journal, Vol. 10, No. 1, February 1978

