
ON A GENERAL PROPERTY
OF MEMORY MAPPING TABLES

Karl Reed
Department of Computing

Royal Melbourne Institute of Technology
G.P.O. Box 2476V

Melbourne
Victoria 3001

Australia

ABSTRACT

The paper shows that memory mapping tables can be used to implement the display registers used in
providing architectural support for block-structured languages such as Algol 60. This allows full lexieal
level addre3sing to be implemented on so-called von-Neuman machines.

The problems of fragmentation of the paged address space are explored, and machines with memory mapping
schemes capable of supporting the proposals identified.

Attention is drawn to the similarity between segmented and paged schemes, and it is suggested that the
latter may be used to support the former.

Keywords: Memory mapping, page tables, display, segmentation, virtual memory.

CR Categories: 4.12, 4.13, 6.21.

i. INTRODUCTION

It is generally considered that the so-
called von-Neuman architectures are different
from a lexical level addressed stack architec-
ture such as that implemented by Burroughs on
the B6700 (Doran 1979 page 8, Bishop and Barron
p. 116, Organick 1973 page vii) because display
registers (see Dijkstra 1961) and the associated
addressing mechanism are not present.

In practice, display registers can be
simulated in software on machines with linear
address spaces and programs written in languages
assuming a linear address space are made to run
on the B6700.

The fact that there are a number of stack
based computer architectures, the Hewlet Packard
3000 (Hewlett Packard 1976B), the ICL2900 (Buckle
1978), the MU5 (Morris and Ibbett 1979) and a
machine based upon the PDPiI (Tanenbaum 1978)
which do not contain display registers is of
no relevance to this paper. Our intention is to
show that it is possible to supportthe display-
based lexical level addressing on a machine with
a paged linear address space.

This is because the construction of the
linear address of an on-stack operand or pointer
in a lexical-level address architecture such as
the B6700 involves algorithmic steps identical
to those used for a pa~ed linear address space
even tnough the details of implementatlu.
differ. This similarity exists between paged,
lexical-level and segmented systems because the
operand addresses prior to evaluation are all

Permission to copy without ~e all or part of this material is granted
provided that the copies are not made or distributed ~ r direct
comme~ial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association ~ r Computing Machinery. To copy
otherwise, or to republish, ~quires a ~e and/or specific permission.

@ 1982 A C M 0-89791-066-4 82/03/0081 $00 .75

two-dimensional (Randell & Kuehner 1968 p.297,
Denning 1970, Doran 1979). Logical addresses in
all cases have the form

A l = (el,e2) (I)

where the binary pair (~i,~9) is suitably encoded
in an instruction's address~field.

Physical addresses, on a linear address
space are calculated by a mechanism algorith-
mically equivalent to

Ap = M(~ I) + ~2 (2)

where M nmps ~I onto a range of physical addresses.

The similarities between the three mechan-
isms can be studied by recognizing that each
consists of two separate components.

a) Operand Access, the algorithm used to
calculate on operand address,

b) A_ddress Space Maintenance, the steps taken
during procedure call-like operations which
alter the accessible address space, to
ensure that operand access is valid. (See
also Bishop and Barron.)

We show that operand access equivalence
can be maintained for paged and lexical-level
addressing on a paged machine, and suggest that
a similar equivalence can be established between
all three on a paged machine.

81

If fact, we will show that memory mapping
system3 such as that provided for process space
address translation on the Digital Equipment
VAXII/T80 could be used without modification.

2. II~E ADDRESSING SCHEMES

2.1.1 Operand Access in a Paged Virtual Memory

Paged virtual memory systems based upon one-level
store concept (Kilburn et al 1961) are well known
and will not be described in detail here. See
instead any of the following:-
Randell & Keuhner (1968), Tanenbaum (1976), or
Denning (1970).

A logical address =/consists of the ordered
pair (el'l, ="l)- where ~r I is the logical page
number, and ~"/ is the word within page.

Because the number of words in a page is
normally a power of two, and physical pages are
allocated sequentially with the first usually
allocated starting at physical word zero, the
fact that the physical address is obtained by

~p = T(~'/) + ~"/ (3)

where T is a mapping of logical page number
onto physical address is obscured (See Denning,
1970 p.163).

Instead, the physical address is obtained
by physically concatenating the word within page
field, ~"p, with the contents of the page trans-
lation taNle which provides the most significant
bits. Equation (3) is actually

~p = Tp (~'l) li~"l (4)
where T maps logical page numbers to physical
numbers~

The logical address space is contiguous in
the sense that data structures may cross arbitrary
numbers of pages, and indexing across page
boundaries is permitted.

2.1.2 Address Space Maintenance in a Paged
Virtual Memory

The contents of the page tables are not altered
when procedure calls or exits are performed, the
performance of the system being indistinguishable
from a linear, non-virtual address space.

The translation process is shown in Figure I.

2.2 Lexical Level Addressing

2.2.1 O~erand Access in a Lexical Level Stack

Operands, which may be on stack variables or
pointers to on or off stack items are addressed
with the aid of display registers. The operand
address takes the form of an ordered pair (//, £)
where

// is the lexical level of the block containing
the object, and

is it's position relative to the start of
the lexical level.

The state of a lexical level stack is shown
in Figure 2 taken from Doran (Fig.ll.5, p.51),

complete with static and dynamic links (see also
Barron & Bishop).

The address of the object in the linear
address space onto which the stack is mapped is

c~ = D(//) + / (5)

Virtual
page no.

i c~'p

Page Table

J

~g I
logical address

Word within page

--~~age Physical

Physical address

I I %

F~. i. Typical Virtual Memory Address Generation

82

begin

end

a)

integer i ; (2,2)
procedure P (j ,k) (2,3)

integer j ,k; (3,2), (3,3)

begin
integer re,n; (3,2), (3,3)

P (re, i};

end

Skeleton of an Algol program

i F

RCW ra

M~W ~ 1 3] . "

l

b) Stack whi le in procedure P

Figure 2. Typical lexical level stack with static
and dynamic links

D or display registers on the B6700 contain
a 20 bit physical address pointing to the first
word of what we will call a lexical stack frame,
however, this could have been an address in a
linear virtual address space. The maximum
number of items which may appear on a lexical
level is 213 , and address couples occupy 14
bits (Refer to B6700 reference manual, and
Organick 1973 and Doran 1979). A total of
32 display registers are provided.

Consecutive lexical stack frames need not
be contiguous on the linear address space.
Stack frames are variable length. The provision
of a word address in the D registers reduces
fragmentation of the linear address space.

2.2.2 Address Space Maintenance in a Lexical
Level Stack

Procedure call and exit operators must adjust
the contents of the D registers to ensure that
operand addressing is correct. The method used
on the B6700 (see Organick, Doran & Burrough§
for details) relies upon the static and dynamic
chains passing through the Mark Stack Control
Words (MSCW) as shown in Figure 2. The
algorithms are sufficiently well known not to
warrant further description.

2.3 Segemented Memory

The essential similarities between segmented
and paged address calculations have been noted
elsewhere (Tanenbaum 1976 and Randell and
Kuehner 1963), and are clear from Denning's
discussion of the two methods (Denning 1970
pp.161-164). In the interests of brevity, we
focus upon the possibility of using a paged
system to achieve lexical level addressing.

83

3. USE OF PAGED VIRTUAL MEMORY TO ACHIEVE
LEXICAL LEVEL ADDRESSING

3.1 Equivalence of Paged and Lexical Level
Addressing

We have demonstrated the equivalence of these
two methods from the foregoing. It is necessary
now to show that the problems of storage frag-
mentation, space allocation and address space
maintenance can be handled at least as well as
they can on the B6700.

Particular issues are:-

a) The need for variable sized lexical stack
frames.

b) Variance between optimum page and lexical
stack frame sizes, and

c) Minimization of logical and physical
storage fragmentation.

3.2 An Appropriate Memory Mapping Scheme

Consider a logical-physical page size of p words,
where p is a power of two, with a one word page-
table-entry (PTE). Further, consider that the
page table for any process including the opera-
ting system is held in a logical address space
called the page-table space (PTS), which is also
paged. In other words, the logical to physical
address translation for any process is described
by a contiguous set of words in the PTS. This
is shown in Figure 3 below.

This is identical to the scheme used on
the VAXIi/7SO(DEC 1979)for non-system address
translation, and to the two level translation
on the Data General MV/8000 (Data General page
37). It is also similar to a paged segmented
system. (See Denning 1970).

Lexical Stack
Space PTS entries

S

PTS page table
for some process

I/
fl

Page Table for some
process

PTS

111

11

I s

Page of
PTE's

\

\
\
\

\
\

\
\

\
\

\
\

\
\

Lexical Stack Frame

Page in lexical
stack frame

[
Logical address space

of process

Fig. 3. Address Translation Scheme

Let us allocate p pages of the logical
address space to any lexical level's stack
frame, that is p2 words.

Further, let us limit the total number of
lexical levels available to a process to p, so
that the lexical level stack is limited to p3
words at any instant. This need not be
contiguous on the logical address space for the
process, although stack frames must be contig-
uous. The p entries in the PTS page table must
now be treated as D registers. Compilers pro-
ducing code requiring lexical level addressing
will generate address couples of the form
(f~, address) in which the actual word address
within a lexical level's stack frame is spec-
ified. This will be a word within page
number, relative to the start of the lexical
level, as shown in Figure 4.

Lexical level zero may start on some
arbitrary page, say number L, which is a
multiple of p2, in which case the loader may
alter the f~ field of an address to

L/p+ (f..2.- 1)

producing a page number in the linear logical
address space.

(if, address)

~ Ilin StacNPage
II Frame |

Instruction Address Field

Fig. 4. Compiler Generated Address Couple

Stack frames may be constructed of physical
pages in an arbitrary fashion, and paged in and
out of physical memory as required. Internal
fragmentation is limited to half a physical page
per stack frame, and only as many physical pages
as required need be allocated.

However, a p3 word block of the logical
address space is unavailable for any other
purpose.

84

The scheme proposed here corresponds to
modifying the B6700 implementation so that:-

i) The stack is mapped on to paged linear
virtual address space,

ii) The number of pages in a stack frame is
a power of 2,

iii) Display registers contain a stack frame
number.

3.3 A Suggested Value for p

Assuming that we have a 32 bit word machine
with 32 bit address constants, a reasonable
value for p would be 128 words, that is 512
bytes on a byte addressable machine. A
lexical stack frame would then be 16 Kilowords,
and a total of 2 Megawords or 8 Megabytes of
the logical address space would be reserved for
the lexical stack, a small fraction of the 230

words available.

3.4 Maintenance of the Address Space

Access to the lexical level stack is valid pro-
vided procedure entry and exit operators update
the display, or in this case, the PTS page
table entries performing this function. These
operators would also be required to maintain
static and dynamic stack links.

Special instructions would need to be pro-
vided to achieve this result, there being eight
possible address space type transitions, as
shown in Table I.

Table 1 - Procedure Transitions

Operator

Entry)

Exit)

Address Space
From

Linear

Linear

Lexical Level

Lexical Level

Usase
To

Linear

Lexical Level

Lexical Level

Linear

The algorithms for maintaining the display
registers are well known (See Doran, Organick
and Burroughs). An existing machine with user
microcode capability and appropriate memory
mapping could be modified to support the
lexical level addressing by producing
microcode versions of these operators which
updated the PTS page entries.

A "doubly mapped" virtual memory scheme
was chosen to ensure that a single page table
entry could serve as a display register, which
holds a lo$ical rather than a physical address,
separating stack and virtual address space
maintenance issues.

A singly mapped virtual memory would
require either large pages, or small pages
and a special treatment for the lexical level
stack space in which page table entries for
these contained logical page numbers. The last

~5

arrangement would mean that more than one page
table entry would need to be updated whenever
the contents of a D register was altered,
significantly increasing the overheads associated
with procedure entry - exit operators.

The possibility of mapping directly to
physical address spaces is a topic for future
work.

4, ADDITIONAL PROPERTIES OF THE ADDRESSING
SCHEME

4.1 Parameter Transfer and Off-Stack Addressing

The use of an indirect or deferred mode when
referencing the lexical level stack provides a
means of addressing off-stack items such as arrays,
data structures and parameters. The indirect
address is a logical address and, if it points
to the lexical level stack space, automatically
a lexical level address. Parameters can of
course be passed readily in this matter.

The mechanism provided also allows for the
passing of parameters between procedures running
in either address space.

5. CONCLUSIONS

We have shown that lexical level addressing can
be implemented on paged linear virtual address
machine which has a double or two level mapping
scheme. This corresponds to a paged-segmented
address space as described by Denning (1970
p.164) and implemented on the IBM 370 (Case and
Padcgs) and the ICL 2900 (Buckle) for example.

Stack frames can be allocated freely in the
remaining linear virtual address-space, and frag-
mentation is limited to the contiguous component
of linear virtual address-space allocated to the
lexical level stack. Internal fragmentation is
limited to one half page per lexical stack frame
actually in use.

It could be shown by similar reasoning that
a segmented paged addressing scheme could support
lexical level addressing, and that a linear paged
addressing scheme could support a segmented
address space.

This analysis offers computer architects a
means of providing hardware support for three
different address space schemes using one under-
lying addressing mechanism and special procedure
entry-exit operators.

The key to the analysis is the fact that
there are two different components of an
addressing scheme, as already mentioned the
access mechanism and the address-space mainten-
ance mechanism. This has also been noted by
Bishop and Barron.

6. ACKNOWLEDGEMENT

I wish to acknowledge the help and encourage-
ment of Professor C.S. Wallace in the work that
lead to this paper, and the critical comments of
those who referred an earlier draft.

REFERENCES

{Bishop, and Barron}
BislNop, J.M. and Barron, D.W.
"Procedure calling and structured architecture"
Computer Journal Vol. 23 No.2

{Buckle (1978) }
Buckle, J.K.
"The ICL 2900 Series"
MacMillan Press Ltd.
London and Basingstoke

{Burroughs }
B6700 Information Processing Systems
Reference Manual
Burroughs Corp. Detroit
Item AA190266, AAii9114

{Case and Padegs (1978)}
Case, R.P. and Padegs, A.
"Architecture of the IBM System/370"
Communications of the ACM, Vol.21 No.l
Jan. 1978, pp.73-96

{Data General (1980) }
"Eclipse MV/8000 Principles of Operation"
Data General Corporation
April 1980

{DEC 1978}
DEC
"Vax 11/780 Hardware Handbook"
Digital Equipment Corporation 1978

{Denning (1970) }
Denning, P.J.
"Virtual Memory"
Computing Surveys, Vol.2 No.3, pp.153-189
Sep. 1970

{Dijkstra (1961)}
Dijkstra, E.W.
"Making a Translator for Algol 60"
in "Annual Review in Automatic
Programmin~$ Vol.3, pp.347-356 (1963)

{Doran (1979)}
Doran, R.W.
"Computer Architecture: A Structured Approach"
Academic Press, 1979

{Hewlett Packard (1976) }
HP Series II Computer System
System Reference Manual
30000-90020

{Morris and Ibbett (1979)}
Morris, D. and Ibbett, R.
"The MU5 Computer System"
The MacMillan Press 1979

{Organick (1973)}
Organick, E.J.
"Computer System Organization:
the B5700/B6700 Series"
Academic Press 1973

{Randell and Kuehner (1973) }
Randell, B. and Kuehner, C.J.
"Dynamic Storage Allocation Systems"
Communications of the ACM, Vol.ll No.5,
May 1968, pp.297-305

{Tanenbaum (1976)}
Tanenbaum, A.S.
"Structured Computer Organization"
Prentice-Hall 1976

{Tanenbaum (1978) }
Tanenb aura, A.S.
"Implications of structured Programming
for Machine Architecture"
Communications of the ACM, Vol.21 No.3
Mar. 1978, pp.237-246

86

