
I)Toolsj+om
infoma tion
management and

so&aye development

combine to provide
document developers
with maximum

flexibility phs a
guarantee of
correctness and
consistency.

A Hypertext
Based Sofware-
Engineering
Environment
JACOB L. CYBLJLSKI and KARL REED
Amdahl Australian lntellegent Tools Program

T he recent explo-
sion in computer use has put pressure on
software developers to use softw-are-engi-
neering methods that adhere to approved
life-cycle models, specific types of deliver-
able documents, and detailed project or-
ganization and control techniques.’ Many
believe that these methods can effectively
deal with the explosion, but if develop-
ment costs are to decrease, they must also
be automated.

As early as the 1970s software re-
searchers attempted to improve develop-
ment efficiency by automating and inte-
grating aspects of software development.’
Initial efforts in CASE focused on source-
code formatting, structured-program-
ming support, and test-case generation.
The emphasis has since shifted to creating
development environments that support
tlexible or customizable process models.
These environments comprise tools for

interactively constructing system descrip-
tions that rely on standard diagraming
techniques and allow code generation. In-
tegrating such tools into a uniform CASE
environment is not possible, however, un-
less certain conditions are met:

+ You can use different document
classes at various development phases.

+ Documents produced by one tool
can be used by other tools farther along
development.

+ You can efficiently and conveniently
traverse (navigate) among diverse docu-
ments that describe the system and its
components. Figure 1 shows how soft-
ware engineers might navigate through
these documents.

+ All documents can be guaranteed to
be coherent and consistent throughout
the software’s life cycle.

For example, when viewing a process
symbol in a dataflow diagram, you may

62 07407459/92/0300/0062/$03 00 0 IEEE MARCH 1992

wish to display the code associated with
the process, display its representation in a
state-transition diagram, and inspect the
relevant section of a (standard) system re-
quirements specification or a correspond-
ing paragraph in the feasibility descrip-
tion, To do this, you would have to be able
to access a variety of documents simulta-
neously.

These conditions suggest that a CASE
system should have mechanisms for con-
structing software documents, for creating
navigable links among them, and for navi-
gating through the repository’s compo-
nents. A straightforward way to give a
CASE system these features is to integrate
it with a system that already has them.

CASE AND HYPERTEXT

We decided to integrate our CASE
tools under an extended hypertext system,
an information-management concept that
evolved quite independently of CASE.
Table 1 shows how we relate the features
of hypertext to CASE components. In
hypertext, information I?agments in vari-
ous forms are grouped and linked in a way
that lets you search and browse through
them nonsequentially. By extending this IF
environment to accommodate an inte-
grated CASE tool set, we could guarantee
correctness and consistency and provide
maximum flexibility. This approach has
been adopted by only a few significant
CASE

8
rejects like Tektronix’s Neptune

project and the University of Southern
California’s System Factory Project.
(For more details on this project, see
Peiwei Mi and Walt Scacchi’s ardcle on
pp. 45-53.) 5,6

The resulting environment, called
HyperCASE, is an architectural frame-
work for integrating the collection of
tools. It is being produced as part of the
Amdahl Australian Intelligent Tools Pro-
gram, which is a joint project between
Amdahl Australia, La Trobe University,
and Prometheus Software Developments.
The system provides a visual, integrated
and customizable software-engineering
environment consisting of loosely coupled
tools for presentations involving both text
and diagrams. HyperCASE’s objective - L

ipre 1. Navigating among @ware documents.

Hypertext WE

Document authoring

Browsing and navigation

Document aggregation

vlmlal structures
Dynamic computation
Revision management
Group work
ExtensibiIity/taiIorbility
Concept annotation
collsi6tencychesIdng

Completeness assessment

Diagram editors
Text-oriented tools
Traversing through program slices and
refinement levels and across semantic
terms
Module libraries
Data-structure groups
Code generation
Runtime results
Sc&ware-contiguration management
Project-team development
Multiple methodologies
Design-decision recording
Validation
verification
Project-plan tracking

IEEE SOFTWARE 6:

like the objective of CASE tools in general
- is to provide a powerful, user-friendly,
integrated development platform that can
significantly raise productivity. Its specific
goal is to support software developers in
project management, system analysis, de-
sign, and coding.

HyperCASE integrates tools by com-
bining a hypertext-based user interface
with a common knowledge-based docu-
ment repository. It also includes extensive
natural-language capabilities tailored to
the CASE domain. These are used in the
interface to the software repository, pro-
viding an alternative to hypertext infor-
mation management and interdocument
navigation. You can also analyze English
input during informal system-require-
ments specification, allowing a significant
degree of automation for design and con-
cept reuse at the earliest development
stages.

Figure 2 shows HyperCASE’s three
subsystems: HyperEdit, the graphical user
interface; HyperBase, the knowledge

base; and HyperDict, the data dictionary. store in Ingres. We expect the linal system
As the figure shows, the tools can function to be implemented on Amdahl’s UTS sys-
in a stand-alone mode with minimal sup- tern (Amdahl’s version of Unix based on
port from proprietary systems, even System V).
though the HyperCASE collection con-
stitutes an integrated system. In this way, HYPEREDIT
we hoped to maximize the opportunity for
independent tool development. HyperEdit integrates many of the win-

We developed a number of early dow-based, customizable graphics or text
HyperCASE prototypes editors/browsers that a
on a variety of platforms, I- software engineer is likely
including Sun with
Unix/X, Macintosh with HyperUE combines ~;;,~;~p~;e~~ff;
HyperCard, and Mats
and IBM ATS with C and
Prolog. We are now de-
veloping HyperCASE on
an IBM AT with Open
Desktop. HyperEdit is

a hypertext-based
user intefface with a

common
knowledaebased

software documents.
More important, it can
also generate such tools.
HyperEdit - which
comprises the interface
manager, authoring sys-

being implemented document depository. tern, and event manager
under X Windows using -lets vou construct, edit,
the Open Software
Foundation’s Motif tool kit, HyperBase i:
implemented using Prolog, ant
HyperDict is designed as a Prolog dan

j I

1 1

1 !

HyperBase

CASE tools

Bose tools

Figure 2. HypedXSE architecture.

HyperDict

/

and display a variety of
locuments, including requirements state-
nems, dataflow diagrams, entity-relation-
hip diagrams, structure charts, state-mm-
sition diagrams, Petri nets, flowcharts or
Nassi-Shneiderman diagrams, source
de, and test cases.

The main responsibility of Hyper-
Edit’s interface manager is to manage
HyperCASE’s graphical user interface
under a native windowing system. The au-
thoring system lets you construct software
documents of hypertext buttons, which
you activate while interacting with the
document by typing or clicking or drag-
ging the mouse. The event manager cap-
tures the button events and translates
them into database updates, which it then
sends to HyperBase or any other program
via a special communication protocol,
called EventTalk. In tbis way, HyperBase
can interpret your actions in terms of the
software design elements and interdocu-
ment relationships stored in its database.

Interface manager. The core of
HyperEdit’s presentation system consists
of text and graphics primitives. These
primitives let you easily express functions
and flexibly create windows, dialogue
boxes, menus, palettes, buttons, text, and
pphics by using the mouse or keyboard.

64 MARCH 1992

Authing system. HyperCASE offers
several standard text and diagram editors
that support major software-development
methods. Each editor is simply an instan-
tiation of HyperFdit’s graphical environ-
ment. The instantiation is tailored to ma-
nipulate specific classes of objects with a
range of attributes and behaviors. Author-
ized users can visually interact with
HyperEdit’s metaeditor to describe new
object types and their subcomponents’
shapes, sizes, colors, fonts, and styles;
specify object behavior and the constraints
governing the objects; and define the new
editor’s appearance and functions.

XI construct a diagram or text, you
+ compose software documents, of the

editor-specific objects (like dataflow-dia-
gram processes, stores, and entities);

+ link them into object sets (with
dataflows or into domains); and

+ specify their logical attributes (like
names) and visual attributes (Iike color,
size, and position).

Authoring can be restricted according
to the type of user. For example, analysts
may be permitted to modify design docu-
ments without any restraints, while tech-
nical writers can be limited to altering the
documents’ visual attributes only, without
affecting content Programmers can be
confined to viewing existing software de-
sign documents, with no ability to alter
any document aspects.

The authoring system’s browsing and
navigational mechanisms include an ex-
tended button facility in which all diagram
objects, regardless of shape and form, may
act as hypertext buttons, thus becoming
active document components. Button
events are invoked not only when you click
or drag a mouse, but also whenever a
document’s state changes as a result of
modification, verification, or completion.

Other mechanisms include
+ document retrieval by classification,

content, or relationship with other docu-
ments in the system;

+ document browsing with panning
and zooming over individual documents
or collections; and

+ navigation among documents with
history lists, route maps, bookmarks, and
the like.

These capabilities give you rapid access
to all relevant software documentation,
which increases the chances of its reuse.

Event mawqer. All through the user’s
graphical interaction, Hyper-CASE
maintains the data needed to describe de-
veloped diagram struc-

ment content (like repositioning or resiz-
ing graphical objects) are not immediately
communicated to HyperBase.

EventTalk also advises HyperBase of
all user actions that cannot be interpreted
within the context of the displayed docu-
ment. Such events may include browsing

and navigating by click-
tures. Presentation re-
cords are kept in the
HyperEdit repository.
Conceptual information
is kept in HyperBase or
any other software that
supports EventTall<.

Although the presen-
tation records and con-
ceptual information (con-
tents) are distinctly
different representations,
thev have certain overlap-
ping aspects. For exam-

ing on a diagram compo- -
The authoring system

gives you rapid
~~~~~r~~~s~~~h$~ 
events require access to 

access to all 
HyperBase’s interdocu- 
ment linking information 

relevant software and the details of the des- 
tination documents. For 

documentation, which Y-J~~~~~;;,~J;;; 
increases the chances l inks leading from the se- 

of its reuse. lected dataflow diagram 
process to the set of its re- 

ple, a graphics field denoting an entity-re- 
lationship entity name will contain a string 
that will also be stored in the contents 
database. Consequently, information is 
replicated across the repositories of all cur- 
rently opened HyperEdit sessions and 
HyperBase. For this reason we devised 
EventTalk, a special communication pro- 
tocol that maintains the conceptual integ- 
rity and completeness of HyperEdit’s 
multiple diagram images. 

The main objective of EventTalk is to 
advise HyperBase of all user-instigated 
changes (as opposed to tool-instigated 
changes) to tbe document’s content. Such 
changes may arise when a user creates, de- 
letes, or edits a document’s components 
(for example, creates or deletes entities, re- 
lationships, or attributes in entity-rela- 
tionship diagrams). HyperBase can then 
validate these actions. 

After HyperBase is updated (for exam- 
ple, when an entity has been deleted), the 
knowledge-base rul es may be triggered to 
make additional changes to the database to 
ensure document consistency (deleting all 
relationships connected to the deleted en- 
tity, for example). In this case, HyperBase 
will also send appropriate EventTalk com- 
mands back to HyperEdit to correct the 
displayed document. Changes in docu- 
ment presentation that do not affect docu- 

finement diagrams. 
EventTalk gives HyperEdit an object- 

oriented view of HyperBase even though 
a relational schema may be in use. It pro- 
vides mechanisms for transaction roll- 
backs in the long transaction model, 
which organizes the undo facility but 
which also aids document versioning. The 
EventTalk transaction logs are useful in 
implementing a project-tracking system 
to assist in project and configuration 
management. 

HYPERBASE 

HyperBase is a knowledge-based 
hypermedia repository of software docu- 
ments. All user actions performed within 
HyperEdit are reflected in and possibly 
extended by HyperBase. As Figure 2 
shows, HyperBase comprises Base tools 
and CASE tools. Base tools accommodate 
the mechanisms and structures to orga 
nize a generic hypertext system, while 
CASE tools help ensure that a document 
is consistent and complete and that design 
components are reusable. 

BUSC tads. Base tools evolved from our 
initial experiments with HyperCASE. At 
first, we planned to use hypertext princi- 
ples in the implementation of only one 
CASE tool, a design tracker. But we real- 

IEEE SOFTWARE 65 



ized as development progressed that 
hypertext systems could satisfy many 
CASE requirements - particularly the 
need for multimedia document presenta- 
tion; interdocument analysis, browsing, 
and navigation; version change and deliv- 
ery control; planning and tracking; and 
capturing reflections about the product 
and its development. 

We discovered that commercial tools 
could not deliver all the required features 
affordably. Hence, we decided to develop 
a whole suite of CASE programs that 
could provide the basis of a hypertext 
framework. This suite, 
which we call Base tools, 

example); 
+ document generation through exe- 

cutable programs; 
+ document verification through pars- 

ing and compilation; 
* delivery sets (baselines); 
4 development distribution from col- 

laborative development; 
+ the need for private workspace; and 
l prototyping. 
We believe that incorporating ele- 

ments of software configuration manage- 
ment into the traditional hypertext model 
will benefit the hypertext mechanisms 

themselves. This belief 
led us to develop 

includes a document 
manager, configuration 
manager, project planner 

HypeCASE’s design 
and activity tracker, de- tracker forces control hypertext tools. 
sign tracker, and text an- 
alyzer. designers to document 

their decisions and the 
Project tracker Hyper- 

Document munuger. Sofi- 
ware documents pro- reasons for them. structure of internal and 
duced by HyperEdit be- Managers can then external documentation 
come an integral part of 
HyperCASE. The docu- trace he evolu~on of YcFe~~~g~~pAiZltEE 
ment manager analyzes, system concepts. velopment and tracking- 
indexes, aggregates, and development activities. 
stores graphics and text 
attributes to enable interdocument linking 
and navigation over program slices and re- 
finement levels or across semantic terms. 

Confisurotion monoger. The configuration 
manager controls the current state of the 
knowledge base and determines semantic 
and temporal dependencies in the 
project’s structure. Its role is to apply heu- 
ristics to ensure that system descriptions, 
their versions, and the products they de- 
iine are consistent. 

tracker provides a suite of project-man- 
HyperCASE’s project 

agement diagram editors in which a proj- 
ect manager defines the tasks, required re- 
sources, milestones, adopted standards, 
and project deliverables. The project team 
can then use the relationships and depend- 
encies from such a project plan to deter- 
mine the structure of deliverable docu- 
mentation. 

With a few notable exceptions 
(namely, Neptune4and DIF’), most com- 
mercial hypertext systems seriously ne- 
glect the need for elaborate version man- 
agement.’ The simple revision models 
applied to ordinary documents are inade- 
quate to maintain complex software docu- 
mentation. Software documents involve a 
number of additional constraints: 

l compositional and referential de- 
pendencies (that result from make files, for 

66 

The project tracker also helps project 
development by tracking system activities 
like tool use, monitoring resources allo- 
cated to a given task, and checking the 
status of individual documents and their 
components. 

b@r h&er. A major reason for the high 
cost of software maintenance is that devel- 
opment and delivery systems don’t record 
or preserve the history of design activities. 
Completed software-engineering sys- 
tems, in particular, often omit intermedi- 
ate design documentation. HyperCASE’s 

design tracker forces designers to docu- 
ment their decisions and the reasons for 
them. An integral part of HyperCASE’s 
navigation system, the design tracker lets 
maintainers and managers retrace the evo- 
lution of system concepts, follow the rea- 
sons used to implement them in either 
chronological or logical order, and iden- 
tify previous problem-solving attempts - 
thus avoiding potentially dangerous and 
expensive code and documentation 
modifications. 

Like the configuration manager and 
project tracker, the design tracker provides 
a way for developers to precisely record 
their reasoning patterns. This feature 
makes HyperCASE a suitable environ- 
ment for researching software processes 
because it identifies discrepancies between 
a developer’s explicit design reasoning and 
the development plan implied by tool use. 

Texf ono/yzer. HyperCASE’s text analyzer 
lets users access HyperBase through a re- 
stricted form of English. Unconstrained 
user queries are an alternative way to ac- 
cess software documents across the 
HyperBase data structures that support 
hypertext navigation. This alternative is 
attractive because although HyperBase is 
intelligent and comprehensive, it is highly 
structured and thus inflexible. 

The text analyzer also makes it easier to 
recognize references to reusable concepts 
in requirements statementS and to provide 
mechanisms for automatically classifying 
requirements and indexing and linking 
text for hypertext navigation. 

CASE to&. Because HyperCASE’s tools 
vary considerably in form and function, 
documents must be continually moni- 
tored to ensure consistency, integrity, and 
completeness. Software-development 
tools for assessing a project’s state and 
condition must deal with volumes of in- 
complete and, in some cases, incorrect in- 
formation. Typical problems include par- 
tial specifications, unfinished designs, 
error-ridden code, patchy documentation, 
and dated schedules and plans. 

To remedy these problems, the 
HyperBase subsystem uses recent ad- 
vances in artificial-intelligence applica- 

n 
MARCH 1992 



tions to software systems.7-9 The subsys- 
tem organizes a sophisticated knowledge 
base of reusable software documents and 
their components, provides heuristic rules 
to check their integrity, and aids their exe- 
cution and testing. 

CASE tools include a reuse manager, 
an integrity and completeness manager, a 
design animator, and executable diagram 
descriptions. 

Reuse monoger: Important to reusability - 
the fundamental aspect of software devel- 
opment - is having a uniform declarative 
representation of all document compo- 
nents that lets you see multiple views of the 
same component. 

mantics, correlate document content, 
check design integrity, and define com- 
pleteness. Such tasks are usually laborious 
and difficult, fi-equently requiring the use 
of complex logic and heuristics. The in- 
tegrity manager provides the inference 
framework for devising rules that ensure 
semantic integrity and document com- 
pleteness. It analyzes the syntactic and se- 
mantic contents of documents produced 
over the life cycle, including the highest de- 
sign levels. 

HyperBase provides 
such a uniform represen- 
tation, which it uses to de- 
vise a set of knowledge- 
base rules about software 
and design reusability. 
The reuse manager offers 
a way to index and classify 
analyzed texts of require- 
ments statements, design 
diagrams, plans, and 
schedules that lets you re- 
trieve software docu- 
ments relevant to the 
problem at hand with 
only a partially completed 
design or requirements 

HyperCASE provides 
complete functional 

and structural 
mappings from the 

requirements 
specification to the 

construction of source 
and binary modules. 

Design onimufer. As system development 
progresses, the design animator monitors 
the sequence of systematic relinements to 

modules and data sn+uc- 
tures. In this way, 
HyperCASE provides 
complete functional and 
structural mappings from 
the requirements specifi- 
cation; through the design 
of program logic, flow, 
and control; through the 
definition of the data 
structure; to the construc- 
tion of source and binary 
program modules. Once 
the programs are com- 
piled and linked, you can 
exercise the code using a 
standard Unix svmbolic 

statement. It also gives suggestions on how 
to incorporate the reusable components 
into the system being developed. 

Megri/y and completeness monoger Through- 
out the evolution of a project, each soft- 
ware entity is necessarily described from 
several vantage points. Relationships in 
entity-relationship diagrams, for example, 
may be defined as files or records in a data 
dictionary but appear as dataflows or 
stores in dataflow diagrams. Processes ini- 
tially shown in HIP0 (hierarchical input- 
process-output) charts may be refined 
with decision tables or state-transition di- 
agrams, used in dataflow diagrams, and fi- 
nally laid down as activity charts or pro- 
gram code. 

hxutuble diagram desc~pthn. We are also 
working on ways to create a software-dia- 
gram specification that is constructed in 
much the same way a circuit diagram is 
built -made from standard module fami- 
lies, and requiring no further logical or 
functional elaboration for implementa- 
tion. We expect the systems described by 
tools supporting this diagraming formal- 
ism to be duly executable from early spec- 
ifications. 

1 HYPERDICT 

When handling multiple software de- All HyperCASE d ocuments are stored 
scriptions, you must analyze document se- , in HyperDict, a common data dictionary. 

debugger and Visually 
n-ace the execution progress across all the 
system’s diagrammatical and textual de- 
scriptions. 

- 
Predicates 

oroc(A). 

Ka hl flow(B,i):.. 1 

Figure 3. Document processing in HyperCASE. 

Figure 3 shows how data dictionary up 
dates are triggered by EventTalk transac 
tions, channeled through the HyperBas 
knowledge base, and finally translated ints 
the statements of embedded primitives i 
a high-level query language like Embed 
ded SQL. This approach guarantees th: 
HyperBase rules will check database in 
tegrity constraints or invoke them whe 
necessary, thus keeping the database logi 
tally consistent. Several types of databas 
operations - like reporting, querying 
backing up, or recovering - do not alte 
the database contents and may be per 
formed freely without any fear of con 
snaint violation. 

H yperCASE is our attempt to inn 
grate a collection of disparate appk 

cations - namely, a CASE tool set - 
under a more general information-mar 
agement and presentation paradign 
hypertext. We believe that this integratio 
can improve concept reuse, simplifyin 
the implementation of the CASE system 
and increasing its users’ power and prc 
ductivity. 

The choice of tools has, in our vie> 
been vindicated by exercises such as th; 

IEEE SOFTWARE 



conducted at CASE ‘90, the Fourth Inter- 
national Workshop on Software Engi- 
neering. During the workshop, users and 
implementers catalogued the desired fea- 
tures of CASE systems. We believe that 
the HyperCASE project addressed a con- 
siderable number of the issues users con- 
sidered of immediate importance to any 
future CASE research. 

Our initial goals were to focus on tiont- 
end issues that we believe to be critically 
important yet lacking in sufficient atten- 
tion from existing research teams. We 
have not, therefore, proposed the devel- 
opment of code generators or support for 
specific methods. The projecr team antic- 
ipates a number of opportunities for future 
development, providing direct support for 
the software tools being marketed by both 
Amdahl and Prometheus. This will take 
the form of tailored diagraming and de- 
sign-capture capabilities that reflect the 

A CALL FOR 
PAPERS!!! 

Achieving A Quality 
Software Process 

The 2nd INTERNATIONAL 
CONFERENCE ON SOFTWARE 

QUALITY will be held in the Research 
Triangle Park, North Carolina on October 

5-7,1992.2ICSQ invites those interested in 
sharing their ideas, experiences, research, 

and/or lessons learned to submit an 
abstract, tutorial, or panel proposal. 

Please send three copies of your 
abstract and author biography by 

April 6,1992. 
ZICSQ will be held in coordination with 
the Third International Symposium on 

Software Reliability Engineering - 1992. 

FOR MORE INFORMATION, PLEASE CONTACT 
Sue McGrath, CQA John E. Lowe, SOA 
SAS Institute Inc. Litton Computer 
SAS Campus Drive Services 
Cary, NC 27513 4020 Executive Drive 
(919) 677-8000 Dayton, Ohio45430 
sassamQdev.sas.com (513) 429-6458 

Please submit abstracts and biography to 
Sue McGrath at the address above. 

m = Sponsored by: = - 
American Society for Duality 3 

Software Division : .I - 

eeds of individual development systems. 
We expect HyperCASE to signifi- 

antly decrease maintenance efforts as 
Iell as make it easier to cope with the large 
ocment collections typical of software 
evelopment. We also expect the combi- 

nation of natural-language processing, a 
design-reasoning record, and project 
tracking to substantially improve the 
economy of software development be- 
cause it promotes design reuse and en- 
hances project control. + 

ACKNOWLEDGMENTS 
\\‘e acknoalcdge the dmct financial support of Andahl Australia and of both La Trobe University and 

Pronxtheua Software Der elopmenb, as well as the assistdncc from the Victorian State Cmvernment. We also 
grz~trfully ~Lnowledge the 1nor~1 suppo’t and encouragement ofl‘haram S. Ddlon and the mrmbers of the 
-\mdahl Austmlran Intelhgent Trx~ls Program team: Kevin Alldritt, David Clear)-, Mel IIatzis, Danicl Jimah, 
Austin McClaughlin,Janc Philcox, Arthur Procstakis, Bev T&~x, and Chris \Vign;lU. 

REFERENCES 

7. P Cdrando, “Sh&w Fkng H>~twrxt~ith Al,” I,%EF-upeq \Vitt~ 1989, pp. 65.78. 
8. P. Garg and MY Scacchi, “Ishys: Designing ~, IntelliFnt Software Hypertext System,” IEEE&pm, Fall 

1989, pp. 52.63. 
9. P Puncello et al., “ASPIS : h Knowledge-Based CASE Environment.” IZXE S@ZRIP, March 1988, pp. 5% 

65. 

Jacob L. Cybulski is deputy director of the Amdahl Australian Intelligent Tools Program 
and a lecturer in sohvarc cngincering for the computer scxnce and engineering depart- 
ment nt La Trohe University. I Ir is also a consultant and Independent software developer. 
Cyhulski’s interests include aroficial intelligence applications in software engineering, spe- 
cifically interfaces .n~d knowledge-based systems. 

Cyhukki received a BAppSci and ;ZlAppSci in computer science from the Royal Mel- 
bourne Insatnte of Technolog. I Ic is a mernher ofthe IEEE Computer Society, Xhl, 
and .~~erican rt\sociahon ofr\rdficial bxelligence. 

Karl Reed is director ofthe Amdahl .Austr&n Intelligent ‘lb& Program and a senior 
lecturer in vAtware engineering for the computer xicnce and engineering department at 
La Trohe Umversity. He is also a senior visiting fellow in information technology, indus- 
uy strncturr, and industry policy at the Royal Melb oume Institute ofTechnology. His re- 
search interests include general software-engineering issues, computer architeaxre, and 
indusq p&y. 

Reed rccewed an Associate Diploma from the RWT in communications engineer- 
ing XXI an .ZIS in computer science from Xlonxh University ar Clayton. He is a Rllo~ 
and honorary life member of the ;\ushlian Computer Society and director of its techni- 
Cdl tmarti. 

Address quesnons about thrs article to Cybulskl at Dept. ofComputer Science and Computer Engineering, La 
i-ohe Universlt\; Bundoora lictona, Australu 3083; Internet jac~)b@latcsl.lat.(,z;au. 

MARCH 1992 


