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ABSTRACT 

The paper shows that memory mapping tables can be used to implement the display registers used in 
providing architectural support for block-structured languages such as Algol 60. This allows full lexieal 
level addre3sing to be implemented on so-called von-Neuman machines. 

The problems of fragmentation of the paged address space are explored, and machines with memory mapping 
schemes capable of supporting the proposals identified. 

Attention is drawn to the similarity between segmented and paged schemes, and it is suggested that the 
latter may be used to support the former. 
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i. INTRODUCTION 

It is generally considered that the so- 
called von-Neuman architectures are different 
from a lexical level addressed stack architec- 
ture such as that implemented by Burroughs on 
the B6700 (Doran 1979 page 8, Bishop and Barron 
p. 116, Organick 1973 page vii) because display 
registers (see Dijkstra 1961) and the associated 
addressing mechanism are not present. 

In practice, display registers can be 
simulated in software on machines with linear 
address spaces and programs written in languages 
assuming a linear address space are made to run 
on the B6700. 

The fact that there are a number of stack 
based computer architectures, the Hewlet Packard 
3000 (Hewlett Packard 1976B), the ICL2900 (Buckle 
1978), the MU5 (Morris and Ibbett 1979) and a 
machine based upon the PDPiI (Tanenbaum 1978) 
which do not contain display registers is of 
no relevance to this paper. Our intention is to 
show that it is possible to supportthe display- 
based lexical level addressing on a machine with 
a paged linear address space. 

This is because the construction of the 
linear address of an on-stack operand or pointer 
in a lexical-level address architecture such as 
the B6700 involves algorithmic steps identical 
to those used for a pa~ed linear address space 
even tnough the details of implementatlu. 
differ. This similarity exists between paged, 
lexical-level and segmented systems because the 
operand addresses prior to evaluation are all 
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two-dimensional (Randell & Kuehner 1968 p.297, 
Denning 1970, Doran 1979). Logical addresses in 
all cases have the form 

A l = (el,e2) (I) 

where the binary pair (~i,~9) is suitably encoded 
in an instruction's address~field. 

Physical addresses, on a linear address 
space are calculated by a mechanism algorith- 
mically equivalent to 

Ap = M(~ I) + ~2 (2) 

where M nmps ~I onto a range of physical addresses. 

The similarities between the three mechan- 
isms can be studied by recognizing that each 
consists of two separate components. 

a) Operand Access, the algorithm used to 
calculate on operand address, 

b) A_ddress Space Maintenance, the steps taken 
during procedure call-like operations which 
alter the accessible address space, to 
ensure that operand access is valid. (See 
also Bishop and Barron.) 

We show that operand access equivalence 
can be maintained for paged and lexical-level 
addressing on a paged machine, and suggest that 
a similar equivalence can be established between 
all three on a paged machine. 
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If fact, we will show that memory mapping 
system3 such as that provided for process space 
address translation on the Digital Equipment 
VAXII/T80 could be used without modification. 

2. II~E ADDRESSING SCHEMES 

2.1.1 Operand Access in a Paged Virtual Memory 

Paged virtual memory systems based upon one-level 
store concept (Kilburn et al 1961) are well known 
and will not be described in detail here. See 
instead any of the following:- 
Randell & Keuhner (1968), Tanenbaum (1976), or 
Denning (1970). 

A logical address =/consists of the ordered 
pair (el'l, ="l )- where ~r I is the logical page 
number, and ~"/ is the word within page. 

Because the number of words in a page is 
normally a power of two, and physical pages are 
allocated sequentially with the first usually 
allocated starting at physical word zero, the 
fact that the physical address is obtained by 

~p = T(~'/) + ~"/ (3) 

where T is a mapping of logical page number 
onto physical address is obscured (See Denning, 
1970 p.163). 

Instead, the physical address is obtained 
by physically concatenating the word within page 
field, ~"p, with the contents of the page trans- 
lation taNle which provides the most significant 
bits. Equation (3) is actually 

~p = Tp (~'l) li~"l (4) 
where T maps logical page numbers to physical 
numbers~ 

The logical address space is contiguous in 
the sense that data structures may cross arbitrary 
numbers of pages, and indexing across page 
boundaries is permitted. 

2.1.2 Address Space Maintenance in a Paged 
Virtual Memory 

The contents of the page tables are not altered 
when procedure calls or exits are performed, the 
performance of the system being indistinguishable 
from a linear, non-virtual address space. 

The translation process is shown in Figure I. 

2.2 Lexical Level Addressing 

2.2.1 O~erand Access in a Lexical Level Stack 

Operands, which may be on stack variables or 
pointers to on or off stack items are addressed 
with the aid of display registers. The operand 
address takes the form of an ordered pair (//, £) 
where 

// is the lexical level of the block containing 
the object, and 

is it's position relative to the start of 
the lexical level. 

The state of a lexical level stack is shown 
in Figure 2 taken from Doran (Fig.ll.5, p.51), 

complete with static and dynamic links (see also 
Barron & Bishop). 

The address of the object in the linear 
address space onto which the stack is mapped is 

c~ = D(//) + / (5) 

Virtual 
page no. 

i c~'p 

Page Table 

J 

~g I 
logical address 

Word within page 

--~~age Physical 

Physical address 

I I % 

F~. i. Typical Virtual Memory Address Generation 

82 



begin 

end 

a) 

integer i ;  (2,2) 
procedure P ( j ,k) (2,3) 

integer j ,k;  (3,2), (3,3) 

begin 
integer re,n; (3,2), (3,3) 

P (re, i}; 

end 

Skeleton of an Algol program 

i F 

RCW ra 

M~W ~ 1 3 ] . "  

l 

b) Stack whi le in procedure P 

Figure 2. Typical lexical level stack with static 
and dynamic links 

D or display registers on the B6700 contain 
a 20 bit physical address pointing to the first 
word of what we will call a lexical stack frame, 
however, this could have been an address in a 
linear virtual address space. The maximum 
number of items which may appear on a lexical 
level is 213 , and address couples occupy 14 
bits (Refer to B6700 reference manual, and 
Organick 1973 and Doran 1979). A total of 
32 display registers are provided. 

Consecutive lexical stack frames need not 
be contiguous on the linear address space. 
Stack frames are variable length. The provision 
of a word address in the D registers reduces 
fragmentation of the linear address space. 

2.2.2 Address Space Maintenance in a Lexical 
Level Stack 

Procedure call and exit operators must adjust 
the contents of the D registers to ensure that 
operand addressing is correct. The method used 
on the B6700 (see Organick, Doran & Burrough§ 
for details) relies upon the static and dynamic 
chains passing through the Mark Stack Control 
Words (MSCW) as shown in Figure 2. The 
algorithms are sufficiently well known not to 
warrant further description. 

2.3 Segemented Memory 

The essential similarities between segmented 
and paged address calculations have been noted 
elsewhere (Tanenbaum 1976 and Randell and 
Kuehner 1963), and are clear from Denning's 
discussion of the two methods (Denning 1970 
pp.161-164). In the interests of brevity, we 
focus upon the possibility of using a paged 
system to achieve lexical level addressing. 
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3. USE OF PAGED VIRTUAL MEMORY TO ACHIEVE 
LEXICAL LEVEL ADDRESSING 

3.1 Equivalence of Paged and Lexical Level 
Addressing 

We have demonstrated the equivalence of these 
two methods from the foregoing. It is necessary 
now to show that the problems of storage frag- 
mentation, space allocation and address space 
maintenance can be handled at least as well as 
they can on the B6700. 

Particular issues are:- 

a) The need for variable sized lexical stack 
frames. 

b) Variance between optimum page and lexical 
stack frame sizes, and 

c) Minimization of logical and physical 
storage fragmentation. 

3.2 An Appropriate Memory Mapping Scheme 

Consider a logical-physical page size of p words, 
where p is a power of two, with a one word page- 
table-entry (PTE). Further, consider that the 
page table for any process including the opera- 
ting system is held in a logical address space 
called the page-table space (PTS), which is also 
paged. In other words, the logical to physical 
address translation for any process is described 
by a contiguous set of words in the PTS. This 
is shown in Figure 3 below. 

This is identical to the scheme used on 
the VAXIi/7SO(DEC 1979)for non-system address 
translation, and to the two level translation 
on the Data General MV/8000 (Data General page 
37). It is also similar to a paged segmented 
system. (See Denning 1970). 
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Fig. 3. Address Translation Scheme 

Let us allocate p pages of the logical 
address space to any lexical level's stack 
frame, that is p2 words. 

Further, let us limit the total number of 
lexical levels available to a process to p, so 
that the lexical level stack is limited to p3 
words at any instant. This need not be 
contiguous on the logical address space for the 
process, although stack frames must be contig- 
uous. The p entries in the PTS page table must 
now be treated as D registers. Compilers pro- 
ducing code requiring lexical level addressing 
will generate address couples of the form 
(f~, address) in which the actual word address 
within a lexical level's stack frame is spec- 
ified. This will be a word within page 
number, relative to the start of the lexical 
level, as shown in Figure 4. 

Lexical level zero may start on some 
arbitrary page, say number L, which is a 
multiple of p2, in which case the loader may 
alter the f~ field of an address to 

L/p+ (f..2.- 1) 

producing a page number in the linear logical 
address space. 

(if, address) 

~ Ilin StacNPage 
II Frame | 

Instruction Address Field 

Fig. 4. Compiler Generated Address Couple 

Stack frames may be constructed of physical 
pages in an arbitrary fashion, and paged in and 
out of physical memory as required. Internal 
fragmentation is limited to half a physical page 
per stack frame, and only as many physical pages 
as required need be allocated. 

However, a p3 word block of the logical 
address space is unavailable for any other 
purpose. 
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The scheme proposed here corresponds to 
modifying the B6700 implementation so that:- 

i) The stack is mapped on to paged linear 
virtual address space, 

ii) The number of pages in a stack frame is 
a power of 2, 

iii) Display registers contain a stack frame 
number. 

3.3 A Suggested Value for p 

Assuming that we have a 32 bit word machine 
with 32 bit address constants, a reasonable 
value for p would be 128 words, that is 512 
bytes on a byte addressable machine. A 
lexical stack frame would then be 16 Kilowords, 
and a total of 2 Megawords or 8 Megabytes of 
the logical address space would be reserved for 
the lexical stack, a small fraction of the 230 

words available. 

3.4 Maintenance of the Address Space 

Access to the lexical level stack is valid pro- 
vided procedure entry and exit operators update 
the display, or in this case, the PTS page 
table entries performing this function. These 
operators would also be required to maintain 
static and dynamic stack links. 

Special instructions would need to be pro- 
vided to achieve this result, there being eight 
possible address space type transitions, as 
shown in Table I. 

Table 1 - Procedure Transitions 

Operator 

Entry ) 

Exit ) 

Address Space 
From 

Linear 

Linear 

Lexical Level 

Lexical Level 

Usase 
To 

Linear 

Lexical Level 

Lexical Level 

Linear 

The algorithms for maintaining the display 
registers are well known (See Doran, Organick 
and Burroughs). An existing machine with user 
microcode capability and appropriate memory 
mapping could be modified to support the 
lexical level addressing by producing 
microcode versions of these operators which 
updated the PTS page entries. 

A "doubly mapped" virtual memory scheme 
was chosen to ensure that a single page table 
entry could serve as a display register, which 
holds a lo$ical rather than a physical address, 
separating stack and virtual address space 
maintenance issues. 

A singly mapped virtual memory would 
require either large pages, or small pages 
and a special treatment for the lexical level 
stack space in which page table entries for 
these contained logical page numbers. The last 

~5 

arrangement would mean that more than one page 
table entry would need to be updated whenever 
the contents of a D register was altered, 
significantly increasing the overheads associated 
with procedure entry - exit operators. 

The possibility of mapping directly to 
physical address spaces is a topic for future 
work. 

4, ADDITIONAL PROPERTIES OF THE ADDRESSING 
SCHEME 

4.1 Parameter Transfer and Off-Stack Addressing 

The use of an indirect or deferred mode when 
referencing the lexical level stack provides a 
means of addressing off-stack items such as arrays, 
data structures and parameters. The indirect 
address is a logical address and, if it points 
to the lexical level stack space, automatically 
a lexical level address. Parameters can of 
course be passed readily in this matter. 

The mechanism provided also allows for the 
passing of parameters between procedures running 
in either address space. 

5. CONCLUSIONS 

We have shown that lexical level addressing can 
be implemented on paged linear virtual address 
machine which has a double or two level mapping 
scheme. This corresponds to a paged-segmented 
address space as described by Denning (1970 
p.164) and implemented on the IBM 370 (Case and 
Padcgs) and the ICL 2900 (Buckle) for example. 

Stack frames can be allocated freely in the 
remaining linear virtual address-space, and frag- 
mentation is limited to the contiguous component 
of linear virtual address-space allocated to the 
lexical level stack. Internal fragmentation is 
limited to one half page per lexical stack frame 
actually in use. 

It could be shown by similar reasoning that 
a segmented paged addressing scheme could support 
lexical level addressing, and that a linear paged 
addressing scheme could support a segmented 
address space. 

This analysis offers computer architects a 
means of providing hardware support for three 
different address space schemes using one under- 
lying addressing mechanism and special procedure 
entry-exit operators. 

The key to the analysis is the fact that 
there are two different components of an 
addressing scheme, as already mentioned the 
access mechanism and the address-space mainten- 
ance mechanism. This has also been noted by 
Bishop and Barron. 
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