
1

Karl Reed icse.2004 esis

Some issues in the engineering of

widely deployed software intensive

systems-functional variation

Chair IEEE-Computer Society Tech. Council on Software Engineering

Governor, IEEE-Computer Society(1997-1999,2000-2002),

Director, Computer Sys. & Software Engineering Board, ACS,

Department of Computer Science & Computer Engineering, La Trobe

University

by Assoc. Prof. Karl Reed,FACS, FIE-Aust., MSc,ARMIT

2

Karl Reed icse.2004 esis

1. We have a system consisting of a collection of interacting (statically or

dynamically) bound components in which either a single component

or sub-system can be replaced with another…

2. If the functionality represented by the replaced “part” is changed,

• A/What mechanisms can be provided to allow this to be propagated to the

user level?

• B/ How shall we (or should we) control the functionality-variation at the

user level?

• (Normally I’d be arguing that we need systems stability, and that this is a

measure of quality???)

The Problem..

87

3

Karl Reed icse.2004 esis

Why are surprises important?Why are surprises important?

--Will customers pay for software intensive systems if they Will customers pay for software intensive systems if they

continue to be difficult to usecontinue to be difficult to use

If not, thereIf not, there’’ll be no research funding!!ll be no research funding!!

50%1

30%1.5

20%2.00

15%2.5

10%3.33

5%7.00

Productivity

Increase

Required

Normalised

Time to

Breakeven-No.

learning times

c

4

Karl Reed icse.2004 esis

1. Dynamically “varying” systems of (autonomous) dynamically linked components can lead

to variant functional of non-functional behavioural variation.

2. If functional variation is allowed, the ability to somehow control it, and determine what is

both acceptable and allowable is needed

3. In terms of what is acceptable, we can make use of a number of properties of real

systems (Shaw 1999) where the internal states/transitions are quite “fuzzy”, and where a

user actually accepts a range of outcomes (hence, varying functionality). In fact, humans

may not work with precise systems often.

-Also, humans work with large systems whose apparent ambiguity (Reed, 2000) can

appear as functional variation

4. What is allowable .. An (functional) operational envelope could be defined in principal.

Functionality out-side this envelope could be rejected- BUT RECORDED, AND

PRESENTED TO THE USER, WHO COULD ADD IT TO THEIR OPERATIONAL

ENVELOPE (or a systems administrator could)

5. Pt.4. Constitutes a “controlled mutant adoption” process.

6. Pt.3. May involve a kind of reverse HCI,or a human-centred fault tolerant approach.

Agenda

88

5

Karl Reed icse.2004 esis

“F1. Current software has too many surprises. The sources of surprise

are poorly understood.”

Sources of surprises... Real and apparent ambiguity in the means of representation of

systems, e.i. Languages (cf 3 pages of c++ with 3 pages of government regulations)

Real and apparent unpredictability in behaviour...

“Teenagers have less trouble with PC software because they are adept at playing

computer games” Charles Wright, editor Melbourne Age “green pages” computer section

2000

“Building ‘bots’ that play computer games with near human competence is not that hard” US

researcher in AI….

LARGE-SCALE (UBIQUITOUS) SOFTWARE SYSTEMS CANNOT HAVE TO MANY

‘SURPRISES’

F2. Key sources of software surprise include immature or poorly integrated software

domain sciences, construction (product) principles, and engineering processes.

Surprise(we already deal with functional variation)….!!! (nsf

report on s/w research 1998)

6

Karl Reed icse.2004 esis

what are they?

-A “surprise” (for our purposes) is some behaviour of a system’s which causes or

could cause a user to make an error1, or excessive stress and discomfort in

resolving the behaviour

-Occur inherently in Lehmann’s E-type systems

-Occur WHEN developers BELIEVE they are building E-type systems

Examples..introduction of new expense claim s/w suddenly impacts the work-

loads, stress and financial security of 100’s of people

…no logical relationship between functions in s/w and semantics of menus they

are in

..almost un-usable web-sites

..SCS system failures are better known

-INCLUDE some un-expected functionality (that requires some effort to interpret?)

WHAT ARE SURPRISES --- WHO KNOWSABOUT THEM AND WHAT CAN

WE DO ABOUT THEM?

89

7

Karl Reed icse.2004 esis

Who knows about them?

-The SCS community places great effort on identifying “unexpected behaviours”and
controlling their impact.

-Those working on systems with adaptive behaviour and user-error recovery.

-Fault-tolerant community (already been mentioned)

-Games technologists (one of the Fraunhofer Institut’s has looked at this)

-Extreme Programmers and iterative developers “think” they are dealing with “surprises”

-Product-line strategists

-lateral thinkers (here, the “surprise” is an unrecognised “use” which allows functional
substitution

What can we do about them?

-Elevate their definition and management to a high-level design feature rather than an
implementation problem to be avoided

-Those working on systems with adaptive behaviour and user-error recovery.

-Study the behaviour of people working in/with systems whose behaviour changes

-at the design level- deal with the adoption and control of autonomous functional variation

WHAT ARE SURPRISES --- WHO KNOWSABOUT THEM AND WHAT CAN

WE DO ABOUT THEM?

8

Karl Reed icse.2004 esis

Where functionality has been removed..

-Maybe analogous to a fault-tolerant situation (however, the system could actively seek a
replacement component)

-User may agree that they can manage without this (operational envelope).

-User may seek-out a replacement function--rejecting the original

-Fault-tolerant community (already been mentioned)

-Games technologists (one of the Fraunhofer Institut’s has looked at this)

-”Grace-full degradation” of OS in the 70’s..

Where functionality has been changed

-Need to define “conformant” and “non-conformant” changes, e.g., a data representational
change

-Need to recognise unacceptable (I.e. unadoptable at the system level) change (op-
envelope issue)

-Can we define functionality extractors-correctors? (recognise and correct a functional miss-
match?- a re-use - “glue-code” problem?)

adoption of autonomous functional variation of due to some
type of component “change”

90

9

Karl Reed icse.2004 esis

Formal approaches….

-Component-contract specifications specify..

1. What semantic variation in service-component that can be tolerated

2. Semantic definition of service’s actual functionality

-Semantic reasoning about aggregated functionality, propagating the changes upwards until
either they reaches the user, OR violate some semantic constraint.

Informal Approaches.. (may be an operational approach?)

-Examine examples of functional variation visible to users,

-Using these, develop rules for specifying functional variations at the component level, and
for their transmission upwards (an operational approach to the formal)

Suggest there is actually a lot of data and examples to examine..

e.g. behaviour of pc-desk top s/w applications present to the user as having
unpredictable changes in functionality

relationship between knowledge, experience,skill and tools is relevant

Dealing with changing function..

10

Karl Reed icse.2004 esis

Assumes mechanisms for adopting functional variation and propagating it through a design

An (functional) operational envelope could be defined in principal. Functionality out-side this
envelope could be rejected- BUT RECORDED, AND PRESENTED TO THE USER, WHO
COULD ADD IT TO THEIR OPERATIONAL ENVELOPE (or a systems administrator could)

Constitutes a “controlled mutant adoption” process.

May involve a kind of reverse HCI,or a human-centred fault tolerant approach.

Use approaches from security (although of conceptual value only)--perhaps consider form of

intrusion (e.g. audit trail monitoring)

Adaptive user profile generation could be part of this

Needs..

mechanisms for describing the added functionality to users and administrators

roll-back mechanisms

Operational Envelope approach…

91

11

Karl Reed icse.2004 esis

1. Study the way humans work with large systems with apparent ambiguity

2. Develop the operational envelope approach..

• Develop a “controlled mutant adoption” process.

Research Agenda (one component)

92

