
Software Quality Journal, 11, 265–281, 2003
 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

COCOMO-Based Effort Estimation
for Iterative and Incremental Software Development

ODDUR BENEDIKTSSON
University of Iceland, Computer Science Division, Reykjaví, Iceland

DARREN DALCHER
Middlesex University, London N14 4YZ, UK

KARL REED
Department of Computer Science and Computer Engineering, La Trobe University, Australia

MARK WOODMAN
Middlesex University, London N14 4YZ, UK

Abstract. Incremental software development and delivery have been used in software projects in many ways
for many years. Justifications for incremental approaches include risk amelioration, the management of evolving
requirements, and end-user involvement. Incremental development, including iterative, incremental delivery, has
become a norm in many sectors. However, there has been little work on modelling the effort in such development
and hence a dearth of comparative analyses of cost models for incremental development/delivery. We attempt
to rectify this by proposing a COCOMO-style effort model for incremental development/delivery and explore
the relationship between effort and the number of increments, thereby providing new insights into the economic
impact of incremental approaches to software projects.

Keywords: software effort estimation, incremental software development, software project management,
COCOMO-based estimation, effort in increments

1. Introduction

The study of software processes is one of the most contentious areas in software en-
gineering because it is inherently difficult to study software development in order to
directly validate or refute the large number of processes that have been proposed. Fur-
thermore, the process models that dominate what is taken to be conventional wisdom
at any time have evolved substantially over the last forty years (e.g., as described in
(Zahran, 1997)), making the study of any particular set of them time-dependent. In
particular, the comparative study of the effort, and hence the cost, involved in different
software processes is problematic. A number of mathematical models have been used
with a view to predicting effort required for projects. Of these, Boehm’s COCOMO
models (Boehm, 1981, 2000) have become dominant.

In recent years incremental and iterative approaches to the production of software
have become popular, however, we are unaware of comparative effort models which
would assist with their planning and adoption. Incremental approaches encompass
various ways of producing a sequence of parts of a system, while iterative approaches
involve a diversity of ways of producing parts of a system, trying them out, and feed-



266 BENEDIKTSSON ET AL.

ing back user experience to the production of new or revised parts. Although notion-
ally distinct (Goldberg, 1995) these approaches are very much interrelated: iteration
depends on the delivery of parts of a system and incremental delivery is inherently
“iterative,” in that user feedback is used in producing later parts. Despite the increas-
ing popularity of incremental approaches, there has been no systematic examination of
their project estimating implications. All that is available is an example from (Boehm
et al., 2000) of a comparative calculation of efforts. In principle, according to any
standard estimating technique, the effort (and hence the cost) of adopting such an ap-
proach will be different from that of a monolithic development. This paper provides a
general analysis using the COCOMO II model.

Assuming the model is applicable to the projects concerned, our analysis enables
project planners to determine the benefits in terms of development effort of choos-
ing either a monolithic project or either of the two incremental modes of production.
More specifically, it offers a mechanism for reasoning about the relationship between
the total effort and the number of increments, thereby enabling consideration of the
“optimal” number of increments.

We proceed by establishing definitions that encompass the notions our model rep-
resents. Having established our vocabulary we explore these notions, beginning with
relevant background and motivations for incremental and iterative software production
and concluding with a statement of some interesting research questions in the area of
the economics of incremental approaches. Next, we propose a simple variety of in-
cremental delivery which, while not necessarily novel, focuses on a specific aspect
of the process which allows it to be differentiated from other similar process models.
Our particular form of incremental delivery is deliberately kept simple to demonstrate
the feasibility of effort modelling and prediction for the class of incremental software
processes. We then present an analysis based upon a simple estimating model common
to a number of estimation techniques. This shows that there are indeed cases where
the total effort will be greater, or lesser than, that for a monolithic project, assuming
a continuous incremental model of development. We then examine the implications
of a model in which a (substantial) core of a system is developed first, and a series of
increments added to it. Finally, we discuss the implications of our findings for project
planners, and suggest some future areas for research.

2. Incremental and iterative software development

2.1. Definitions

The most important differences in the process models we are concerned with are be-
tween incremental development and delivery. We adopt the definitions proposed by
(Graham, 1989), thus:

• Increment: A self-contained functional unit of software with all supporting material
such as requirements and design documentation, user manuals and training.

• Incremental development: The development of a system in a series of increments
throughout the project timescale.



COCOMO-BASED EFFORT ESTIMATION 267

• Incremental delivery: The delivery of increments to the customer/users at intervals
throughout the project timescale.

Arguably, incremental delivery is more important in as much as it is externally ob-
servable and can be monitored externally. Also, it implicitly obliges developers to
collect and deal with feedback from the customer/users to inform the development of
later increments. This is why there is confusion with “iterative development,” which
is actually about prioritizing a need to rework parts of a system, whereas incremental
development and delivery are about prioritizing a need to partition a system so that the
parts may be produced at different times or rates (Goldberg, 1995). Hence, we adopt
Goldberg and Rubin’s definition:

• Iterative development: A strategy for developing systems that allows for controlled
reworking of part of a system to remove mistakes or make improvements based on
user feedback.

Note that this term is badly named; it should, of course, be iterative delivery. However,
leaving the misnomer allows us to distinguish the notion from the more prescriptive
evolutionary delivery as described by (Graham, 1989). She uses that term for process
models that involve each increment in its own whole lifecycle.

Whatever the particular version of incremental delivery/development and its priori-
ties, from a project management point of view attention must be paid to the number and
size of increments, their use over time and the effort needed to partition and administer
increments.

Incremental software delivery entails the planning, development and release into
actual use (service) of software products in increments, where each additional incre-
ment adds operational functionality, or capability, not available in previous releases.
The underpinning assumption is that it is possible to isolate useable parts that can be
developed, tested and implemented and delivered independently over time. When an
increment is put into service, information on its efficacy or deficiencies can be gathered
and used to guide the development of other parts, hence making the process iterative.
Some projects warrant partitioning but do no need piece-wise release, use and feed-
back to ameliorate risk, improve quality, etc. We will distinguish between those cases
where increments are developed and used within a project as a means of producing a
whole by describing them as endogenous, and those where the increments are deliv-
ered to a customer, by describing them as exogenous.

2.2. Brief history and rationale

Incremental approaches emphasize phased development and gradual build-up of func-
tionality by offering a series of linked mini-projects (Dalcher, 2002). The approach
is underpinned by the assumption that it is possible to isolate meaningful subsets that
can be developed, tested and implemented independently. Delivery of increments can
thus be staggered as calendar time progresses.

As already stated, despite incremental delivery’s current popularity, the approach
is not new. Allusions to it can be found in quite early writing. Indeed, Bennington,
in discussing the SAGE “mega-project” from the 1950s, contended that incremental



268 BENEDIKTSSON ET AL.

delivery would have been better suited to the project while Brooks commented on the
need to plan to throw away one version of the production version (Bennington, 1995;
Brooks, 1987). (Throw-away prototyping can be regarded as a form of incremental
delivery.) Mills contended that the best way to produce software was to design a main
program and to gradually develop the rest of the sub-programs level by level (Mills,
1971), with each module added progressively while paying attention to testing and
integration (Mills, 1976). In 1980, Mills reported the successful completion of the
US Navy LAMPS project using incremental development to deliver 7 million lines of
code in 45 increments (Mills, 1980). The 200 person-year project was completed in
four years with monthly deliveries completed on time and within budget.

Incremental (iterative) delivery has attracted significant attention in the last ten
years. Unlike the classic “monolithic” or “big-bang” approaches that appear to be
implied by the generally accepted version of the Waterfall model (compare, for exam-
ple (Royce, 1970) and the description in standard software engineering text-books),
an incremental approach is intended to create steadily enhanced versions of a sys-
tem. Many variations of the approach are identifiable (Graham, 1989) but there are
two main classes that appear to dominate. The first consists of a series of incre-
mental deliveries, of small size, produced frequently throughout a project. The so-
called agile process models, typified by Extreme Programming (Beck, 2000) and
Rapid Application Development and the time-boxing notion (Stapleton, 1997), are
modern examples of this approach to incremental delivery. In the second, one iden-
tifies some core functionality that could be developed and placed in service, and a
series of subsequent “increments” which complete the project by adding functional-
ity or otherwise improving the product’s properties. The primary objectives for these
strategies, which have been in use since the mid 1960s, is a combination of risk ame-
lioration, rapid feedback, user involvement, reduced complexity and simplified man-
agement. Moreover, they also provides a means of dealing with P-type and E-type
programs (Lehman, 2000, 2001) or with “Domain Dependency” (Giddings, 1984;
Dalcher, 2002).

Incremental development has long been recognized as an effective way to get the
user interested and actively involved in the development of the system in order to
ensure a closer fit to real needs and a greater level of user satisfaction (Mills, 1976,
1980; Berrisford and Wetherbe, 1979; Brooks, 1987; Gilb, 1988). Indeed, the stag-
gered release policy allows for learning and feedback to alter some of the customer re-
quirements in subsequent versions thus incorporating user experience into the refined
product. The gradual introduction provides time for the client to adjust to the sys-
tem while also allowing for adjustment of expectations and responsiveness to change.
Depending upon the nature of the project partitioning, and the accuracy of the initial
determination of customer requirements, subsequent versions may incorporate those
customer requirements that emerge from experience with prior increments. Putting this
another way, problems arising in such cases are reduced in the context of exogenous
incremental delivery, since the staggering of deliveries supports substantial learning
and feedback within a project team which allows some of the difficulties arising from
“E” and “near E” type projects to be dealt with. Equally importantly, the team will
gain general expertise in the application domain, and be better able to both analyse the
(evolving) client need, and implement it more efficiently (Podalsky, 1977).



COCOMO-BASED EFFORT ESTIMATION 269

Incremental development is also seen as one of the basic ways to enhance risk
management and reduce the risk loss potential (Boehm, 1981; Boehm et al., 2000;
Krutchen, 2000). Moreover, in keeping with the philosophy of risk reduction, the ex-
posure to risk is limited to shorter time intervals (during which additional knowledge
and confidence are gained, thereby reducing the inherent uncertainty (Dalcher, 2002)).

Technical benefits from the adoption of incremental development are likely to in-
clude earlier resolution of implementation problems and design errors, reduced re-
work, increased reliability and easier maintenance (Graham, 1992). From the client
perspective, benefits may also encompass early (and on-going) delivery of function-
ality, enhanced confidence in the developers’ ability to deliver the right system and
greater involvement leading to enhanced familiarity. Additional benefits come from
the improved mode of management. These were summarised in (Dalcher, 2002) and
include the controlled release of funds (i.e., responsive cost management), early return
on investment, improved loading profiles, smaller reliance on external and specialist
personnel, stage-limited commitment, lower dependency on external events and deliv-
erables, enhanced visibility, improved feedback, reduced uncertainty, better-informed
decision making, better-understood trade-offs and the achievement of warranted per-
formance levels. More crucially, perhaps, incremental approaches offer the potential
for an economy of scale, not least in terms of addressing the inherent complexity.

2.3. Increments and iterations

Incremental approaches have been widely used as a within-project (endogenous) basis
for compiler development, in the form of bootstrapping. In a more tightly coupled
form, incremental development can be found as natural feature of actual software de-
velopment in (Hess, 1996). While the form of incremental delivery may be indistinct,
in that usable systems need not be delivered, the likes of extreme programming make
use of a form of endogenous incremental delivery to obtain closure on the user’s needs.
In fact, detailed studies by Hess have shown that iteration is an integral part of software
development (ibid).

We need to make it clear that we are discussing a particular scenario, which differs
from the “software release” process associated with (large-scale) software products.
Often, the life-cycle of a particular product is characterised by the delivery of addi-
tional functionality and the improvement of quality over a series of “releases.” This
phenomena has been identified in the early 1960s (see, for example, the successive re-
leases of OS/360 (Lehman, 1969)). From this perspective, it seems clear that this is a
fundamental characteristic of software development (Lehman, 2000, 2001). Incremen-
tal delivery can be considered a special case of this process, in which an intentionally
incomplete but useful product core is delivered, and subsequently completed by the de-
livery of successive increments. In the classic “product release” cycle, the first release
would be intended to be fully functional (complete), with only minor parts missing or
requiring improvement. Meaningful adoption of this approach requires techniques for
identifying an acceptable core, and “increments.” The literature does not offer a lot
of guidance here, however, techniques that may prove helpful include those described
in operational testing strategies (Musa, 1993), and those implied in the Clean Room



270 BENEDIKTSSON ET AL.

process (Mills et al., 1987). Before concluding the general discussion of incremen-
tal development we re-evoke the distinctions introduced earlier in terms of how they
address the notion of iterations and increments.

2.3.1. Iterative development In this case, we are assuming that a moderately large
number of (roughly equal) increments are produced, and that there is no “major core”
in the sense of some partial delivery of functionality. Extreme programming operates
on the basis of delivering that functionality which can be delivered in fixed time (say
six weeks), and then by augmenting it by fixed increments. The choice of initial deliv-
ery could be any functionality, no matter how small, that can be demonstrated to the
client. Closely involving the client is expected to give extensive capacity to deal with
requirements-creep (Capers Jones, 1998), and hence significantly reduce the proba-
bility of a project being delivered which fails to meet user expectations. In addition,
a process such as this permits a truncated development cycle, and as such has capacity
to meet time-to-market constraints.

However, there is evidence that these processes can have problems when scaled up
where a defined objective of a large scale is being met (see (Boehm, 2002; Elssamadisy
and Schalliol, 2002)). Moreover, “conceptual integrity” may also suffer, as there is
little motivation to deal with scalability, extensibility, portability or reusability beyond
what is called for in limited requirements (Booch, 1996).

2.3.2. Incremental delivery Conceptually, “incremental” delivery has the conno-
tations of some definite process of production in which a client is provided with a
useable system which meets a sub-set of functional and non-functional requirements
as are understood at some point in time (Constantine and Yourdon, 1978). However,
as remarked in our introduction, there has been a wide range of “incremental” devel-
opment practices in use over the last forty years. In practice, we can identify two
extremes in the “incremental” spectrum for classification purposes, but first we need
to make a distinction relating to code production at the developer level. Software pro-
duction can be regarded as series of “deliveries” of code considered by its developer
to be ready for inclusion in some “build,” i.e., executable integration of code-modules.
We could (as seems to be done in the Time To Market literature (Cusumano and Yoffle,
1999)) take the view that the personal approaches used by the developers are not of
interest. Hence, it may be that an individual group of developers may use an “incre-
mental” approach, in that their coding practices resemble continuous maintenance. As
already remarked, we call this “endogenous incremental delivery.” The “incremental”
aspects of the development at this level are not visible to the customers unless they are
involved in the process (as they may be in an extreme programming project).

At the other end of the spectrum, the client may take delivery of series of versions of
a complete version of the system, which realise major variations in the requirements,
either functional or non-functional. This is the product release process adopted by soft-
ware suppliers, and cannot be considered to be incremental delivery, since complete
systems are being delivered, as we have already pointed out.



COCOMO-BASED EFFORT ESTIMATION 271

3. The relative economics of incremental processes

3.1. COCOMO and the BNEF

Whilst incremental approaches would appear to solve many problems and simplify
some management tasks they also introduce new issues that need to be addressed by
project managers and developers, particularly in terms of planning and controlling
the effort. As stated earlier, there has been little work examining the impact of in-
cremental delivery on project economics. The impact (in this case, negative) of the
non-linearity on breaking a project up is shown by an example in (Boehm et al., 2000),
while (Elbaum and Munson, 1998) examine the increase in complexity due to code-
churn, as a project iterates, they do not consider the economic implications. Given that
most estimating procedures are non-linear with size, being of the general COCOMO
form, with exponents greater than unity, it is possible that there will be reductions in
development effort due to the “incrementalisation” and possible reductions in com-
plexity of the increments due to the increased knowledge of the development team.

Within these contexts, a number of questions need to be investigated. For example:

• How does the total development effort of incremental development relate to a simi-
lar, “integrated” development?

• In what way does the total effort depend on the number of increments?
• Is there an optimal number of increments?

We propose using the COCOMO II effort estimation model as the basis for exploring
some of these questions by utilising the quantitative analytic framework for evaluating
software technologies and their economic impacts (Clark et al., 1998; Royce, 1998).

A given development project has estimated the overall product size S and specified
the overall effort adjustment factor A and the scale exponent E. The effort PM is a
number computed by equation (1a). We will use this number as a normalising factor
and name it the Boehm Normalising Effort (BNEF). COCOMO II (Boehm et al., 2000)
has the general form

PM = A × SizeE ×
n∏

i=1

EMi , (1a)

where the exponent, E is given by:

E = B + 0.01 ×
5∑

j=1

SFj , (1b)

where B = 0.91, and 0.0 <
∑5

j=1 SFj < 3.16, so that E is 0.91 < E < 1.226.
In what follows, we will work with a simplified version of the equations, in which
E and the expression A × ∏n

i=1 EMi is treated as a single variables. We use a =
A × ∏n

i=1 EMi and y = PM and S = Size in what follows so that we have:

y = aSE. (1c)



272 BENEDIKTSSON ET AL.

3.2. Incremental development

Now suppose that the development cycle is partitioned into work on n increments each
of nominal size si and that:

S =
∑

i

si . (2)

The effective size xi of each increment for effort estimation purposes is taken to be

xi = (1 + ci)si, (3)

where the parameter c reflects the overhead in producing increments, which we term
the breakage following Boehm’s vocabulary (Boehm et al., 2000). The added work
due to the breakage reflects the fact that as a new increment is added to a release then
some glue-code will be need, some ideas and features may be abandoned, and some
code may need to be thrown away. We talk about a breakage of 15% if c has a value
of 0.15. In order to simplify the discussion, it is assumed that all the code needs to be
written from start (so reuse is not taken into consideration).

The development effort yi for an increment of size xi is taken to be

yi = aix
Ei

i . (4)

Each additional increment has to be incorporated into the architecture defined for the
whole project. The architecture for the solution needs to be envisioned initially to
allow for the breakdown structure of the increments. This requires an upfront effort
which is over and above the effort needed to develop each increment. The initial
effort can be of considerable magnitude, especially if domain architecting and reuse
considerations are taken into account. The initial effort is assumed to depend on BNEF
as well as n, the number of increments.

The total incremental development effort is taken to be the sum of initial effort plus
the effort of developing the n increments. We postulate that the total effort yT can be
expressed as:

yT = dnaSE +
∑

i

aix
Ei

i , (5)

where the parameter dn gives the fraction of the BNEF effort needed for the initial
work. We talk about 10% initial effort needed if dn has a value of 0.1.

Equations (3) and (5) give

yT = dnaSE +
∑

i

ai(1 + ci)
Ei s

Ei

i . (6)

It is of interest to compute ratio r of the incremental effort and BNEF, i.e., yT /y from
equations (6) and (1c):

r = dn +
∑

i

(ai/a)(1 + ci)
Ei

(
s
Ei

i /SE
)
. (7)

The ratio r can be named the incremental effort ratio.



COCOMO-BASED EFFORT ESTIMATION 273

3.3. Equal size increments

In order to get an indication of the effect of incremental development we make the
following simplifying assumptions: The increments are all of equal size, i.e., si = x/n.
The effort adjustment factors are all equal ai = a and the scale factors are all equal
Ei = E. (Note that the so-called “time-boxed” incremental development is centred
around constant time frame for each incremental delivery, say twenty working days.
In this case we can make the approximation that the increments are of equal size and
with the same development team throughout so that the adjustment and scale factors
are constant.) We then get

r = dn + n

(
1 + c

n

)E

. (8)

The incremental effort ratio r is thus independent of a (the effort adjustment factor) as
well as S (the product size).

3.4. Initial core deliverable

Here we assume that some substantial amount of core functionality is delivered ini-
tially, and a series of equal increments follow. That is, we assume that s1 = k × S is
the core deliverable and that s2 = · · · = sn are equal, and a fraction k of the function-
ality to be delivered in the core,

si = (1 − k)S

n − 1
, i = 2, . . . , n. (9)

Substituting in equation (6), we now designate the total effort (with an initial core
delivery) as zc and get

zc = dnaSE + a
[
(1 + c1)s1

]E +
n∑

i=2

a
[
(1 + ci)si

]E
. (10)

Substituting for si ,

zc = dnaSE + a(1 + c1)
E(kS)E +

n∑
i=2

a

[
(1 + ci)(1 − k)S

n − 1

]E

. (11)

And, using our earlier assumptions regarding ci being constant, we get

zc = dnaSE + a(1 + c)E(kS)E + (n − 1)aSE

[
(1 + c)(1 − k)

n − 1

]E

(12)

and the incremental effort ratio for this case becomes:

rc = dn + (1 + c)EkE + (n − 1)

[
(1 + c)(1 − k)

n − 1

]E

. (13)

Note that this reduces to equation (9) for the case k = 1/n.



274 BENEDIKTSSON ET AL.

3.5. Impact of breakage and the scale factors

Additional restrictions and assumptions need to be introduced in order to compute
sample results: as we are talking about incremental development, we can restrict the
number of increments, n to lie in a range between 2 and 100. Suppose that dn is a
linear function of n. For n = 2 it assumes the value e (say 5%) and for n = 100 it
assumes the value f (say 15%). Then we can write dn as:

dn = (f − e)(n − 2)/98 + e. (14)

In the original COCOMO model Boehm uses three classes of project context. They
are termed organic, semidetached and embedded and relate respectively to the scale
factors b of 1.05, 1.12 and 1.20 (Boehm, 1981) and correspond directly to a set of
suitable values for E. We will use these values in the sample computations below as
representative scale factors. Tables 1, 2, and 3 (in section 4.1) show the effort ratio r

as computed with equation (8) for a range of n values and the three above stated scale
factors. The initial effort factor dn is fixed at 5% for n = 2 and 15% for n = 100, i.e.,
e = 0.05 and f = 0.15.

Values for a breakage (c) are difficult to find. Royce (1998) reports a re-work factor
of between 0.05 and 0.15 in a study of Ada evolutionary projects. While his Rework
Ratio is not identical in concept to our breakage we argue that it provides an indication
of the maximum amount of inflation that should be expected/tolerated in such case. To
ensure that worse-case analysis can be carried out, we include figures covering the
full range between 5 and 30% for the breakage value c (i.e., 0.05 � c � 0.3). Note
that (Cusumano and Selby, 1995) reported that features may change by over 30% as a
direct result of learning during a single iteration.

4. Decision processes for incremental processes

4.1. Incremental delivery—the iterative approach

In the incremental delivery/iterative development approach, Tables 1–3 yield the fol-
lowing results. If the project properties are such that E is at a maximum, the effort
under an iterative process is significantly less than for the monolithic equivalent when
the number of iterations is 20 or more as seen in Table 3. This is true for all chosen
values of c. In fact, the number of iterations at which a saving occurs can be as few is
in the range three to fifteen. Further, the savings, even for large values of the breakage

Table 1. The incremental effort ratio r for E = 1.05

n\c 0.05 0.1 0.15 0.2 0.25 0.3

2 1.07 1.12 1.17 1.22 1.27 1.32
20 0.97 1.02 1.07 1.11 1.16 1.20
40 0.96 1.01 1.05 1.10 1.14 1.18
60 0.97 1.01 1.05 1.10 1.14 1.18
80 0.98 1.02 1.06 1.10 1.14 1.19

100 0.99 1.03 1.07 1.11 1.15 1.20



COCOMO-BASED EFFORT ESTIMATION 275

Table 2. The incremental effort ratio r for E = 1.12

n\c 0.05 0.1 0.15 0.2 0.25 0.3

2 1.02 1.07 1.13 1.18 1.23 1.28
20 0.81 0.85 0.88 0.92 0.96 1.00
40 0.77 0.80 0.84 0.88 0.91 0.95
60 0.76 0.79 0.82 0.86 0.89 0.93
80 0.75 0.79 0.82 0.85 0.89 0.92

100 0.76 0.79 0.82 0.86 0.89 0.92

Table 3. The incremental effort ratio r for E = 1.2

n\c 0.05 0.1 0.15 0.2 0.25 0.3

2 0.97 1.03 1.08 1.13 1.19 1.24
20 0.65 0.68 0.72 0.75 0.79 0.82
40 0.60 0.62 0.65 0.68 0.71 0.74
60 0.58 0.60 0.63 0.66 0.69 0.71
80 0.57 0.60 0.62 0.65 0.67 0.70

100 0.57 0.60 0.62 0.65 0.67 0.70

constant are substantial, equaling or exceeding 25%, irrespective of breakage. At the
other end of the scale, for a value of E of 1.05, the achievable savings are minimal,
and in fact, the iterative approach is likely to have a higher cost as seen in Table 1. As
we point out in our conclusions, these results provide a basis for selecting projects for
“iterative/non-iterative” development.

Tables 1–3 show that r > 1 for “small” n values and r < 1 for “large” n values
indicating economy in small increments (large n). As the scale factor E increases the
break-even point (where r = 1) sets in at lower n.

4.2. Incremental delivery—core + increments

Tables 4–8 repeat the calculations for incremental delivery involving an initial core
deliverable followed by increments as presented in equation (13).

The results in this case are not dissimilar to these for pure iterative development. For
k = 0.1, the savings vary by only a few percent from the purely iterative case. How-
ever, as the fraction in the core delivery rises, the table show that it is only possible to
make a saving by keeping the breakage constant small, however, the project properties
must be such that the exponent E is high. In the case where 30% of the functionality
is delivered in the core, comparing Tables 3 and 7 (E = 1.2 in both cases), shows that
the savings in the iterative case could exceed those in the incremental delivery by as
much as 13%.

If E = 1.05, then any saving due to a reduction in effort, seems unobtainable. In
fact, as Table 5 suggests, significant increases in effort occur (more than 20%).

The case where more than 50% of the functionality is delivered in the core is shown
in Table 8. Here, for the maximum value of E must apply for any saving to be
achieved, and then only if the expected breakage is less than 20%.

The wider implications of this are discussed in what follows.



276 BENEDIKTSSON ET AL.

Table 4. Incremental effort ratio rc for k = 0.1, E = 1.05

n\c 0.05 0.1 0.15 0.2 0.25 0.3

2 1.09 1.14 1.19 1.24 1.29 1.35
20 0.98 1.02 1.07 1.11 1.16 1.20
40 0.97 1.01 1.06 1.10 1.14 1.19
60 0.97 1.01 1.06 1.10 1.14 1.19
80 0.98 1.02 1.07 1.11 1.15 1.19

100 0.99 1.03 1.08 1.12 1.16 1.20

Table 5. Incremental effort ratio rc for k = 0.3, E = 1.05

n\c 0.05 0.1 0.15 0.2 0.25 0.3

2 1.07 1.12 1.17 1.22 1.28 1.33
20 0.99 1.04 1.08 1.13 1.18 1.22
40 0.99 1.03 1.08 1.12 1.17 1.21
60 1.00 1.04 1.09 1.13 1.18 1.22
80 1.01 1.05 1.10 1.14 1.19 1.23

100 1.02 1.07 1.11 1.15 1.20 1.24

Table 6. Incremental effort ratio rc for k = 0.1, E = 1.2

n\c 0.05 0.1 0.15 0.2 0.25 0.3

2 1.05 1.11 1.17 1.23 1.28 1.34
20 0.65 0.69 0.72 0.76 0.79 0.82
40 0.60 0.63 0.66 0.69 0.72 0.76
60 0.59 0.62 0.64 0.67 0.70 0.73
80 0.59 0.61 0.64 0.67 0.69 0.72

100 0.59 0.61 0.64 0.67 0.69 0.72

Table 7. Incremental effort ratio rc for k = 0.3, E = 1.2

n\c 0.05 0.1 0.15 0.2 0.25 0.3

2 0.99 1.05 1.10 1.15 1.21 1.27
20 0.70 0.74 0.77 0.81 0.85 0.89
40 0.67 0.70 0.74 0.77 0.81 0.84
60 0.66 0.70 0.73 0.76 0.79 0.83
80 0.67 0.70 0.73 0.76 0.79 0.83

Table 8. Incremental effort ratio rc for k = 0.6, E = 1.2

n\c 0.05 0.1 0.15 0.2 0.25 0.3

2 0.98 1.03 1.08 1.14 1.19 1.25
20 0.84 0.88 0.93 0.97 1.02 1.06
40 0.83 0.88 0.92 0.96 1.01 1.05
60 0.84 0.88 0.92 0.97 1.01 1.05
80 0.85 0.89 0.93 0.98 1.02 1.06

100 0.87 0.91 0.95 0.99 1.03 1.07



COCOMO-BASED EFFORT ESTIMATION 277

4.3. Comparison

The tables provide some interesting information which can be used be project planners,
none of which is surprising given the form of the equations.

Firstly, the behaviour of the functions is dominated by the form of dn. However,
using the equation concerned, we find that the ratios, independent of the mode of
project (iterative of incremental), change little if there are more than 20 iterations.
This is interesting, given Gilb’s exhortation that iterations should add 2% to the result
(Gilb, 1997) (in fact, not exceed 2% of the budget for the project).

Secondly, the influence of the exponent is over-powering. For example, with b =
1.2, it is still possible to achieve useful savings when the initial deliverable is as high
as 60% of the predicted functionality. In addition, at 20 increments, a gain is still
possible with an inflation factor as high has 20%.

However, the reader must be weary of treating E as an independent variable, under
the control of the developers. The discussion refers to a relative saving, and does not
consider the effect of forcibly increasing E. This will increase the BNEF directly. The
overriding conclusion, however, is that project with large E, the more difficult ones,
both forms of iteration offer relative savings provided breakage is controlled.

Thirdly, in practice, good design-planning is rewarded. Inflation factors above 20%,
which could be regarded as an indication of sloppy planning at the increment level,
preclude savings. This is NOT ameliorated by having large numbers of small, sloppily
planned iterations, and may give some support to the XP fraternity who claim theirs is
a disciplined approach after all.

5. Conclusion and discussion

In the original COCOMO model (Boehm, 1981) in “Component Level Estimation” a
software project is divided into “components” (modules) that are sized separately. The
over all project size (the sum of the size of the components) is used to compute the over
all productivity that is used as nominal productivity to estimate the effort for the indi-
vidual components. The gain in productivity in working with smaller components is
not explicitly realised in these models. The model for estimating incremental develop-
ment effort as presented in equation (6) above is different from the COCOMO models
in that the economics of downsizing are realized in the sum of effort of the small incre-
ments. The initial effort term is however expected to start to penalise the incremental
development if the increments become overly numerous. (An example of incremental
effort computation is presented in the COCOMO II text (Boehm et al., 2000). Three
increments are taken. The overall estimation method is along the lines presented in
this paper but no analysis is performed on varying the number of increments.)

It is to be noted that we have looked at the effort side of the development in isola-
tion. Other benefits of incremental development such as increased user participation,
lessened risk of project failure, and benefits to customer of early delivery of parts of
the system have not been taken into consideration.

In this paper, we have used two important but rather simple assumptions relating
to the impact of iterative development. The first (linear over head), assumes that the



278 BENEDIKTSSON ET AL.

initial design overhead is linear with the number of iterations. The second is that the
breakage can be treated as a constant, independent of the number of iterations. These
are extremely simplistic, and the authors intend to investigate these issues further.
However, we suggest that they are conditions of necessity for this approach to be vi-
able. Our results suggest that, if these two conditions hold, then iterative development
can yield significant gains, independent of the number of iterations. The challenge for
project manager is to be able to either identify project types for which this is true, or,
to manage a project so that they are!

Assuming that the breakage, c is even mildly dependant on the number of iterations
(e.g., assume O(n1/3)), yields quite distinct minima. But only in those cases where
E is large and k is small (for the evolutionary delivery). The question arises as to
the impact of c not being independent of the number of iterations. There are many
ways in which this could be modeled, based upon either communications over-heads
or interference models. These might yield c as O(n2) or at best, perhaps O(log2(n)).
Our conjecture is that this dependency would alter the results substantially. To test
this, calculations were made assuming c was O(n1/3), as a compromise. The results
showed distinct minima, but only for the case where E was large, and k was small.

Parnas (1979) presents an approach to evolutionary delivery based upon virtual ma-
chine techniques, an approach found in the early days in embedded systems where
memory was extremely limited. We could argue that the preliminary design cost in
such a case may be quite high, if the team had no prior experience, but that expected
breakage rate (c) may be quite low. Certainly, the number of iterations (releases) could
be rather low.

We have already remarked that our simplifications are in fact saying something
about desirable project properties required if iterative development is to yield lower
costs. In fact, lower production cost will be irrelevant if the client is not satisfied, and
rejects the project, or fails to award the developer repeat business. It is this in part, that
the agile process community claims to be addressing.

The authors would like to add a note of caution however. The equations are quite
sensitive to the exponent E in the COCOMO model. We have assumed that the values
of E are the same in both cases. However, it is possible that the inherent difficulty (i.e.,
value of E, which can be considered to have this property), for an iterative project may
be greater of lesser than that for a monolithic property, and be reflected in the value
of E. In this case, if E were greater (for the iterative case), then the gain from a large
number of small iterations would increase with n. In part, some of the authors are
concerned that iterative/extreme development may be used as an excuse for not mak-
ing a “proper” attempt to obtain relevant domain knowledge, and to compensate for
the failure to foster large depths of experience within development teams, as happens
in conventional engineering. One should not assume that the world only consists of
“E-type” systems! However, even where the domain experience is sufficient to al-
low generalizations to be predicted, our calculations show that iterative/incremental
delivery may yield savings in appropriate circumstances.

The work reported in this paper can be extended in a number of directions to explore
a number of potential avenues. In particular, the authors are interested in addressing a
number of emerging challenges that include:



COCOMO-BASED EFFORT ESTIMATION 279

• Extending the discussion to cover evolutionary development methods as well as
addressing the new focus on growth of software and adaptive design;

• Developing an earned-value type of method to account for the “salvageable value”
of a project, especially in relation to given increments;

• Evaluating the utility of adopting a long-term strategic perspective that stretches
beyond single projects and enables;

• Increasing the scope of the work discussed here to assess the impact of agile devel-
opment processes and propose agile estimation models;

• Providing a basis for reasoning about continuation and cancellation of projects (or
deliverables) and conducting trade-offs between time, effort and increments in dy-
namic projects.

It is therefore hoped that the work put forward in this paper will serve as an open-
ing for further discussion and investigation. The opening of a new perspective can
also stimulate additional insights needed to bridge the gap in the analysis of the eco-
nomic impact of non-conventional development approaches on the product, process
and project.

References

Basili, V.R. and Turner, A.J. 1975. Iterative enhancement—a practical technique for software development, IEEE
Transactions on Software Engineering SE-1-4: 390–396.

Beck, K. 2000. Extreme Programming Explained, Reading, MA, Addison-Wesley.
Bennington, H.D. 1995. Production of large computer programs, Annals of the History of Computing 5(4): 350–

361.
Berrisford, T. and Wetherbe, J. 1979. Heuristic development: A redesign of systems design, MIS Quarterly 3(1):

11–19.
Boehm, B.W. 1981. Software Engineering Economics, Englewood Cliffs, NJ, Prentice-Hall.
Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Madachy, R., Reifer, D., and

Steece, B. 2000. Software Cost Estimation with COCOMO II, Upper Saddle River, NJ, Prentice-Hall.
Boehm, B. 2002. Get ready for agile methods, with care, IEEE-CS Computer 35(1).
Booch, G. 1996. Object Solutions: Managing the Object Oriented Project, Reading, MA, Addison-Wesley.
Brooks, F.P. 1975. The Mythical Man-Month, Reading, MA, Addison-Wesley.
Brooks, F.P. 1987. No silver bullet: Essence and accidents of software engineering, IEEE Computer 20(4): 10–20.
Capers Jones, T. 1998. Estimating Software Costs, New York, McGraw-Hill.
Clark, B., Devnani-Chulani, S. and Boehm, B. 1998. Calibrating the COCOMO II post-architecture model, Pro-

ceedings of ICSE 1998, IEEE Press.
Constantine, L.L. and Yourdon, E. 1978. Structured Design, Englewood Cliffs, NJ, Prentice-Hall.
Cusumano, M.A. and Selby, R.W. 1995. Microsoft Secrets: How the World’s Most Powerful Company Creates

Technology, Shapes Markets, and Manages People, New York, Free Press.
Cusumano, M.A. and Yoffle, D.B. 1999. Software development in Internet time, IEEE Computer 32(10): 60–69.
Dalcher, D. 2002. Life cycle design and management, In Project Management Pathways: A Practitioner’s Guide,

ed. M. Stevens, The Association for Project Management, High Wycombe, APM.
Elbaum, S.G. and Munson, J.C. 1998. Code churn: A measure for estimating the impact of code change, Proc.

IEEE-CS International Conference on Software Maintenance, Bethesda, IEEE Press, pp. 24–33.
Elssamadisy, A. and Schalliol, G. 2002. Recognizing and responding to “Bad Smells” in extreme programming,

Proc. ICSE 2002, Orlando, IEEE Press, pp. 617–622.
Giddings, R.V. 1984. Accommodating uncertainty in software design, Communications of the ACM 27(5): 428–

434.
Gilb, T. 1997. EVO: The Evolutionary Project Managers Handbook, unpublished manuscript.
Gilb, T. 1988. Principles of Software Engineering Management, Wokingham, Addison-Wesley.



280 BENEDIKTSSON ET AL.

Goldberg, A. and Rubin, K. 1995. Succeeding with Objects, Reading, MA, Addison-Wesley.
Graham, D.R. 1989. Incremental development: Review of nonmonolithic life-cycle development methods, Infor-

mation and Software Technology 31(1).
Graham, D.R. 1992. Incremental development and delivery for large software systems, IEEE Computer 25(11):

1–9.
Hess, W. 1996. Theory and practice of the software process—a field study and its implications for project man-

agement, Proc. Software process Technology, 5th European Workshop, WESPT 96, Lecture Notes in Computer
Science, Vol. 1149, Berlin, Springer, pp. 241–256.

Krutchen, P. 2000. The Rational Unified Process, London, Longman.
Krzanik, L. 1988. Enactable models for quantitative evolutionary software processes, Proc. the 4th International

Software Process Workshop on Representing and Enacting the Software Process, April 1988, ACM SIGSOFT
Software Engineering Notes, Vol. 14, p. 4.

Lehman, M.M. 1969. The programming process, IBM Research Report RC2722M. IBM Research Centre, York-
town Heights, September 1969, In Program Evolution-Processes of Software Change, eds. M.M. Lehman and
L.A. Belady, London, Academic Press, 1985.

Lehman, M.M. 2000. Rules and tools for software evolution planning and management, FEAST2000, Imperial
College, London, July, pp. 53–68.

Lehman, M.M. and Ramil, J.F. 2001. An approach to a theory of software evolution, Proc. International Workshop
on Principles of Software Evolution—IWPSE 2001 (Keynote) Vienna.

Mills, H.D. 1971. Top-down programming in large systems, In Debugging Techniques in Large Systems,
ed. R. Ruskin, Prentice-Hall, pp. 41–55.

Mills, H.D. 1976. Software Development, IEEE Transactions on Software Engineering SE-2(6): 265–273.
Mills, H.D. 1980. Incremental software development, IBM Systems Journal 19(4).
Mills, H.D., Dyer, M. and Linger, R.C. 1987. Cleanroom software engineering, IEEE Software 4(3): 19–24.
Musa, J.D. 1993. Operational profiles in software-reliability engineering, IEEE Software 10(2): 14–32.
Parnas, D.L. 1979. Designing software for EASE of extension and contraction, IEEE Transactions on Software

Engineering SE-5(2): 128–138.
Podalsky, J.L. 1977. Horace builds a cycle, Datamation, November: 162–168.
Royce, W. 1998, Software Project Management, A Unified Framework, Reading, MA, Addison-Wesley.
Royce, W.E. 1990. TRW’s Ada process model for incremental development of large software systems, Proc. 12th

International Conference on Software Engineering, ICSE 12, IEEE Press, pp. 2–11.
Royce, W.W. 1970. Managing the development of large software systems, Proc. IEEE WESCON 1970, IEEE

Press.
Royce, W.W. 1990. Pragmatic quality metrics for evolutionary software development models, Proc. the ACM

Conference on TRI-ADA ’90, Baltimore, pp. 551–563.
Stapleton, J. 1997. DSDM Dynamic Systems Development Method, Wokingham, Addison-Wesley.
Zahran, S. 1997. Software Process Improvement, Harlow, England, Addison-Wesley.

Oddur Benediktsson has been active in research in the field of software development
methods for over thirty years. He has published a many papers, and participated in nu-
merous national and international projects on standardisation and improved methods for
software development. Oddur is a member of the programme committees and a regu-
lar participant in many international conferences. Dr. Benediktsson has worked as a
consultant and been employed in the IT industry for some years. He is a Professor in
Computer Science at University of Iceland where he has been instrumental in organising
the curricula of computer science and software engineering.



COCOMO-BASED EFFORT ESTIMATION 281

Darren Dalcher is a Professor of Software Project Management at Middlesex University
where he leads the Software Fornesics Centre (http://www.cs.mdx.ac.uk/research/SFC/),
a specialised unit that focuses on systems failures, software pathology and project fail-
ures. He gained his Ph.D. in software engineering from King’s College, University of
London. In 1992, he founded and has continued as chairman of the Forensics Work-
ing Group of the IEEE Technical Committee on the Engineering of Computer-Based
Systems, an international group of academic and industrial participants formed to share
information and develop expertise in failure and recovery. Professor Dalcher is active
in a number of international committees and steering groups. He is heavily involved in
organising international conferences, and has delivered numerous keynote addresses and

tutorials. He is the Editor-in-Chief of Software Process Improvement and Practice.

Karl Reed is a pioneer of software engineering education in Australia, and is recognised
as national spokesperson on industry policy, advising State and Federal Governments
both formally and informally. Associate Professor Reed held number of different posi-
tions in different institutions including Senior Visiting Fellow in the Faculty of Business
at the Royal Melbourne Institute of Technology University. Associate Professor Reed is a
Fellow and an Honorary Life Member of the Australian Computer Society, past chairman
of the Victorian branch and Director of its Computer Systems and Software Engineering
Board. He has also been a Distinguished Business Associate at Swinburne University
of Technology. He was consultant editor to Australasian Computer World from 1978 to
1995. He is an Honorary Visiting Professor at the University of Middlesex, and has been

a Guest Scientist at the Fraunhofer Institute for experimental Software Engineering. He was a Governor of the
IEEE Computer Society for the statutory limit of two terms (1997–2000, 2000–2002), and is currently the Chair
of the IEEE-CS’ Technical Council on Software Engineering (2000–2002, 2002–2004).

Mark Woodman’s research interests focus on complex software, particularly object-
oriented systems. He also studies social and cultural aspects of software engineering. An
author of many articles and books, and a consultant on several TV programmes, recent
international articles focus on object technology and on process improvement. He is
Middlesex University’s principal investigator on a large European project on software
components and process improvement. Professor Woodman has been heavily involved
in international standards work as an ISO convenor and was a BSI panel chair. He was
a member of the OOPSLA 99 programme committee and was co-programme chair of
TOOLS Europe 2000. He has been involved in distance education for over twenty years
and he has led projects for introducing computing to several thousand students in the

UK and overseas and has led a team that won awards from the British Computer Society (BCS) and the Design
Council. In 1999 he was a BCS judge for its IT Awards competition.


