
 

Page 1 

On The Issue of Architecture-Preserving Methodologies and Their 
Identification1 

Rev2.02 
 

 
Karl Reed 3 Jason Baragry 

kreed@cs.latrobe.edu.au 
School of Information Technology 

Bond University 
Gold Coast QLD 4229 Australia 

jason.baragry@nr.no 
Norsk Regnesentral, 

Postboks 114 Blindern, N-0314 OSLO. 
Norway 

 
Abstract 

 
One of the fundamental arguments for the concept of Software Architecture is that 

it will permit designers to identify an “architecture” early in the design, and to use it 
to guide implementation. However, there is a significant amount of evidence that this 
goal is not always realised. This is shown by work in the re-engineering community 

which examines the relationship between the presumed architecture of large software 
systems, and that which can be identified from the finished code. It is also the centre of 
a conjecture by one of the authors that there are circumstances where this cannot be 
achieved. This paper makes the case for assessing implementation  methodologies 
against the criteria of “architecture preservation”. It argues that empirical studies 

should be made to test the hypothesis that methodology has (or has no) influence upon 
the extent to which a priori  architectures are preserved in a completed system. In 
presenting this argument, factors which will complicate the outcomes, for example, 

poorly chosen a priori architectures, are noted. 
 

 
1. Introduction 

 
The idea that software or systems have an “architecture” seems to have arisen 

very early in our discipline. Baragry[1] has traced the use for  this term back to the 
1960’s, (see Brooks [7]) and there is reason to believe it may have been used even 
earlier. As is well known, the importance of “architecture” (or rather, design 
integrity) was raised forcibly by Brooks [8], and was brought to prominence by Shaw 
in the mid 1980’s (Shaw [23]). Subsequently, the field has developed, and has 
reached a level of maturity sufficient to support several conferences and numerous 
workshops. 

 
However, there remain a number of difficulties with both concepts in the field 

and their interpretation, as evidenced by the work of a number of researchers. Despite 
this, the over-arching concept of “architecture” for a software system is of great 
importance. It is certainly the case that it is believed that there do exist standard 

                                                 
1 Accepted for publication as a Position paper, ICSE 2002 Workshop on SARA Software Architecture 
Review and Assessment May 19 2002 Orlando 
2 Rev 2.0 23/4/2006 added footnote re SARA workshop. 
3 On leave from the Department of Computer Science and Computer Engineering, La Trobe 
University, Bundoora Vic 3083 Australia 



Page 2 

architectures, determined by a combination of application class and domain, and that 
these are used by designers as an aid in their work. 

 
At the same time, the final  “architecture” of a system is the result of beginning 

with some early-stage design, and following a series of steps which transform this 
into working code. This raises the question that this position paper addresses  “given 
a particular a priori (design) architecture, to what extent will particular methodologies 
ensure that this  will be evident in the finished code?”. In what follows, we explore 
this issue briefly and suggest some criteria that may be of use in assessing this 
relationship. In addition, comments will be made on the results obtained by recent 
work in re-engineering which explores the relationship between a priori and final 
architecture. 

 
2. The Problem of Architecture Preserving Properties of 

Development Methods 
 
Our starting point is that, if an architecture can be determined in the early stages 

of a project, then one would like to see it appear in the final implementation. For this 
to occur, at least two conditions must be met:- 

 
A/ The a priori architecture must be such that, if implemented, it will 

realise a system which conforms to the functional (and non-functional) specification, 
 
B/ The result of implementing the system beginning with the 

specification and architecture, should be such that the architecture is preserved in the 
final code. 

 
We can add a corollary to this:- 
 
C/ If B/ cannot be guaranteed, then the implementation derived 

architectural drift4 [16] should be predictable. 
 
The first of these conditions can be considered “weak”. To be meaningful, we 

need to restrict it to the “logical” architecture (Krutchen [14]), since a system may be 
implemented on (for example) a message-passing service, or a component 
communications brokering systems such as CORBA.  A choice such as this highlights 
the multiple architecture problem described by Baragry,[1,2,3], Krutchen [14] and 
others. Nevertheless, such a condition is needed if the concept of architecture is to 
have meaning at all, since an implemented system should have the a priori 
architecture. More importantly, condition A will allow some meaning to be put to 
situations where the desired outcome (architecturally) is not achieved - it may be that 
the functionality could not/should not have been implemented using the proposed 
architecture, and this was recognised during its development. (See [17] for an 
example where an a priori architecture was subsequently deemed to be 
unimplementable). 

 
                                                 
4 We prefer the term “drift” to that of “erosion”.  In our contexts, we apply these terms differently to 
Perry and Wolf [16], and prefer to apply “erosion” to post-completion change due to maintenance or 
evolution, and “drift” to departure from the a priori architecture, 



Page 3 

Our second condition in fact specifies the hypothesis that we wish to test. It 
considers the implementation process to be a (series) of transforms applied to some 
(original) specification (in this case, including an a priori architecture) which yield an 
executable system. This concept is not new (see for example [24]). 

 
For a development process to be successful, we require that the completed 

system be judged to meet the requirements embodied in the specification. Again, 
there is nothing novel in this statement. We now extend this to what we call “the 
architecture preserving” property as described above. However, it is well known that 
systems generally are subject to significant amounts of maintenance and, we 
generally assume that this will be more efficient if there is documentation which 
describes the implemented system. Since the a priori architecture is part of this 
documentation, we assume that, if condition B/ held, then maintenance of the system 
should be easier. 

 
Finally, our corollary C/ allows some judgement to be made at the beginning of 

a project as to the risk presented by the combination of early assumptions relating to 
architecture and development methodology. It may even permit predictions as to the 
implementation architecture. 

 



Page 4 

3. The Issue of Design Architecture Persistence 
 
It is apparent that we are addressing two aspects of what could be called 

“Architecture Persistence”. Firstly, the extent to which the architecture persists during 
the implementation, and secondly, the way in which the architecture persists over 
time as a system is maintained. The second issue has been the subject of considerable 
study for some time and is now known as “architectural erosion”5 (see Perry and 
Wolf[16])), however much of this is in the context of re-engineering (see Ding and 
Medvidovic([10]) for example). 

 
Baragry’s [1] case study of the implementation of the HyperEdit sub-system of 

the Amdahl Australian Intelligent Tool Program’s HyperCASE (Cybulski and Reed 
[9]) showed that the architecture of this system evolved substantially during its 
development and maintenance. This supported earlier conjectures by Reed6 [18], 
based in his experience with the TAME project at the University of Maryland in 1986 
(See Basili and Rombach[5]).  Reed observed that, despite the efforts of skilled 
designers, the system architecture seemed to evolve. The primary problem seemed to 
be that, despite the a priori understanding of the interaction of the sub-systems in 
TAME, new interactions (and hence different architecture) became apparent as the 
design of relatively large subsystems progressed. In the case of the TAME system, 
each of the subsystems was extremely large and there were un-answered research 
questions to be solved before an implementable design could be completed (in fact, 
several were the subject of a PhD theses). The problems being “solved” in each of the 
sub-systems were largely independent of the overall architecture up to a certain point. 
Algorithms for metric generation and composition, had to be developed, canonical 
representation of control-flow graphs for programs written in different languages 
(which were to be capable of being processed by language independent metric tools), 
and a GQM (Basili [4]) tool had to be developed. Much of the design effort therefore 
was independent of the details of common services, and even their interconnection. 
As the designs unfolded, two contradictory trends became apparent. Firstly, a 
substantial amount of the design and implementation could progress without the 
architecture having much impact. Secondly, as sub-systems “understanding” of the 
nature of services they needed evolved (which it did as various problems were 
solved), they dictated changes to the overall architecture. This lead to the conjectures 
enunciated by Reed in 1987 to the effect that there were cases where an architecture 
either could not be determined early in a project, or where this was unnecessary. 

 
In terms of the problem posed, the experience of systems of the TAME/ 

HyperEDIT class, are probably not good examples. They do, however, establish that 
the problem exists. They may also provide a basis for identifying classes of system 
where architecture preservation or persistence is either difficult or not possible. We 
should point out that a significant percentage of the re-engineering publications on 
architecture recovery make mention of this “architecture drift”, but few relate it to 
any specific factor. In addition, we are now drawing attention to the role that 
development methodologies and processes may play in this. 

 

                                                 
5 See footnote 2. 
6 Reed did not draw directly on the TAME experience in his 1987 address, however, it was in fact the 
stimulus for the conjectures. 



Page 5 

4. Research on the Relationship Between A’priori Architecture and 
Implementation Architecture-Architecture Recovery and 
Erosion 

 
Recently, the re-engineering and maintenance communities have made 

architecture recovery, and its related topic, architecture erosion, major areas of 
investigation. Despite the wide-ranging nature of this work, and its quality and value, 
we were had difficult locating material specifically addressing the problems of 
interest here (although we do not regard our search as exhaustive). Indeed, only a 
modest number of papers made much mention of a priori documentation containing 
an architecture description, and many of those were noting that it was absent, or did 
not reflect the final architecture. Ding, and Medvidovic [10], for example, comment 
on some current approaches to development which, in their view, focus on an Object 
Oriented Programming Language and Interactive Development Environment, and 
hence may have no a priori architecture for maintainers to work from. Mendoca and 
Kramer [15] observe that the gap, in their view, between high-level abstractions and 
implementation is cause by the difference between the representational concepts 
available at both levels.   Kazman and Carriere [13] note the hopelessness of the 
maintenance task if “..the as-implemented architecture does not match the as-
designed architecture..” and go on to propose view extraction and view fusion as a 
possible means of maintaining appropriate documentation. Rugaber and Wills [21] 
did not include architecture preservation as in issue in their excellent paper on 
research infrastructure for re-engineering. Ran and Kuusela [17] reporting on the 
ARES project, reported examples of two architecture designs which were not 
implementable. One of these was chosen for (development) process related reasons. 

 
Perhaps the harshest comment we could find came from Harris et. al [11], 

“While it is clear that every piece of software conforms to some design, it is often the 
case that existing documentation provides little clue to that design. For example, 
while the system block diagram portrays an "idealized" software architecture, it 
typically does not even hint at the source level building blocks required to construct 
the system” (op. cit). 

 
The need for research of this kind is supported by Bennett and Ralvich’s [ 6] 

contribution to the futures of Software Engineering Symposium in Limerick 2000 in 
which they advocated an evolutionary development model, over a product’s lifecycle. 
While not new (a far more limited approach can be found in Royce’s original paper 
from which the waterfall model is taken (Royce 1970 [20], although this deals 
primarily with the initial development) they point out that architectural adaptability 
and evolvability are as, a result major research issues. We add that the issue of 
preservation also needs to be considered. 

 
We would be remiss if we did not mention work by Shaw et al [22] which 

describes graphically supported architecture description language capable of 
automatically generating executable systems given appropriately defined components 
and connectors. A tool such as this is inherently architecture preserving. In addition, 
there is work in the re-engineering community which explores and attempts to explain 
the differences between a priori and implementation architectures. See for example, 
the paper by Hassan and Holt [12]  which is  an exception in that it describes the 



Page 6 

reference to conceptual architecture mappings for three web servers. Their conceptual 
architectures are developed from a combination of code and documentation, but it is 
not clear how these relate to any original architecture. They do, however, report 
explanations for the lack of conformance between the reference-conceptual 
architecture pairs. 
 



Page 7 

5. Conclusions and Acknowledgements 
 
We have put forward a prima’ face’ case for extending current architecture and 

process-related research. In doing so, it is implicit that some guidance would be 
forthcoming for inclusion in any guidelines for software architecture assessment. This 
is particularly important if Bennett and Ralvich [6] are in fact correct. Equally 
importantly, we argue that investigations of this kind will assist in addressing a wider 
range of software engineering problems, including the place of software architecture, 
and, the nature of software development processes. 

 
The authors wish to acknowledge discussions with Daniela Mehandjiska-

Stavreva and Phil Stocks of the School on Information Technology and Bond 
University, and the first author gratefully acknowledges the support for the visiting 
position which is making this and other work possible. Ultimately, any errors etc, are 
the responsibility of the authors. 

 
6. References 
 
[1] Baragry, J(2000)  Understanding Software Engineering: From Analogies With 

Other Disciplines To Philosophical Foundations. PhD in Computer Science and 
Computer Engineering La trobe University  (Submitted 2000) Chap 4. AN 
EXAMPLE OF UNDERSTANDING BASED ON THE ARTEFACT 
ENGINEERING VIEW – SOFTWARE ARCHITECTURE 

[2] Baragry, J. and K. Reed (1998). Why Is It So Hard To Define Software 
Architecture? Proceedings Asia Pacific Software Engineering Conference, 
Tapei, Taiwan 

[3] Baragry,J and Reed, K(2001) why we need a different view of software 
architecture WICSA 2001 

[4] Basili, V. R.,(1985) Quantitative Evaluation of Software Methodology, Keynote 
Address, First Pan Pacific Computer Conference, Melbourne, Australia, 
September, 1985.  

[5] Basili and Rombach, H.D.(1988), The TAME Project: Towards Improvement-
Oriented Software Environments, IEEE Transactions on Software Eng., vol. 14, 
No. 6, June 1988. 

[6] Bennett, K.H. and Rajlich, V.T. Software Maintenance and Evolution: a 
Roadmap Future of Software Engineering Symposium Limerick Ireland 2000 
publ ACM  pp73-87 

[7] Brooks, F. P. (1962). Architectural Philosophy. Planning a Computer System - 
Project Stretch. W. Buchholz (eds), McGraw-Hill: pp. 5-16. 

[8] Brooks, F. P. (1975). The Mythical Man-Month: Essays in Software 
Engineering, Addison-Wesley Publishing, 1975 

[9] Cybulski , J.L.C. and  Reed,K (1992) A HYPER-TEXT BASED SOFTWARE 
ENGINEERING ENVIRONMENT IEEE Software, Vol. 9 No. 2,  Mar 1992 pp 
62-68 



Page 8 

[10] Ding,L. and Medvidovic, N (2001) Focus: A Light-Weight, Incremental 
Approach to Software Architecture Recovery and Evolution Proceedings of the 
Working IEEE/IFIP Conference on Software Architecture (WICSA'01) 

[11] Harris, D.R., Reubenstein, H. B. and Yeh, A.S .Reverse Engineering to the 
Architectural Level  ICSE ’95, Seattle 1995, ACM pp186-195 

[12] Hassan, A.E. and Holt, R.C A Reference Architecture for Web Servers 
Proceedings of the Seventh Working Conference on Reverse Engineering 
(WCRE'00), Brisbane 20002, IEEE Computer Society  

[13] Kazman, R. and Carriere, S.J(1998). View Extraction and View Fusion in 
Architectural Understanding   Proceedings of the Fifth International Conference 
on Software Reuse, Victoria, 1998, IEEE Press 

[14] Kruchten, P. (1995). Architectural Blueprints - The "4+1" View Model of 
Software Architecture.  IEEE Software(November 1995). 

[15] Mendoca, N. C. and Kramer, J(1996) . Requirements for an Effcetive 
Architecture Recovery Framework Joint proceedings of the second international 
software architecture workshop (ISAW-2) and international workshop on 
multiple perspectives in software development (Viewpoints '96) on SIGSOFT 
'96 workshops October 1996, ACM 1996 

[16] Perry, D.E and Wolf, A.L (1992) Foundations for the Software Architecture 
ACM SIGSOFT Software Engineering Notes Vol. 17 No. 4 Oct 1992 pp. 40-52 

[17] Ran,A  and Kuusela,J (1996) Selected issues in architecture of software 
intensive products Joint proceedings of the second international software 
architecture workshop (ISAW-2) and international workshop  on multiple 
perspectives in software development (Viewpoints '96) on SIGSOFT '96 
workshops October 1996 

[18] Reed, K. (1987). Commercial Software Engineering, The Way Forward. 
(keynote address). Keynote address Australian Software Engineering 
Conference, Canberra. ACT. Australia. 1987 

[19] Reed,K (2000) THE FUTURE OF SOFTWARE ENGINEERING AND RE-
ENGINEERING AS SOFTWARE ARCHEOLOGY. Keynote Speech to the 
2000 Working Conference on Software Engineering, Brsibane, Nov. 2000 

[20] Royce, Winston W(1970), Managing the Development of Large Software 
Systems IEEE WESCOMN 1970 p-19 

[21] Rugaber, S and Wills L. M. Creating a Research Infrastructure for 
Reengineering 3rd Working Conference on Reverse Engineering (WCRE '96)  
Monterey November 1996 IEEE Computer Society 

[22] Shaw, M., DeLine, R., Klein, D. V., Ross, T. L., Young, D. M. and Zelesnik, 
G.(1995)  Abstractions for Software Architecture and Tools to Support Them 
IEEE Transactions on Software Engineering Vol. 21 No. 4 Apr. 1995 pp 314-
335) 

[23] Shaw, M. Large Scale Systems Require Higher-level Abstractions  Proceedings 
of the Fifth International Workshop on Software Specification and Design, 
IEEE Computer Society, 1989 pp 143-146 

 



Page 9 

[24] Wileden, J. C. (1986). This is IT: A Meta-Model of the Software Process. ACM  
Software Engineering Notes, 11(4), 9-11 Proceedings of the International 
Workshop on the Software Process and Software Environments, Trabuco 
Canyon March 1986 

 
 


