Computer-Assisted Analysis and Refinement of

Informal Software Requirements Documents

Jacob L. Cybulski
Dept of Information Systems
The University of Melbourne
Parkville, Vic 3052, Australia
Email: j.cybulski@dis.unimelb.edu.au

Karl Reed
School of Comp Science and Comp Engineering
La Trobe University
Bundoora, Vic 3083, Australia
Email: kreed@latcs].cs.latrobe.edu.au

Abstract

This paper describes RARE (Reuse-Assisted Requirements
Elicitation), a method enabling software requirements
engineers to process informal software requirements
effectively. RARE’s object is to assist analysts in
transforming requirements expressed in natural language
into a comprehensive collection of rigorous specifications
that can be used as a starting point in software
development. However, unlike other approaches to
managing requirements documents, RARE focuses on the
application of reuse-intensive methods of dealing with
requirements documents, their contents and structure,
and the processes involved in the analysis and refinement
of requirements texts. The RARE method circumscribes
an iterative process of planning, gathering and
elaboration, analysis, refinement, adaptation, integration
and validation of requirements texts. The paper also
describes the operation of IDIOM (Informal Document
Interpreter, Organiser and Manager), a requirements
management tool that supports the RARE method.

1: Introduction

One of the main problems in software development is the
absence of adequate methods and tools for the computer-
assisted processing of early software requirements, i.e.
their acquisition, analysis, modelling and validation. This

situation is commonly blamed on the widespread practice
of encoding requirements in natural language [as implied
by some early standards, e.g. IEEE-830-1984 - 15]. Such
informal methods of requirements specification are
frequently criticised by developers and researchers for the
potential ambiguity and incompleteness of the resulting
requirement specifications [8]. In our view, the methods
of dealing with the deficiencies of informal requirements
documents are still in the early stage of research [14, pp
76-77]. Considering the difficulties associated with the
informal requirements documents, the majority of CASE
providers, turned to expressing system and software
requirements with the use of diagrams [as recommended
by the new SRS standards, e.g. MIL-STD-498 - 20] and
mathematical notations [e.g. Z, VDM, Spec or Larch -
27]. Formal specifications are claimed to be more
accurate, precise and unambiguous, and are capable of
rigorous, and in some cases also automated, analysis of
specifications for consistency, completeness, realisability
and correctness [14].

Regardless of the benefits offered by the formal
specification methods, natural language is still the
preferred form of expression by non-technically oriented
customers [3]. In view of the need for the effective
communication between the customers and developers, it
is recognised that writing software requirements in natural
language will remain in use for the foreseeable future.
During the 1989 Workshop on Requirements Engineering
and Rapid Prototyping (held by the U.S. Army
Communications-Electronics Command Center), the

participants debated this very issue. In their conclusions
[3, p 41], they stated that the specification language
should serve the requirements engineering process rather
than driving it. They noted that whilst it is desirable to use
formal expression of requirements in the later stages of
their processing, it is also critical that the actual users
define the requirements. As it is not realistic to expect the
users to learn complex formalisms, hence, the workshop
participants pointed out, customers should use the
notation they are most familiar with, i.e. natural language.

In our view, the problem of requirements formality
can be stated succinctly as follows :-

The specification vehicle should be informal enough
to allow an untrained customer to understand what
system functions will be delivered upon the system
completion, and sufficiently formal to allow a system
designer to have unambiguous statement of customer
requirements that can be implemented and validated
in its widest sense.

This conflict of informality and rigour in the
manipulation of written software requirements
specifications attracted and resulted in developmental,
methodological and research efforts leading to a number
of proposed solutions to the problem, e.g.

¢ Using executable prototypes to validate user
requirements [30];

¢ Relying on JAD sessions to enhance communication
between project stakeholders [32];

¢ Training clients in the use of formal methods [13];

¢ Gradual refinement of informal documents into their
formal versions [25];

¢ Generation of formal specifications from documents
written in natural language [10, 34];

¢ Generation of natural language narratives from
formal specifications [26];

¢ Use of “readable” formal specifications [21];

¢ Synthesis of socio-organisational and formal
techniques [29];

¢ Application of knowledge-based techniques to
requirements analysis [e.g. 1, 24]; etc.

There are also many commercially-available requirements
management system that can be used to effectively
manage a large collection of software requirements, e.g.
CASSETS, CORE, Cradle/SEE, RDD, RTM,
RequisitePRO, SLATE or Xtie RT [17]. Typically, such
systems automate many of the labour-intensive tasks
commonly required of the requirements engineers, e.g.
scanning text documents, requirements classification,
storage and allocation, managing requirements
traceability, configuration management, group support,
etc. Few of the requirements management tools deal with

the problem of processing informal software requirements
or free form text documents.

RARE (Reuse-Assisted Requirements Elicitation)1
offers yet another method of handling informal software
requirements, i.e. by active reuse of requirements
specifications, their components, analysis and refinement
techniques and processes, and other development work-
products in the process of requirements elicitation [4].
Due to the complexity of requirements elicitation tasks,
RARE also requires the utilisation of a special-purpose
requirements management tool - IDIOM (Informal
Document Interpreter, Organiser and Manager). IDIOM
provides the functions of a typical word-processing
system [5], but it also assists developers in the production
of quality requirements documents, and the identification,
analysis, refinement and reuse of requirements contained
in such documents.

Our approach is motivated by the beliefs that (some
are now widely accepted) :-

¢ Software developers can be made more productive by
applying reuse techniques at the earliest stages of
software development, e.g. requirements engineering.

¢ Requirements engineering can be made more
effective by reusing specification and design
components during analysis and refinement of
informal requirements.

And of particular significance is the view that :-

¢ Whenever reusable components are not directly
available, then reuse of development processes,
which lead to the analysis of similar requirements
documents, could also be used to better facilitate the
requirements elicitation tasks.

2: Integrating Requirements and Reuse

The reuse of software products and their components in
the earliest phases of software development life-cycle
(SDLC) has been argued as having a very positive impact
on software projects via :-

¢ Dbetter utilization of available resources [18];

¢ encouragement of systematic reuse across the entire
software life-cycle [9];

improvement in the quality of specifications [16];

developmental assistance early in the life-cycle [19];

1 Also known as SoDA (Software Designer's Aide), an integral part
of a hypertext-based CASE environment developed by Amdahl
Australian Intelligent Tools Programme at La Trobe University

[HyperCASE - 7].

> Gathering/
Elaboration

Composition

Planning &
Domain Analysis
Template Def.

Grammar Def.

Lexicon Def.
Repository Struc

\4

Validation

Analysis
Identification|
Representation
Characterisation
Domain Mapping
Classification

Integration/

Adaptation Refinement
Composition Search
Adaptation Retrieval
Integration Selection
Storage

[Requirements Engineering 1 Requirements Reuse

Figure 1. Processing stages in the RARE method

¢ casier reuse of the other life-cycle products [22], etc.

The potential benefits of early reuse have attracted
many research projects that look in depth at the issues of
requirements reuse [e.g. 2, 11, 28]. Similarly, RARE
IDIOM also places strong emphasis on development of
methods and techniques to support reuse of software
requirements, specifications and high-level designs. The
main difference between our approach and those by
others, is in our belief that the processes of requirements
engineering and those of software reuse can converge to
form a complete and cohesive framework of early
developmental activities. Furthermore, this approach
offers venue for addressing the issue of cross-domain
isomorphism. This fundamental assumption is based on
our observation that in the process of requirements
engineering, and especially requirements elicitation
phase, analysts engage in behaviour that is also typical for
software reuse (Cf. Figure 1).

RARE addresses the goals of both requirements
engineering (planning, gathering, analysis, refinement,
validation, integration and elaboration of requirements)
and those of software reuse (planning, analysis,
organisation and synthesis of artefacts), relying upon the
similarities between these two.

IDIOM actively supports all of the RARE activities
with tools that facilitate the tasks associated with software
reuse and requirements processing. This is achieved by
applying techniques drawn from the areas of natural
language processing (restricted natural language,
lexicons, grammars and parsers), knowledge
representation (semantic networks and domain mapping),
information retrieval (faceted classification and affinity
analysis), databases (relational DBMS and SQL),

hypertext (linking and navigation) and text editing and
formatting (templates, forms and style sheets).

3: The RARE IDIOM Process

Our goal is to provide an integrated approach to
requirements reuse consisting of reuse-assisted methods
(RARE) and tools (IDIOM) provides an effective
technological bridge between requirements engineering
and software reuse. Let us briefly discuss the main phases
of RARE IDIOM processing.

1.1: Planning, Gathering and Elaboration

Creation and the subsequent elaboration of a RARE IDIOM
document involves filling in a requirements document
template, so that the resulting document conforms to a
pre-planned structure, style, form and contents. Text
composition in such template-based editing is simplified
as the system automatically positions and composes entire
document sections, uses default text where appropriate,
styles document paragraphs according to pre-defined text
attributes, and guides the user as to the expected contents
of edited portions of text.

A sample document template conforms largely to the
IEEE Standard 830-1984 [15] and defines the following
aspects of the documents produced with RARE IDIOM :-

¢ document structure and parts of its contents,
¢ text styles for headings, contents and annotations,

¢ the syntax and semantics of the text still to be
inserted into a template.

A fragment of a document produced with the use of this
template, the Commodity Paging System requirements
specification [31] is shown in Table 1. The fragment
shows the selected sections and paragraphs related to the
“Observe Schedule Function”. The selected text fragment
provides an excellent example of the complexity in
detecting and tracking requirements similarity and
relationships that may exist even within a single
requirements document. The standard requirements
outline leads to replication of some of the information
across the document, first, in a very cursory manner, in
the overview and product requirements functions sections
and later, in much greater depth, in the functional
requirements section. Different aspects of the same
requirement are introduced across the entire document
(see the second column of the table), at different level of
abstraction and formality. Neither the standard the
document follows, the requirements structure, or in fact
its terminology and syntax can help the reader of the
document to identify the relationships between different
parts of this document.

Selected requirements

Aspect Introduced

w N~

LN

11
12
13

14
15

16

17
18
19
21
22
23
24

25
26

27

28

29
30

31
32

33

34
35

36

1
1.2

2.3
2.3.1

232

3.2
3.2.1

3.2.2

3.25

34

APPENDIX C.

INTRODUCTION

CPS SCOPE

The schedule set by TSMN for updating commodity information can change at anytime, so
the software must accommodate these changes.

This software must also limit the number of messages sent during peak hours of the day.

The software must be flexible enough to handle schedule changes while performing its
functions in a cost-effective manner.

GENERAL DESCRIPTION

PRODUCT PERSPECTIVE

The software will define an access schedule for both information services, TSMN and the
MicroPage.

The schedule will determine when TSMN has made an update [...].

[The software will] define a schedule for sending and receiving commodity information.

PRODUCT REQUIREMENTS FUNCTIONS

SET SCHEDULE FUNCTION

[...] this software shall reconfigure the system in the event of a schedule change by either of
the two services.

OBSERVE SCHEDULE FUNCTION

The observe schedule function will control when the system sends or receives any
information.

This software shall use the schedule set up by the set schedule function and the system's
internal clock to determine the appropriate time to obtain commodity information from
TSMN or to send updates to MicroPage.

This function controls the real-time activities of the system.

SPECIFIC REQUIREMENTS

FUNCTIONAL REQUIREMENTS

SET SCHEDULE FUNCTION

[Set schedule function sends the schedule to] observe schedule function.

OBSERVE SCHEDULE FUNCTION

The observe schedule function uses the schedule and inputs from the system clock to
determine the best time to send and receive information.

The TSMN update schedule will be strictly followed.

As soon as a commodity update is available, this function will activate the receive
commodity information function to obtain the update.

This function will also determine the appropriate time to send the update to the MicroPage
by using their peak and off-peak hours as a reference.

The goal is to limit the number of unnecessary updates sent to MicroPage to reduce costs.

FORMAT PAGER MESSAGES FUNCTION

[Format pager messages function sends Number of Messages to] observe schedule
function.

PERFORMANCE REQUIREMENTS

Observe schedule function: This function will detect a commodity update by TSMN within
250 milliseconds.

Schedule =
*the access schedule for both TSMN and MicroPage, the schedule defines when
commodity updates are available and the best time to access MicroPage*

1 { @Schedule Type + [Commodity Update Time | MicroPage Access Definition] } 999

schedule variability

schedule optimisation
schedule variability
schedule optimisation

scheduling services

schedule objectives
schedule contents
schedule events

schedule variability

schedule events
following schedule
following schedule
schedule use

following schedule

following schedule
function name
scheduling events

following schedule
receiving events

following schedule
sending events
schedule optimisation
schedule objectives

following schedule

following schedule
scheduling constraints

schedule data
schedule events
receiving information
sending information

Table 1: Tracking software requirements (note that the highlighted area denotes the main focus of this

Traditionally, the task of requirements document
analysis is left in its entirety up to the skill of a
requirements engineer, his or her experience with the
elicitation techniques, knowledge of the problem domain,

example, i.e. all remaining paragraphs are related to this section)

and of course the years of practical experience in dealing
with problems of this kind. Nevertheless, even the most
experienced analysts may have insurmountable problems
handling very large and complex requirements

Paragraph Id |Paragraph Text Domain |Key 1 Key 2 Key 3 Key 4 Key 5

128 32.1 0 |SET SCHEDULE FUNCTION cps define function set schedule

129 32.1 1 |The set schedule function defines the access |cps define access time TSMN MicroPage
times for both TSMN and MicroPage.

130 3.2.1 2 |The access schedule for TSMN and cps read schedule access operator retain
MicroPage will be read from an operator and
retained by CPS.

131 3.2.1 3 |The access schedule will contain times in cps contain schedule access TSMN update
which TSMN updates commodity information
and MicroPage's peak/off-peak hours.

132 3.2.1.1 0 |INPUTS cps meta input

133 3.2.1.1 1 |Schedule - Source: Operator cps input schedule operator

134 3.2.1.2 0 |PROCESSING REQUIREMENTS cps meta process

135 3.2.1.1 1 |WHILE not end of schedule input DO cps repeat input schedule end

136 3.2.1.1 2 |READ schedule record cps read schedule type

137 3.2.1.1 3 |INSERT schedule type into SCHEDULE cps insert schedule type

138 3.2.1.1 4 |CASE schedule_type of "Stock Market cps select schedule type stock
Schedule" market

139 3.2.1.1 5 |INSERT commodity update time into cps insert commodity update time MicroPage
SCHEDULE "MicroPage Schedule"

140 3.2.1.1 6 |INSERT peak hours into SCHEDULE cps insert peak hour schedule

141 3.2.1.1 7 |INSERT off peak-hours into SCHEDULE cps insert off-peak hour schedule

142 3.2.1.1 8§ |END CASE cps meta end

143 3.2.1.1 9 |CLOSE the schedule file. cps close schedule file

144 3.2.13 0 |OUTPUTS cps meta output

145 3.2.1.3 1 |[Schedule - Destination: Observe Schedule cps output schedule observe schedule function
Function

Table 2: Requirement characterisation

specifications. RARE IDIOM, however, can assist the
requirements engineers by providing them with the
structure to the analysis task and by guiding them through
the analysis process. In addition, the analytic capabilities
of conventional compiler-writing and information
retrieval are brought to bare to automate parts of this
process.

1.2: Analysis and Refinement of Requirements

RARE IDIOM interprets requirements texts with a simple
DCG parser [12]. The parser verifies the document syntax
and semantics, and searches for textual references to
reusable specifications described in some other, referent,
documents. In the process, the system highlights ill-
structured phrases and allows their correction. At this
early point in the analysis process, requirements engineers
may be forced to rephrase certain requirements to unify
the terminology across the entire document, to split
composite sentences into simpler expression of individual
requirements, or to move certain requirements to different
sections. Reformulation of the document may be carried
out until such a time that the system is satisfied that all
requirements have been entered in appropriate sections of
the document and have been expressed in a simple
language. As the result of this analysis RARE IDIOM
completes the following tasks:

1.

It identifies in the document references to all known
domain concepts, individual requirements and
relationships between them. E.g.

,,,,,, and change in price for each of the

commodities.

The identified textual references are subsequently
represented in a semantic network [33]. E.g.

extract

|

change price commodity
current high low

The semantic network is then processed to nominate
a number of keywords (in the order of their
importance to the requirement) that best characterise
the requirements text. E.g.

Keyword Weights
extract 50%
price 20%
change 10%
commodity 10%

A collection of characteristic keywords provides an
index searchable by domain terms (Cf. Table 2).

6.

into a number of terms drawn from the solution

domain, e.g.

Word Facet Facet Value
extract function get

price data number
change function change
change function exchange
change environment change
commodity | data record

no |artefact description function |data domain [method |environ |location [time type
1 |array Defines an array indexed |aggregate |array system |step machine [memory |very fast |data
by numbers
9 |collection Returns the number of count collection [system |[traverse |machine |device |any function
length collection items
10 [delete from |Deletes an item in a delete collection [system |sequence |machine |device |any function
collection collection
22 |copy Copies an object copy data system |traverse |machine |device |any function
23 |display Displays any information |[display |data system |structure |user monitor |fast function
to the user
24 |window Window for reading or interact |data system |structure |user monitor |fast module
writing info
95 |message Information displayed to |[display [text system |structure |user monitor |fast module
the user
126 |get from Retrieves an item froma [get collection [system |step machine |device |fast function
collection collection
128 |reql1: obtain |Throughout the day, the |receive |record cps any server |network |any requirement
commodity software will obtain
information [commodity information
TSMN wire |from TSMN wire service.
129 [req13: It will transform price format number [cps transform [change |monitor |fast requirement
transform changes into messages
price change |understandable to the
message pager |pagers.
Table 3: Artefacts and requirements classification
4. The nominated problem domain keywords are is allowed to browse through the text of
mapped with the use of a domain-mapping thesaurus requirements, analysing the presented lists of

possible requirements interpretations, and selecting
the system suggestions which best reflect his or her
needs (Cf. Table 4). Refinement candidates are then
selected from amongst reusable design and
specification artefacts, that had been previously
entered, analysed and refined, hence classified and
indexed in the process as well. E.g.

The faceted classification scheme [23] is then used to
generate an affinity query [6] against a repository of
reusable software artefacts (Cf. Table 3) to retrieve
and prioritise matching design artefacts and
requirements (Cf. Table 4). In the process, the analyst
may expand or correct the generated query, e.g.

Facet Value
function get

data number
domain cps
method any
environment change
location hard disk
time acceptable
type function

Multiple interpretations of concepts appearing in
requirements documents must be resolved and
refined before their complete formalisation. The user

Artefact | Artefact Affinity
126 get from collection 1.0000
13 next in collection 0.8500
14 previous in collection 0.8500
15 first in collection 0.8500
16 last in collection 0.8500
40 file path 0.8302
17 add to collection 0.8260

7. Note also that classified and refined requirements
statements are subsequently entered into an artefact
repository for future reference, retrieval and
navigation.

1.3: Integration/Adaptation and Validation

The process of requirements refinement results in a
collection of hypertext links from informal requirements
into components of reusable specifications and designs to
facilitate traceability of the analysed results back to the
source requirements. To complete the process of require-
ments formalisation, the analyst must derive a more struc-

tured and rigorous , . velopment tasks.
. Requirement characterisation .
document from its fenter your requirement and press "Analyse” In the pursuit of
. . Ho |Characteristic terms weight| Ref. cps 1.273: —— Done .
informal version. 1 |extract s0%| This software will extract the current price, —I Artefact count: 131 this goal, we pro-
rice high, low, and change in price for each of the Prev inement artefact: .
The process takes T 2| commonties. —IM rom——— . posed and imple-
advantage of reuse 4 frommodity s Current requirement: 2 mented a scheme
. . 5 10% Application domain: ops .
information con- that combines
: : : Requirement classification
tained in the links, 1 {verify suggested facet allocation, select the facotirsyy | NNAUral language
d th t f ‘ Ho [Classification terms <{Term# |glDomain [gPriority [gfinterpret. jgFacet <(Index <|Selection Toggle . th
to a1 € transior- extract 157 system 555 get function 22 Suggested processmg w1
mation of informal L Johange 5 general - 13% change [function |6 the faceted classifi-
. . change 51 general 125, exchange |function 19 .
requirements into cation of software
ReSort ReAnalyse | Hew Spec 0ld Spec .
fragments of more Requirement refinement | | sespes | ouaspes | requirements. Con-
f 1 .f (use buttons to view facets and combo-boxes to adjust facet values) tl RARE
orma SpeCI lca_ ‘ Ho* Hame / All Facets? Affinity* | Function? Data? Domain? Method? Environ? Location? Time? Type? sequen y7
tions that are the ¢ Query term: gt w||colection ®|[system [=[step *[machine [#[devie [[Fest d[punction] is able to interpret’
. @ Term index: 22 4 5 12 6 5 5 3 .
basis of reuse. = Max concept. dist. s s 2 H H 5 s N Clasmfy’ analyse
. . Facet weight:[1.00 0.20 0.20 0.05 0.10 0.15 0.05 0.05 0.20 .
SpeClﬁcatIOnS get from collection 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 and reﬁne lnfOrmal
ld f h b next in collection 0.8500 0.0000 0.0000 0.0000 0.0600 0.0000 0.0000 0.0000 0.0000 .
cou urt Ccr C previous in collection 0.6500 0.0000 0.0000 0.0000 0.0600 0.0000 0.0000 0.0000 0.0000 requlrements teXtS'
1 firgt in collection 0.5500 0.0000 0.0000 0.0000 0.0600 0.0000 0.0000 0.0000 0.0000
edlted’ COrreCted last in eollection 0.8500 0.0000 0.0000 0.0000 0.0600 0.0000 wﬂﬂ\ﬂ.ﬂﬂﬂﬂ 0.0000 We are cur_
and COmpleted by file path ’ﬂumnn\n.nﬁﬁ? 0.0000 0.0000 0. 0.0000 ﬂ d t
add to X X X rently conducting a
the analvst to dd/‘u,»/ 0.0000 0.0000 W 00 | i
reflect the iyntended = T am w\\ series of experi-
informal re Table 4: Affinity analysis and requirements refinement (actual determining the
quirements screen) - the highlighted line represents the selected refinement effectiveness of
Finally ' the professional and
b

specification fragments are integrated into a continuos
specification document.

Once the inter- and intra-document links have been
established, RARE IDIOM allows easy navigation
between templates, documents, and their components, and
under HyperCASE [7], to other project artefacts. Apart
from simple document reading and browsing, navigation
may also assist the wuser in validating current
interpretation and formalisation of requirements texts.
This is achieved by justifying RARE IDIOM decisions
leading to certain text interpretations which show the user
all of the lexical, grammatical and semantic cues that lead
to the formulation of requirements specification.

4: Summary and Conclusions

This paper investigated the possibility of improving the
process of requirements elicitation from informal texts by
identifying and elaborating references to reusable specifi-
cations. The paper also described the reuse-assisted re-
quirements elicitation process (RARE) and a tool that is
capable of facilitating this process (IDIOM).

When adopted, RARE IDIOM can help requirements
engineers in the laborious task of analysing and modelling
knowledge contained in volumes of plain-English soft-
ware requirements documents. The RARE IDIOM meth-
ods are based on a conjecture that early identification of
reuse potential in software development could signifi-
cantly enhance the effectiveness and efficiency of the de-

novice developers equipped with RARE IDIOM. How-
ever, as the group under study is quite large (over 100
subjects) the comprehensive results are not yet available.
The preliminary (and at this stage informal) results ob-
tained so far are promising.

REFERENCES

1. Borgida, A., S. Greenspan, and J. Mylopoulos (1985):
"Knowledge representation as the basis for requirements
specifications." IEEE Computer: p. 82-90.

Castano, S. and V. De Antonellis (1994): "The F3 Reuse
Environment for Requirements Engineering." ACM
SIGSOFT Software Engineering Notes. 19(3): p. 62-65.

3. Cmu/Sei (1991): Requirement Engineering and Analysis,
Technical ~ Report =~ CMU/SEI-91-TR-30, Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

Cybulski, J.L. (1996): Introduction to software reuse,
Research Report 96/4, The University of Melbourne,
Department of Information Systems: Melbourne.

5. Cybulski, J.L. (1997): "Reuse of early life-cycle artefacts:
reusing requirements with a word processor?" in WISR-S.
Ohio State University, Columbus, Ohio, USA, p. Cybulski-
1-7.

Cybulski, J.L., RD.B. Neal, A. Kram, and J.C. Allen
(1998): "Reuse of Early Life-Cycle Artifacts:
Workproducts, Methods and Tools." Annals of Software
Engineering. 5, To appear.

Cybulski, J.L. and K. Reed (1992): "A hypertext-based
software engineering environment." /EEE Software. 9(2):
p. 62-68.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Davis, A.M. (1990): Software Requirements: Analysis and
Specification. Englewood Cliffs, New Jersey: Prentice
Hall.

Frakes, W. and S. Isoda (1994): "Sucess factors of
systematic reuse." /EEE Sofiware. 11(5): p. 15-19.

Fuchs, N.E., H.F. Hofmann, and R. Schwitter (1994):
Specifying Logic Programs in Controlled Natural
Language, 94.17, Department of Computer Science,
University of Zurich.

Fugini, M.G., O. Niestrasz, and B. Pernici (1992):
"Application development through reuse: the Ithaca tools
environment." ACM SIGOIS Bulletin. 13(2): p. 38-47.

Gazdar, G. and C. Mellish (1989): Natural Language
Processing in PROLOG. Wokingham, England: Addison-
Wesley Pub. Co.

Hall, A. (1990): "Seven Myths of Formal Methods." /IEEE
Software: p. 11-19.

Hsia, P., A. Davis, and D. Kung (1993): "Status Report:
Requirements Engineering." /EEE Software: p. 75-79.

IEEE (1984): Guide to Software Requirement
Specifications, Std 830-1984, The Institute of Electrical
and Electronics Engineers, Inc.

Johnson, W.L. and D.R. Harris (1991): "Sharing and reuse
of requirements knowledge." in 6th Annual Knowledge-
Based Software Engineering Conference. Syracuse, New
York, USA: IEEE Computer Society Press, p. 57-66.

Jones, D.A., D.M. York, J.F. Nallon, J. Simpson, and
LR.W. Group (1995): "Factors Influencing Requirement

Management Toolset Selection." in Fifth Annual
Symposium of the National Council on Systems
Engineering: International ~ Council on Systems

Engineering, url: http://www.incose.org/lib/rmtools.html.

Kang, K.C., S. Cohen, R. Holibaugh, J. Perry, and A.S.
Peterson (1992): A Reuse-Based Sofiware Development
Methodology, Technical Report CMU/SEI-92-SR-4,
Software Engineering Institute.

Maiden, N. and A. Sutcliffe (1989): "The abuse or re-use:
why cognitive aspects of software re-usability are
important," in Sofiware Re-use, Ultecht 1989, L. Dusink
and P. Hall, Editors. Springer-Verlag: London, U.K. p.
109-113.

MIL-STD-498 (1996): MIL-STD-498 Overview and
Tailoring Guidebook, Report MIL-STD-498, Joint
Logistics Commanders, Joint Policy Coordinating Group
on Computer Resources Management: Washington, DC.

Parnas, D.L. and J. Madey (1993): "Functional
documentation for computer systeme engineering." in /5th
Int. Conf. on Software Engineering. Baltimore, Tutorial
Notes.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Poulin, J. (1993): "Integrated support for software reuse in
computer-aided software engineering (CASE)." ACM
SIGSOFT Software Engineering Notes. 18(4): p. 75-82.

Prieto-Diaz, R. (1991): "Implementing faceted
classification for software reuse." Communications of
ACM. 34(5): p. 88-97.

Reubenstein, H.B. and R.C. Waters (1989): "The
requirements apprentice: An initial scenario." in 5th
International Workshop on Software Specifications and
Design: IEEE Computer Society Press, p. 211-218.

Saeki, M., H. Horai, and H. Enomoto (1989): "Software
development process from natural language specifications."
in [1th International Conference on Software Egineering.
Pittsburgh, Pennsylvania: IEEE Computer Press, p. 64-73.

Salek, A., P.G. Sorenson, J.P. Tremblay, and J.M. Punshon
(1994): "The REVIEW system: From formal specifications
to natural language." in The First International Conference
on Requirements Engineering. Colorado Springs,
Colorado: IEEE Computer Society Press, p. 220-229.

Sannella, D. (1993): "A survey of formal software
development methods," in Software Engineering: A
European Perspective, R.H. Thayer and A.D. McGettrick,
Editors. IEEE Computer Society Press: Los Alamitos,
California. p. 281-297.

Sutcliffe, A. and N. Maiden (1990): "Assisting
requirements analysis through specification reuse." in
Workshop on Next Generation CASE-Tools.
Noordwijkerhout, Netherlands.

Swatman, P.A., D.C. Fowler, and M.C.Y. Gan (1991):
"Extending the useful application domain for formal
methods," in Z User Workshop. Springer-Verlag: New
York, NY. p. 125-144.

Vonk, R. (1989): Prototyping: The Effective Use of CASE
Technology. Englewood Cliffs, N.J.: Prentice-Hall Int.

Wilkinson, R.T. (1990): "Software requirements
specification for the Commodity Paging System," in
Standards, Guidelines, and Examples on System and
Software Requirements Engineering, M. Dorfman and R.H.
Thayer, Editors. IEEE Computer Society Press: Los
Alamitos, California. p. 457-477.

Wood, J. and D. Silver (1989): Joint Application Design.
New York: John Wiley & Sons.

Woods, W.A. (1991): "Understanding subsumption and
taxonomy: A framework for progress," in Principles of
Semantic Networks: Explorations in the Representation of
Knowledge, J.F. Sowa, Editor. Morgan Kaufmann Pub.,
Inc.: San Mateo, California. p. 45-94.

Yonezaki, N. (1989): "Natural language interface for
requirements specification," in Japanese Perspectives in
Software Engineering, Y. Matsumoto and Y. Ohno,
Editors. Addison-Wesley Publishing Company: Singapore.
p. 41-76.

