
Why We Need A Different View of Software Architecture

Jason Baragr?,
Norwegian Computing Center.

P. 0. Box I I4 Blindem,
N-0314 Oslo.

Norway.
Email: Jasorr. Barugr): @irr.tzo.

Abstract
The definition and understanding of sofhvure

urchitectiires and architecture views still shows
considerable disagreenient in the software engineering
conintunity. This paper argues that the problem we fuce
exist because our understanding is based on specious
analogies with traditionally engineered artefacts. A
review of the history of ideas shows the evolution of this
understunding. A detailed exantiriation is then presented
of the differences that exist between the nature of the
systems, the content of their large-scule representations,
and how they are used in practice in the respective
disciplines. These differences seriously undermine the
anulogies used to develop our understanding arid this is
discussed iri ternis of sofhvare engineering as a whole.

1 Introduction
Software engineers have been discussing the

architecture of their systems since at least the late 60s
and software architecture research has been a separate
field of study since the late 80s. However, while the ideas
in this sub-discipline are still solidifying, confusion exists
concerning the exact nature and meaning of software
architecture and that confusion is restricting the progress
of software architecture research and the adoption of its
ideas in practice.

For example, Mobray [l] notes the importance of
architecture research ideas but states they are hard to put
into practice because of confused terminology, the lack of
complete models, and disagreement about which views of
the system are necessary. One reason for those
differences is the lack of a universally agreed definition
or even understanding of what software architecture is or
should be. Similarly, Bennett [2] notes that the research
community is almost unanimous in its conviction that
software architecture describes something about the
structure of a system and that it plays a vital role in

Karl Reed
Dept. of Computer Science.

La Trobe University.
Bundoora. Vic. 3083

Australia
Email: kreecl@cs. Iutrohe.edu.aii.

determining the systems emergent properties. However,
they are much less unanimous on the questions of which
elements should be included in the architecture, how to
co-ordinate different collections of those elements
(views), and how to evaluate the architecture against the
external requirements. The problem is not that there are
no answers to these problems; rather, the difficulty arises
from the fact that there have been so many different
answers given.

Research efforts are attempting to solve these
difficulties between software architecture theory and
practice. However, despite the realisation that researchers
need to do something to solve the discrepancies, we
believe the problem is far more fundamental than
currently understood. What is required is an examination
of how we understand software systems, their
development, and the large-scale structures used to
represent them.

One thing that is obvious from the review of the
literature is that the community’s understanding of
software architecture has evolved based on analogies with
the large-scale structure of traditionally engineered
systems. Take for example the philosophy of the self-
proclaimed ‘World-wide Institute of Software
Architects ’ :

“There is a compelling analogy between building
and software construction. It is not new, but i t has
never taken root and bloomed. The analogy is not
just convenient or superficial. It is truly profound.
It not only raises the right questions, i t has the
answer to what has been called ‘The Software
Crisis.”’ [3]
Far from being a potential panacea, we believe this

understanding is in fact the source of many of the
problems in software architecture research. This paper
argues that the analogy is indeed convenient, superficial
and far from “truly profound”. Moreover, the problems in
software architecture exist because our understanding of
the issues is based on these specious analogies with
traditionally engineered systems and that, far from

125
0-7695-1360-3/01 $10.00 0 2001 IEEE

providing “an answer to what has been called ‘The
Software Crisis’’’, the differences between theory and
practice will not be solved until the software engineering
community develops a different view of software
architecture.

The paper begins by presenting the current
understanding of the terms ‘architecture’ and
‘architecture views’. The historical development of the
research community’s understanding of these terms
highlights their derivation from analogies with more
traditional engineering disciplines. While those analogies
served a useful purpose in facilitating our formulation of
software development concepts, their failure to
adequately consider the differences between software
development and those other disciplines requires them to
now be replaced. Those differences are detailed to show
the limitations of our present understanding by using the
specific area of ‘architecture views’ as the example.
Those differences are grouped into three categories:
1. Differences between software and traditionally

engineered systems.
2 . Differences between the content of architecture views

in the respective disciplines.
3. Differences between how those views are used in the

development processes of the respective disciplines.
Finally, we make concluding comments about how

this issue relates to the community’s guiding assumptions
about software engineering in general and the role of
research in the progression of the discipline.

2 A History of Our Understanding of
Software Architecture.

The first papers to describe the large-scale structure of
software systems appeared in the mid to late 1960s. For
example, in 1968 Dijkstra detailed the large-scale
structure of the ‘THE-Multiprogramming System’ [4]
where he discussed the advantages of partitioning the
operating system into layers like ‘onion-rings’. Another
example exists in the transcripts of the 1969 NATO
conference on Software Engineering where Sharp
discussed the importance of software architecture and the
differences between design at that level of detail and
other software engineering. [5] (p. 150). Later, Spooner
developed his “Software Architecture for the 1970s” [6],
contrasting i t with Dijkstra’s large-scale system structure.
As the 70s progressed, practitioners began detailing the
advantages of theorising about those system-level
structures and the consequences of decisions made at
those higher levels of design (e.g., [7]). In addition,
Brooks wrote his essays on software engineering [SI in
which chapter four, Aristocracy, Democracy, and Systeni
Design, stressed the importance of the conceptual design

phase and how it affects subsequent development. These
examples show software developers were able to identify
and reason about high-level structures of their software
systems and recognised the importance of decisions made
at that level of design. Moreover, it shows that the term
‘architecture’ was well established as the word for
designating those structures.

Brooks, who was the originator of many software
architecture ideas, also published articles on the
architecture of computer hardware [9]. Given this, and
the extent to which Brooks draws on analogies with
hardware development paradigms in The Mythical Man-
Month [SI, it could be argued that many of the concepts
Brooks used for understanding the large-scale
partitioning of software systems evolved from his
understanding of the concepts involved in computer
architecture. This influence was considered to some
extent. In the early 1960s, Brooks and Weinberg
discussed the appropriateness of the term ‘architecture’
for describing structural design issues in computer
systems. Brooks was worried about the appropriateness of
the analogy, however as their discussion progressed i t
seemed to hold [IO] . At that time, their discussion
considered computer systems as both hardware and
software, in contrast to the more software-centric
analogies used in recent times [l l] . In addition, their
concept of software architecture included the interface
with the computer operator as well as the large-scale
system structure [I 11. That aspect is also evident in
Brooks’ later comments on the integrity of the system
architecture.

“By architecture of a system, I mean the complete
and detailed specification of the user interface.”

Coplien notes therefore, that as early as 1965 the
discipline of software development was already enough
on its feet to consider the influence of design theories in
other artefact construction disciplines [121.

Despite these, and many other examples of software
developers reasoning about the large-scale structures of
their systems, it was Mary Shaw’s 1989 paper, Larger
Scale Systems Require Higher Level Abstructions [131
that was significant in the emergence of the area of
research that is today referred to as ‘software
architecture’. In that paper, Shaw recognised the
existence of high-level system representations that are
used during the development process and which could be
recorded and passed onto other designers. Shaw had been
working on abstraction techniques previously [141 and
noted the use of those abstractions in the development
process could result in a “software architecture level of
design.” Shaw’s work identified and labelled a number of
different styles of architecture that are still used as

[SI

126

examples today. For example, ‘layered’ and ‘pipe &
filter’. While Shaw’s paper discussed the importance of
higher-level system abstractions, it merely identified the
concepts that others began to theorise about.

Perry and Wolfs paper [15], as its title suggests, laid
the foundations for many architecture research ideas. It
also contained the first attempt to define architecture, or
at least, the important concepts of software architecture.
They stated that a model of architecture consists of three
components: elements, form, and rationale. The elements
are either processing, data, or connecting elements; form
is defined in terms of properties and relationships among
the elements (the constraints); and rationale provides the
underlying basis for the architecture in terms of system
constraints. Much of the understanding in that paper was
derived through analogies with other disciplines that
highlighted useful similarities and differences. For
example, computer hardware, network architecture, and
traditional building architecture. One of those analogies
compared the different representations of a software
system with the multiple views of a traditional building
design that are used by the various stakeholders in the
development process. That specific analogy is discussed
in detail in a later section.

From those research foundations, many definitions of
software architecture have emerged. Of the- early
definitions, the one by Garlan and Shaw [16] was often
cited. However, neither this, nor any other definition, has
become an accepted standard. The Software Engineering
Institute web site houses many of the definitions that
have been published in software architecture literature

The most recent definitions differ from the earlier
ones by catering for issues that emerged out of published
experience reports - the existence of multiple views of
software architecture. A number of software architecture
case studies and theories based on practical experience
were published suggesting the need for multiple large-
scale representations to capture the architecture of a
software system. For example, Soni [18], as a result of
surveying many software systems used in industrial
applications, identified four different large-scale
structural depictions used throughout the development
process. Kazman [191, while discussing the analysis of
quality attributes of system architecture, asserted that the
architecture could be described from (at least) three
different perspectives. Finally, Kruchten presented his
collection of system representations that had been
successfully used to capture the architecture information
in several large projects [20]:

Logical view: Where the required system is
decomposed into a set of key abstractions, taken
(mostly) from the problem domain.

~ 7 1 .

Process view: Depicts how the main, functional
abstractions map onto executing processes and threads
of control.

Physical view: Reflects distributed aspects by
showing how the software maps onto the hardware.

Development view: Focuses on the actual software
module organisation in the development environment.
Those four views are depicted with a fifth view that

illustrates them with a few use-cases or scenarios. Indeed
these views are considered analogous to the depiction of
software architectures in the increasingly popular Unified
Software Development Process [21 J (p. 62).

From those experience reports, the use of multiple
views to represent the system architecture has become
accepted in the discipline and has become part of more
recent definitions of software architecture. For example,
Bass et a1 state:

“The software architecture of a program or
computing system is the structw-e or structures of
the system, which comprise software components,
the external visible properties of those
components, and the relationships among them.”

The intent of the definition is that “a software
architecture must abstract away some information from
the system . . . and yet provide enough information to be a
basis for analysis, decision making, and hence risk
reduction.”. The authors also note that “the definition
makes clear that systems can comprise more than one
structure, and that no one structure holds the irrefutable
claim to being the system architecture.”

It is now clear that when developing software systems
many large-scale system depictions are used. The
prevailing consensus in software architecture research is
that these representations are different views of the
system architecture, where each view provides a different
abstraction of the underlying implementation dctail.
Therefore, each view is a subset of the detail that exists i n
the implementation. This way of understanding the
nature of software architecture views can be traced back
to the ‘foundations’ paper by Perry and Wolf [151. From
their analogies with traditional building architecture they
noted:

“ ... a building architect works with the customer
by means of a number of different views in which
some particular aspect of the building is
emphasized. ... For the builder, the architect
provides the ... floor plans plus additional
structural views that provide an immense amount
of detail about various explicit design
considerations such as electrical wiring,
plumbing, heating, and air-conditioning. ...
Analogously, the software architect needs a

1221

127

number of different views of the software
architecture for the various uses and users.” [151

The same analogy was used by Bass et al to explain
their definition of architecture. They claim the multiple
representations are analogous to the different building
representations used by the architect, the interior
decorator, the landscaper, and the electrician. They
summarise the most useful representations or views used
by software developers as: module structure, conceptual
or logical structure, process structure or co-ordination
structure, physical structure, uses structure, calls
structure, data flow, control flow, and class structure.
[221

Despite the many definitions, confusion still exists
concerning the exact nature of the representations, why
they are necessary, and which ones should or should not
be included in the description of the system architecture.
Other researchers have offered explanations for this.

Clements, in his overview of the field [23], suggests
five reasons why the community has failed to reach a
consensus on what exactly we mean by software
architecture.
1 . Advocates bring their own methodological biases

with them. While most definitions of the term agree
at the core, they differ seriously at the fringes.

2. The study is following practice, not leading it.
Research still involves observing the design
principles and actions used whilst developing real
systems and abstracting the commonalties.

3. The field is still quite new.
4. The foundations have been imprecise. The field

contains a remarkable number of undefined and
ambiguous terms.
The term is over-utilised and its meaning as it relates
to software engineering is becoming diluted.

That confusion concerning the meaning of software
architecture is also observed by Bass et al [22]. However,
they suggest the lack of a well-accepted definition is not
as troubling as it appears because the concept of software
architecture can still be successfully used while a
discipline-wide consensus evolves. [22]

To summarise the current understanding of software
architecture:

Software developers have been able to identify and
theorise about the large-scale structures of software
systems since early in the discipline.

Those large-scale structures are considered the
’architecture’ of the software system. That
understanding is based on analogies with traditional
engineering disciplines whose built systems exhibit
large-scale structures that are termed the ‘architecture’.

5.

0 Research has successfully sought to improve the
development process at the software architecture level
of design.

Experience suggests many system representations
are required to depict the architecture of a software
system.
0 Those representations are considered analogous to
the multiple representations of traditionally built
artefacts.

Confusion still exists about the exact nature of
software architecture and the views used to represent it.

3 Issues that Undermine the Current
Understanding of Software Architecture.

The logical progression from the recognition of large-
scale structures in software systems; to Shaw’s call for an
architecture level of design; through to Perry and Wolfs
foundations for the discipline; and finally to the
explanation of the multiple, high-level representations
required to depict a software system as different views of
the implementation detail appears valid. However, a
more thorough comparison of the systems built by the
respective disciplines shows it is quite specious. It is
based on the implicit assumption that the software
development process is analogous to those ‘construction’
disciplines in which the completed artefacts or systems
exhibit a unique representational abstraction, fixed
during the early stages of design, which we describe as
‘the architecture’. The problem of obtaining an
acceptable definition of software architecture or a set of
common architecture views is due to the assumption that
software systems have an analogous, unique design
abstraction, determinable at the early stages of the
design. That understanding of architecture and the use of
architecture views follows from Perry and Wolfs
statement,

“. . . there are a number of interesting architectural
points in building architecture that are suggestive
for software architecture.”
However it ignores the statement that began that

“While the subject matter of the two is quite
different . . .” [151.
The subject matter of the two

sentence,

quite different and any
attempt to use analogies between the disciplines can only
be done by ensuring that conjectures extrapolated from
those analogies are not invalidated by those differences.
This section examines those differences and finds 3
categories where the analogy fails to hold. They are:
1. Differences between software and traditionally

engineered systems.

128

2. Differences between the content of architecture
‘views’ in the respective disciplines.

3 . Differences between how those views are used in the
development processes of the respective disciplines.

3.1 Differences between Systems.

System Form. A comparison of the disciplines shows
that two important differences exist between the artefacts
produce by software developers and those produced by
the more established engineering disciplines. The first is
the concept of form and the other is the concept of system
execution. Those differences between the fundamental
natures of the respective systems have a significant
impact on the way we use the notions of architecture and
architecture views in the development process.

Systems produced by traditional engineering
disciplines are corporeal. They have a physical form, a
tangibility that allows the viewer to perceive its large-
scale structure - its architecture. That architecture can be
viewed in the original design documents, traced
throughout the design process and viewed in the physical
realisation of the system. Obviously you cannot see all of
the details of the architectural design by looking at the
physical system. For instance, the precise nature of the
materials used, the exact physical dimensions of
components, and hidden areas such as ventilation shafts
may all be indeterminable. However, the large-scale
structure of the system is evident in the design and in the
tinished artefact.

While not all architects agree on the most appropriate
solution for a particular problem’s requirements or even

!

I

on the best architectural design theory, the discipline
does have a common understanding of what it means to
be an architect and what the goal of architectural design
is

“That is what architects are, conceivers of
buildings. What they do is to design, that is,
supply concrete images for a new structure so that
i t can be put up. The primary task for the
architect, then as now, is to communicate what
proposed buildings should be and look like.” [24].
Architects represent the geometric properties of the

building materials and/or components. The physical
magnitudes and relations of those components and how
they are juxtaposed in space. That is the case in
traditional architecture, civil engineering, and
mechanical engineering. Those architectures depict the
physical form of the system or the components that
comprise the system. System ‘functionality’ is then
inferred from those components’.

Australia’s most famous piece of architecture, the
Sydney Opera House, provides a good example. Figure 1
depicts the large-scale system design dcveloped by the
architect. It also depicts a picture of its physical
appearance [25] . Put simply, you can see the architecture
in the design and in the realisation.

The analogous concept of form does not exist for
software systems. In general parlance, the architecture of
a physical artefact describes its “unifying or coherent
form or structure” (261. That generic concept is easy to
understand when dealing with our vast range of physical
artefacts. People without specific training in the
respective fields can perceive building architecture,
computer architecture, naval architecture, etc. However,
difficulties arise when you apply the same concept to
elicit the architecture of a system whose only tangible
manifestation of the construction is the source code
implementation [21.

You cannot see the architecture of a software system
by looking at the thousands of lines of source code. It
simply does not exist in the same fashion. The difference
is so obvious i t can easily be missed. Others have claimed
the user interface can be thought of as a tangible aspect
of a software system. The UI is certainly a tangible aspect
of the system, however you still cannot determine the
large-scale structure of a software system by looking at its
UI in just the same way as you can’t determine the large-
scale structure of a car’s engine by looking at its
dashboard. There is a fundamental difference between the
forms of the systems produced by the respective
disciplines.

Figure 1 : Architecture Diagrams and Physical
Representation of the Sydney Opera House

’ We recognise that electronic engineering generally does not have this
ProFflY.

129

Software systems have no analogous physical form.
They are not tangible systems and therefore their high-
level, abstract, design representations must be different to
those produced by the peer level of design in other
engineering disciplines. Empirical research has shown
that software developers produce multiple, high-level
abstractions to represent their systems and the evolution
of research ideas has assumed that they can be devised
and used in an analogous manner to those architecture
views of other disciplines. Indeed, it may be possible.
However, the current understanding of software
architecture views is based on an assumption that, while
employed for a long time, has never been validated.
During software development, large-scale design
representations are created in the conceptual design
phase, the implementation stage, the maintenance stage,
and all other stages in between. Do they have any relation
to each other’? Is i t possible to derive them all from the
source code’? Are they immutable in the same sense as
traditionally built architectures? Software engineering
researchers answer “Of course!” to these questions and
use further analogies with other engineering disciplines
as justification. Those justifications however, fail to
consider the differences between the disciplines and the

claims, a distinction is made between the operation and
the execution of a system. This distinction is critical to
realising the differences between software systems and
traditionally built artefacts and, therefore, warrants a few
examples. Users can operate a software system through
its user interface but that operation cannot occur until the
system is being realised through its execution by the
computer. Motor vehicles and electronic devices certainly
operate but they are not executed in the same manner.
The construction of a motor vehicle results in the
existence of a constant mechanical linkage between the
physical components. As the driver is operating the
vehicle, the gross structure of its dynamic operation is
exactly the same as the gross structure that was the result
of its construction. Similarly, computer architecture
remains the same whether the machine is being used or
not. A user can operate mechanical and electronic devises
but they have no need of an external system to provide its
execution. They may require power through electricity or
combustible fuel for the components of the system to
operate and exhibit the required properties. However,
once supplied that power they continue to execute
independently and have no need of concepts such as a
‘threads of control’.

lack of tangibility of software is one difference that
makes the use of those analogies hard to justify. To
determine whether those multiple representations of

3.2 Differences Between the Content of
Architecture

software architecture are views in an analogous sense to
other disciplines the following question needs to be
answered. What is it about the nature of our discipline,
rather than other disciplines, which makes it so?

System Execution. The other important difference
between software systems and traditionally engineered
artefacts concerns the concept of system execution.
Software has a distinction between the implemented
system, the collection of source code, and the executing
system, that is, the way the source code is executed by the
implementation environment to realise the system. This
distinction does not exist in any other discipline. A
software system is nothing more than a collection of
source code statements until it is compiled and executed,
statement by statement, by the ‘virtual machine’ implied
by the semantics of the programming language. It is not
until this stage that the system realises the desired result
- a fact that is taught to all computer science students
and perhaps forgotten not long after.

Some researchers contest the uniqueness of the
distinction between system implementation and system
execution. Counter arguments make analogies with other
disciplines such as, “What about the flow of movement
through a building?” or “What about the execution of a
motor vehicle or electronic device?” To refute those

The difference between the concepts of system form
and system execution in the respective disciplines affects
the content of the architecture and architecture views
used in the respective development processes. This does
not simply refer to the obvious differences between
corporeal systems and software systems but rather to the
content of each view and its relationship to the system as
a whole.

Traditional building disciplines produce many
different representations of their system architecture.
Those views are constructed by removing some of the
implementation detail and leaving a subset of the devised
form. Each view may correspond to particular viewpoint
of one of the actors in the development process and each
view is understood in the context of the global structure
using the understanding of the physical form or features
of the entire system. For example, how the wiring moves
throughout the spatial arrangement of the automotive
vehicle, or how the plumbing system is laid out within
the spatial arrangement of the building. Those high-level
representations can be developed both before the system
is realised and as documentation after the system is
completed. They depict a view of what some aspect the
physical system is or will be. Not how the system will
operate, but how that aspect of the system will exist as a
corporeal artefact.

130

The content of architecture views as viewpoint-
oriented subsets of the global design or implementation is
not repeated in software architecture views. Earlier in
this paper we presented the different collections of
architecture views identified by Soni, Kazman, Kruchten,
and Bass et al. The specific views in each of those
collections can be grouped into the following three
categories:

Static Implementation Architectures: The
representations that depict the source code modules and
the relationships between them. Examples from the
identified taxonomies include - source code, module
interconnection, structural, development, physical, call-
structure, object-structure, etc views.

Dynamic Operation/Execution Architectures: The
architectures that depict how the system executes in
terms of functional abstractions of the implemented
system and execution abstractions of the computing
environment (e.g., processes, distributed machines,
threads of control information). Examples from the
identified taxonomies include - execution, allocation,
process-structure, coordination, etc views.

ConceptuaVLogical Architectures: The
representations used during the conceptual design
phase of development that depict what the designer
believes should be implemented. Examples from the
identified taxonomies include - conceptual, domain
level, logical, etc views.
If the many large-scale system representations of

software systems are in fact analogous to the different
views of traditionally engineered artefacts then these
categories should all be obtainable from the underlying
software implementation. However this is not the case.
The architectures used to represent the only ‘tangible’
part of the system that exists, the source code
implementation, are fundamentally different to those
used to represent the executing system. Representations
of the source code implementation depict how the system
is implemented using the building blocks provided by the
implementation language(s). These building blocks
include files, procedures, functions, rules, object
definitions, etc. That is the only system representation
that can be directly perceived by us, yet i t does not
contain all the implementation detail necessary to
understand what the system does or how the system
executes to realise the requirements’. It is missing
services provided by the operating system; services
provided by other software systems, both those provided
at compile time by linking in additional libraries and

’ Again, some may argue that the user interface constitutes a tangible
aspect of the system. That debate is not considered here because it does not
alter the subsequent conjectures.

those provided at run-time by communicating processes;
and it is missing information that affects the operation of
the system because it is hidden in data values rather than
being explicit in procedural invocation.

The source code is the lowest level of system
granularity, the detail from which larger-scale
abstractions are generated. However, it is missing the
detail necessary for understanding how the system will
execute. That additional detail is available only at run-
time after the source code has been compiled and is being
executed. The missing information is depicted in the
abstract concepts evident in the architecture
representations of the dynamic operation of the system.
Those representations detail the operating system
processes, the inter-process communication abstractions,
the distributed nature of the system and the other services
that become part of the system at runtime. The
representations we have to depict the static
implementation of the system and those that represent the
dynamic operation of that system are different. One is not
merely a subset or more abstract ‘view’ of the other. They
are different, and the reason they are diffcrent is because
of the differences that exist between the discipline of
software development and those from which we draw the
concepts of architecture and architecture views. Our
systems have no tangible form and our systems have a
distinction between system implementation and system
execution.

The difference between system implementation and
system execution also highlights the fact that no software
system representation, from lowest level of detail,
through to most abstract architecture contains the
information that explains how the system is executed. It
is not immediately obvious because few, if any, other
disciplines require it in their system representations. In
other disciplines you look at the architecture of a system
and infer how i t works. That is because those systems are
not executed by another machine. Software systems are
executed and knowledge of the operation of that
execution engine, the virtual machine implied by the
language, is necessary to understand how the system is
executed.

The majority of systems are implemented in
procedural or object-oriented languages. Developers can
conceptualise the operation of those by implicitly
following the procedural invocations as the imagined
thread of control moves through the system components.
Object-oriented terms like ‘message passing’ are still, at
the code level, procedure invocations. Designers viewing
system representations automatically apply that
knowledge of how that model of abstraction operates to
solve a problem, often without explicitly realising it. It
becomes evident however, when attempting to

131

understand a system representation that has been
implemented in a language that utilises its own virtual
machine rather than traditional procedural invocation.
For example, understanding how a system implemented
in Prolog operates must be done with the knowledge of
how a backward-chaining inference engine works. The
dynamic execution architectures of a realised system are
not generated by abstracting away detail from the large
and complex implementation because those details do not
exist in the implementation. Again, we have an
architecture representation that is not a subset or
abstraction of some other, more complex, representation.
It is different to the implementation because of the
fundamental nature of software systems.

Like the static implementation and dynamic
operational views of a software system, it is impossible to
consider the conceptual views as a subset of the
implementation detail. The concepts represented in the
logical or conceptual level depictions of software
architecture contain abstract, domain level concepts.
They are mentally conceived entities that have no
tangible manifestation. They may attempt to model or
mimic tangible things, but they themselves have no form.
The realisation process of a software system as an
executing computer program occurs by implementing
those mentally conceived, domain level concepts using
the constructs provided by the programming language
and operating system, and subsequently executing them
in a machine. Those mentally conceived notions might be
similar to implementation level concepts, however they
do not have to be. Indeed the essence of software
development is the process of implementing those
domain level concepts of our minds using the constructs
provided by whatever implementation environment is at
our disposal. This is not generally the case in any other
engineering discipline [27]. High-level software design
representations consist of abstract concepts that depict
domain level functionality andor behaviour. In contrast,
large-scale representations of the implementation consist
of concepts provided by the implementation medium. For
instance, language constructs (e.g., functions, rules),
virtual machines, tiles, operating system processes, etc.
They are different collections of concepts.

The difference between the two can be explained
through a better understanding of a word that is often
used in software architecture research - ‘abstraction’.
The existence of different architectures for a software
system has been explained as different abstractions of the
complex implementation detail. The definition of the
word abstraction is often quoted from Shaw’s work as a
simplified description of a system that emphasises some
of the system’s details or properties while suppressing
others [14]. That defhition matches the one in a standard

English dictionary. It also matches how views are
assumed to be generated in traditional built architecture,
where each view is a subset of the system as a whole.
However, that is not the situation with software
architectures. They match a definition of abstraction
discussed in philosophy and psychological - see for
example [28]. In those fields, abstraction is the technique
by which higher order concepts are used to further
intellectual reasoning by representing distinct, yet
similar, particular instances. For example, apples and
bananas can be represented by a single concept, fruit.
That is how abstraction is used in software architecture.
The collection of particular implementation concepts,
such as objects, message queues, etc are represented by a
different concept such as a blackboard. A blackboard
does not exist in the software system. What ‘exists’ is a
collection of programming objects or procedures, in
conjunction with operating system message queues. We
simply choose to refer to that collection by the single
concept ‘blackboard’. Similarly, there is no particular
instance of ‘fruit’. There are apples, bananas, oranges,
etc. We simply choose to refer to them collectively as
‘fruit’.

Software architecture views are not developed by
merely removing the unwanted detail. They involve the
generation of higher level, abstract concepts to represent
the underlying detail. Moreover, many higher level
concepts can be used to represent the same particular
instances. That is why many architectures can be used to
describe the high level structure of a software system.
That is, a conceptual architecture can be realised by
many implementation architectures and an
implementation architecture can be represented by many
conceptual architectures.

It is true that some representations, for example high-
level object diagrams, have a smaller cognitive distance
between the design level concepts and the
implementation level concepts. Similarly, when
modifying an existing system or building upon some
previously implemented system the conceptual
architecture may consist of components that have direct
analogues in the implemented system. However, it is not
true of all high-level software architectures developed
early in the design process. They are different from the
architectures developed during the same stage of other
disciplines and are not different views of the
implementation complexity.

3.3 Differences between How Views are Used in
Practice.

The final difference to be noted concerns how these
large-scale structures are used in practice. Shaw’s
original architecture paper noted the existence of large-

132

scale software representations (“abstractions”) and
proposed these could result in an “architectural level of
design” that is analogous to the one that is presumed to
exist in traditional engineering disciplines 1 1 31.
Traditional building disciplines develop the architecture,
the gross structural form of the system, during the initial
design stages of the development process. The form is
specified in large-scale representations and a process of
refinements specifies precisely how that form will be
realised in terms of physical materials. The gross-
structure of the form remains throughout the process.

This is not the case in software development. The
creation of large-scale, conceptual representations is also
noted during software system design. However the
process of moving from the conceptual representations to
the dynamic operation and static implementation ‘views’
is not an analogous process of refinements and
specifications (regardless of how it is popularly
described). This is due to the nature of the elements that
are contained in those representations. They are not
represcntations of corporeal components in an analogous
manner to traditional system architectures. As we have
discussed previously, the concepts represented in the
design level depictions of software architecture contain
abstract domain level concepts, which must be realised
using the constructs provided by the programming
language, operating system, and other existing
components, and then subsequently executed by the
machine. Progress in software design research is
concerned with reducing the cognitive distance between
the concepts that exist in our minds and those that are
realisable in the implementation medium of our
discipline. Programming language improvements, such
as object-oriented languages and FGLs, have attempted to
bring the implementation level closer to the mentally
conceived components. Alternatively, design methods
and patterns attempt to provide techniques that help to
develop mental level components, and their interactions,
that are more easily, and predictably, realisable in our
implementation medium(s). Regardless of these
advances, the cognitive distance exists and must be
traversed during all software design activities.

Because the nature of our systems are different to
those of traditional engineering disciplines and the nature
of the content of our large-scale representations for them
are different, they way they are used will also be
different. Therefore i t is impossible to consider “an
architcctural level of design“ for software development
that is analogous to those other disciplines. It is
important to note that we are not saying analysis at this
level of design is neither possible nor useful. Advances in
areas such as product-line architecture are obviously
benefiting the community. However, in order to reason

why they are so useful and in order to perform research to
establish improved practices, it is necessary to develop a
view of software architecture based on the nature of
software systems and not traditionally engineering
artefacts.

4 Conclusion.
This paper has argued that the problems that exist

between software architecture theory and practice exist
because our understanding of the issues is based on
specious analogies with traditionally engineered artefacts.
A review of the history of the field shows how our
understanding has evolved and how it appears plausible.
Nevertheless, a closer investigation reveals significant
differences between our discipline and those with which
we made those analogies used to derive that
understanding. Certainly software developers utilise
many large-scale representations of their systems during
and after the development process. Traditional
engineering disciplines also utilise many large-scale
representations of their systems during and after their
development process. However, differences exist between
the types of systems developed in the respective
disciplines; the relationship between the content of the
different representations and those implemented systems;
and differences between how those representations are
utilised in the development processes of the respective
disciplines. Those differences seriously question the
theories extrapolatcd from our present understanding.

We are not suggesting that all research in software
architecture is pointless and should be abandoned. The
discipline is undoubtedly producing results that benefit
the community. Research in psychology shows that
disciplines often form the basis of their understanding of
new phenomena on something that is already well
understood (see for example [29]). However, as the
discipline progresses it is often necessary to reject that
initial understanding and develop something more
appropriate. Research in the philosophy of science has
considerable literature in this area. It is beyond the scope
of this paper to go into those details but i t is something
already investigated by the authors. We are suggesting
that in order to improve research in software architecture
and to reduce the difference between theory and practice,
a different way of understanding the nature of our
systems and how they can be engineered is required.

Earlier versions of this material have elicited
comments suggesting we are merely poking holes in the
current understanding of software architecture without
providing a legitimate alternative, and that is certainly
one valid assessment. However, we believe this issue is so
fundamentally important that i t is necessary to make
people aware of the problems so that a community-wide

133

discussion can begin. Moreover, fitting a thorough
treatment of the problems and possible solutions into a
single paper is extremely difficult in this philosophical
area. What we hope to achieve is a commitment to the
development of a better understanding of the
fundamental nature of software systems and their
development. Answers are needed to the questions that
are often posed in commentary-style journal articles (e.g.,
[30]) and in informal conference discussions and keynote
addresses (e.g., [3 1, 321). "What d o we build and how do
we build them?" "What does software engineering really
mean?' These are not easy questions to answer. They will
not present quantitative results that are easily testable or
easily publishable. What is required is work on the
philosophical foundation of the discipline. We have
already working towards solutions, see for example [33],
however we believe more literature and conference-based
discussion is required. Without a good understanding of
the nature of our own discipline we will continue to grasp
at analogies and attempt fit the square-pegs of other
disciplines into the round-holes of our own problems.

5 References.
I . Mobray, T.J., Will the Real Architecture Please S i t

Down? Component Strategies, 1998(December).
2. Bennett, D., Desiging Hard Software: the essential

tasks. 1997: Manning Publications.
3. WWISA, Philosophy. 1999, Worldwide Institute of

Software Architects. http://www.wwisa.org/
4. Dijkstra, E.W., The Structure of the "THE" -

Multiprogramming System. Communications of the ACM,

5. NATO, Report on a Conference Sponsored by the
NATO Science Committee, Rome, Italy Oct 27-31, 1969, i n
Software Engineering Concepts and Techniques: Proceedings of
the NATO confereces, J.N. Bruxton and B. Randall, Editors.
1976, PetrochellKharter.

Spooner, C.R., A Software Architecture f o r the 70's:
Part I - The General Approach. Software - Practice and
Experience, 1971. l(Jan-March): p. 5-37.

7. Parnas, D.L., On the Criteria to be Used in
Decomposing Systems into Modules. Communications of the
ACM, 1972(December).

8. Brooks, F.P., The Mythical Man-Month: Essays in
Software Engineering. 1975: Addison-Wesley Publishing.

9. Brooks, F.P., Architectural Philosophy, in Planning a
Computer System - Project Stretch, W. Buchholz, Editor. 1962,
McGraw-Hill. p. 5-16.

IO. Coplien, J., Architecture as Metaphor,,
http://www. bell-labs.com/-cope/Archi tectureAsMetaphor.htm1,
March 2000.

1 1. Weinberg, J . , Architecture as Metaphor. Personal
Communication. March 2000.

12. Coplien, J.O., Reevaluating the Architectural Metaphor:
Toward Piecemeal Growth. IEEE Software, 1999(Sept/Oct).

1968. ll(5): p. 341-346.

6.

13. Shaw, M., Large Scale Systems Require Higher-Level
Abstraction. Proceedings of Fifth International Workshop on
Software Specification and Design, IEEE Computer Society.,

14. Shaw, M., Abstraction Techniques in Modern
Programming Languages. IEEE Software, 1984(0ct): p. 10-26.

15. Perry, D.E. and A.L. Wolf. Foundations f o r the Study of
Software Architecture, ACM SigSoft, 1992. 17(4).

16. Garlan, D. and M. Shaw, An Introduction to Software
Architecture, in Advances in Software Engineering and
Knowledge Engineering, V. Ambriola, Editor. 1993, World
Scientific.

17. SEI, Sofht'are Architecture Definitions,,
http://www.sei .cmu.edu/architecture/definitions.html,
September 1998.

18. Soni, D., R.L. Nord, and C. Hofmeister. Software
Architecture in Industrial Applications. in ICSE '95. 1995.
Seattle, Washington.

19. Kazman, R., et al. SAAM: A Method for Analyzing the
Properties of Software Architectures. i n ICSE. 1994. Sorrento,
Italy: IEEE Computer Society Press.

20. Kruchten, P., Architectural Blueprints - The "4+1"
View Model of Software Architecture. IEEE Software,
1995(November).

21. Jacobson, I., G . B m h , and J . Rumbaugh, The Unified
Sofhvare Developent Process. 1998: Addison Wesley Longman.

22. Bass, L., P. Clements, and R. Kazman, Software
Architecture in Pracfice. SEI Series in Software Engineering.
1998: Addison-Wesley.

23. Clements, P.C., Software Architecture: An Erecirtive
Overview. 1996, Software Engineering Institute. CMU/SEI-96-

24. Kostof, S. , The Architect: chapters in the history of the
profession. 1986: Oxford University Press.

25. Sydney Opera House,, http:/lwww.soh.nsw.gov.au,
April 1999.

26. Miriam-Webster Dictionary: http://www.m-
w.com/netdict.htm. 1997.

27. Baragry, J . and K. Reed. Why Is It So Hard To Define
Software Architecture? in Asia Pacific Software Engineering
Conference. 1998. Tapei, Taiwan.

28. Corsini, R.e., Encyclopedia of Psychology. Vol. 1.
1984, New York: NY Wiley.

29. Holyoak, K.J. and P. Thagard, Mental Leaps: Analogy
in Creative Thought. 1995: MIT Press.

30. G i b , T., Level 6: Wily We Can't Get There From Here.
IEEE Software, 1996(January).

31. Reed, K. Commercial Software Engineering, The Way
Forward. (keynote address). in Australian Software
Engineering Conference. 1987. Canberra. ACT. Australia.

32. Xia, F. (Panel Session) How Can We Conduct Research
In Software Engineering. in Asia Pacific Software Engineering
Conference. 1998. Taipei, Taiwan.

33. Baragry, J., Understanding Software Engineering: from
analogies with other disciplines to a philosophical foundation.,
PhD thesis in Dept of Computer Science and Computer
Engineering. 2000, La Trobe University.: Australia. p. 350.
(Available from the author).

1989: p. 143-146.

TR-003.

134

http://www.wwisa.org
http://www
http://www.sei
http:/lwww.soh.nsw.gov.au
http://www.m

