Technology adoption - Total Cost assessment

The failure of CASE (and other tools) is often considered due to poor management. There are other possible causes - consider the costs of adopting a new technology -

\[C_{TP} \] - Cost of the technology - products - i.e. S/W, H/W, manuals etc.

\[C_{TTT} \] - Cost of training - courses etc. that are required to bring people to an appropriate level of competence - external costs.

\[C_{TTe} \] - Cost of long-term training - this could show up as reduced productivity, or/and internal training.

The first two items are readily measurable - the second is hard.

Another way of looking at this is through the lost productivity resulting from the use of a new technology - this can be considered to be a traditional learning curve model - i.e. exponential.
Let P_0 be the productivity in
output/time (e.g., LOC/week, LOC/month)
output/person-time (e.g., LOC/person-month)

Let P_0' be the productivity after adopting
the new technology.

We assume P_0 is constant: $= P_0$

We assume $P_n(t) = A(1 - e^{-kt}) \quad (1)$

That is — the productivity after adopting the new
technology increases with time t.

To obtain a value for A, —

From (1), when $t \to \infty$, $P_n(t)$ is
effectively constant since $e^{-kt} \to 0$

$\therefore P_n(t) = A = P_n$ as $t \to \infty \quad (2)$

$\therefore P_n(t) = P_n(1 - e^{-kt}) \quad (3)$

The output O can be calculated as

$O = \int_{t_0}^{t} P(t) dt \quad (4)$
ie. the integral of the performance product of productivity and time is time.

The increase in output is of simply \(O_n - O_0 \), denoting original output.

being more formal after some time \(\tau \),

\[
\Delta O(\tau) = O(\tau) - O_0(\tau)
\]

Alternatively -- -- the increase in output is the integral over time of the increase in productivity. The result is the same.

\[
\Delta O(\tau) = \int_0^\tau [p(\tau) - p_0(\tau)] d\tau
\]

Substituting \(p_n(\tau) \) and \(p_0(\tau) \) \(\Delta O(\tau) = \int_0^\tau [p_n(1 - e^{-k\tau}) - p_0] d\tau \)
\[
\begin{align*}
\Delta \theta(\tau) &= \left[P_0 \left(\tau + \frac{1}{k} e^{-k\tau} \right) - P_0 \tau \right] \frac{T}{k} \\
\Delta \theta(\tau) &= P_0 \left[\frac{P_0}{\theta} \left(\tau + \frac{1}{k} e^{-k\tau} \right) - \tau \right] - \frac{P_0}{\theta} \cdot \frac{1}{k} \\
\Delta \theta(\tau) &= P_0 \left[\tau \left(\frac{P_0}{\theta} - 1 \right) - \frac{P_0}{\theta} \frac{1}{k} (1 - e^{-k\tau}) \right]
\end{align*}
\]

We can approach (12) as follows to obtain a useful value of \(k \).

Reverting to equation (3)

\[P_0(\tau) = P_0 \left(1 - e^{-k\tau} \right) \]

we can obtain a value for \(k \) in terms of some useful project parameters, e.g., the value of \(\tau_c \) (\(T_c \)) at which the productivity is 95% of its maximum, i.e., \(T_c \) is the point in time of which learning is complete.
\[P_n(\tau_c) = 0.95 P_n \]
\[P_n(1 - e^{-k\tau_c}) = 0.95 P_n \]
\[e^{-k\tau_c} = 0.05 \]
\[e^{+k\tau_c} = 20 \]
\[k = \frac{\ln 20}{\tau_c} \]
\[\ln 20 = 2.9956 \approx 3 \]
\[k = \frac{3}{\tau_c} \]

Substituting \(k \), we obtain
\[\Delta O(\tau) = P_o \left(\frac{\tau}{\tau_c} \left(\frac{P_n}{P_0} - 1 \right) - \frac{3}{3 P_0} \left(1 - e^{-\frac{3 \tau}{\tau_c}} \right) \right) \]
\[= P_0 \left(\frac{\tau}{\tau_c} \left(\frac{P_n}{P_0} - 1 \right) - \frac{\tau_c}{3} \frac{P_n}{P_0} \left(1 - e^{-\frac{3 \tau}{\tau_c}} \right) \right) \]

If we extract \(\tau_c \) — we have
\[\Delta O(\tau) = P_0 \tau_c \left(\frac{\tau}{\tau_c} \left(\frac{P_n}{P_0} - 1 \right) - \frac{P_n}{3 P_0} \left(1 - e^{-3 \frac{\tau}{\tau_c}} \right) \right) \]

\[\frac{P_n}{P_0} = \text{is the productivity improvement ratio} \]
\[P_0 \tau_c = \text{original output that would have been completed with no improvement} \]
We can call $P_0 T_c = O_{\text{one}}$

$\therefore \Delta O(\tau) = O_0 \left[\frac{\tau}{T_c} \left(\frac{P_0}{P_0} - 1 \right) - \frac{P_0}{3P_0} \left(1 - e^{-3\tau/T_c} \right) \right]$ \hspace{1cm} (18)

n.b. $\frac{\tau}{T_c}$ is the normalized time in terms of T_c, the learning complex time.

& Behaviour based on best--worst case of "learning".

The best possible result is learning is completed before the adgphas occurs--i.e. $T_c = 0$

The worst possible result is that learning is never complete.

From equation (16) $\Delta O(\tau) = P_0 \left[\frac{\tau}{T_c} \left(\frac{P_0}{P_0} - 1 \right) - \frac{T_c}{3} \frac{P_0}{P_0} \left(1 - e^{-3\tau/T_c} \right) \right]$ \hspace{1cm} (19)

$\Delta O(\tau) \bigg|_{T_c = 0} = P_0 \left(\frac{P_0}{P_0} - 1 \right)$

Actually, T_c
In the first case ($T_c = 0$) use equation 16:

$$\Delta o(T) = 10 \left[T \left(\frac{T_c}{T_c} - 1 \right) - \frac{T_c}{3T_c} \left(1 - e^{-\frac{3T_c}{T_c}} \right) \right]$$

$$T_c \to 0 \Rightarrow \Delta o(T) \to 10 T \left(\frac{T_c}{T_c} - 1 \right)$$

Second case ($T_c \to \infty$) use equation 17:

$$\Delta o(T) = 10 T_c \left[T \left(\frac{T}{T_c} - 1 \right) - \frac{T_c}{3T_c} \left(1 - e^{-\frac{3T_c}{T_c}} \right) \right]$$

when $T_c \to \infty$, $\Delta o(T) \to 0$ since

$$1 - e^{-\frac{3T_c}{T_c}} \to 1 - e^{-T_c} \to 0$$

(in practice - the worst case is simple)

Project completion time T_c for $T_c \to \infty$ does not have much meaning.

Looking at equation 16, we find some difficulty in interpreting what happens to the term $\frac{T_c}{3T_c} \left(1 - e^{-\frac{3T_c}{T_c}} \right)$ when $T_c \to \infty$.
when \(n_c \to \infty \), \(n = \frac{3 \tau}{n_c} \to 0 \\
\exp \left(-\frac{3 \tau}{n_c} \right) \to 0 \\
\left(1 - \exp \left(-\frac{3 \tau}{n_c} \right) \right) \to 0 \\
\text{but } \frac{n_c \rho_n}{3 \rho_0} \to \infty \text{ i.e. we have } \\
\infty \cdot 0 \text{ The means that this is not clean -}

However, we are discussing \(n_c \) v. large, really, not \(n_c \to \infty \) i.e. \(\frac{3 \tau}{n_c} \) v. small

Hence we should look at \(\exp \left(-\frac{x}{n_c} \right) \)

\(\exp x \), \(x \) v. small (\(x \ll \ll 1 \))

We can use the power series for \(\exp x \)

\[\exp x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^n}{n!} \]

\[\exp (-x) = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \ldots \]

\[x = \frac{s \tau}{n_c} \quad \text{and } \quad n_c \gg \gg \tau \]

then \(x \ll 1 \ll 1 \), hence

\[\exp (-x) \approx 1 - x \]
If \(\frac{3T}{\pi} \) = \(\frac{1}{10} \) \(e^{-2c} \) = 1 - \(\frac{1}{10} \) \(\frac{1}{2.1000} \) \(- \frac{1}{10} \) \(\frac{1}{2.1000} \)

So we substitute \(e^{\frac{3T}{\pi}} = 1 - \frac{3\pi}{\pi} \) 11:06

\[\Delta O(c) \mid_{T_c \to \infty} = P_0 \left[\tau \left(\frac{P_n}{P_0} - 1 \right) - \frac{\tau_c}{3} \frac{P_n}{P_0} \left(1 - (1 - \frac{3\pi}{\pi}) \right) \right] \]

\[= P_0 \left[\tau \left(\frac{P_n}{P_0} - 1 \right) - \frac{P_n}{P_0} \right] \]

\[= -P_0 \tau \]

(\text{This is the hard way—consider using the hint back to } P_n(c) = P_n \left(1 - e^{-\frac{3\pi}{\pi}} \right) \text{)}

\[\tau_c \to \infty \quad \text{ke} \rightarrow P_n(c) \mid_{\tau_c \to \infty} = 0 \]
Consider equation (17)

\[\Delta \phi(\tau) = P_0 \tau_c \left[\frac{\pi}{\tau_c} \left(\frac{P_0}{P_0} - 1 \right) - \frac{P_0}{3P_0} \left(1 - e^{-\frac{3\tau}{\tau_c}} \right) \right] \]

and we can obtain

\[\Delta \phi(\tau) \]
Consider equation (17)

$$\Delta \theta(\tau) = P_0 \tau_c \left[\frac{\tau}{\tau_c} \left(\frac{P_n}{P_0} - 1 \right) - \frac{P_n}{3P_0} \left(1 - e^{-\frac{3\tau}{\tau_c}} \right) \right]$$

Assume \(\frac{\tau}{\tau_c} \gg 1 \) (i.e., \(e^{-\frac{3\tau}{\tau_c}} < 0.05 \))

$$\Delta \theta(\tau) \approx P_0 \tau_c \left[\frac{\tau}{\tau_c} \left(\frac{P_n}{P_0} - 1 \right) - \frac{P_n}{3P_0} \right]$$

To solve for \(\Delta \theta(\tau) = 0 \)

$$0 = P_0 \tau_c \left[\frac{\tau}{\tau_c} \left(\frac{P_n}{P_0} - 1 \right) - \frac{P_n}{3P_0} \right]$$

$$\frac{\tau}{\tau_c} \left(\frac{P_n}{P_0} - 1 \right) = \frac{P_n}{3P_0}$$

$$\frac{\tau}{\tau_c} = \frac{P_n}{3P_0} \frac{P_0}{P_n} = \frac{1}{3} \frac{P_n}{P_n - 1}$$

$$= \frac{P_n}{3P_n - P_0} = \frac{1}{3} \frac{P_n}{P_n - 1}$$

Finally, \(\frac{P_n}{P_0} > 1 \) must hold.

<table>
<thead>
<tr>
<th>Positive Increase</th>
<th>(\frac{P_n}{P_0})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{P_n}{P_0})</td>
<td>(\frac{\tau}{\tau_c})</td>
</tr>
<tr>
<td>1.05</td>
<td>7</td>
</tr>
<tr>
<td>1.10</td>
<td>3.33</td>
</tr>
<tr>
<td>1.15</td>
<td>2.5</td>
</tr>
<tr>
<td>1.20</td>
<td>2</td>
</tr>
<tr>
<td>1.30</td>
<td>1.5</td>
</tr>
<tr>
<td>1.50</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(e^{-\frac{3\tau}{\tau_c}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.00004)</td>
</tr>
<tr>
<td>(0.00065)</td>
</tr>
<tr>
<td>(0.002)</td>
</tr>
<tr>
<td>(0.01)</td>
</tr>
<tr>
<td>(0.05)</td>
</tr>
</tbody>
</table>