
Why Is It So Hard To Define Software Architecture?

Jason Baragry and Karl Reed
School of Computer Science and Computer Engineering

La Trobe University
Bundoora, Vic 3083, Australia

Email: [baragry,kreed]@cs.latrobe.edu.au

Abstract

In recent years, software engineering researchers have
elevated the study of software architecture to the level of
a major area of study. A review of the published
literature however, shows quite clearly that a unified
view of software architecture has not been forth-coming.
This paper contends that the existence of a "software
architecture level of design" is based on the implicit
assumption that the software development process is
analogous to those "construction" disciplines in which
the completed artefacts or systems exhibit a unique
representational abstraction, fixed during the early
stages of design, which we describe as "the architecture".
We argue that our problems in obtaining an acceptable
definition of software architecture are due to the
assumption that software systems have an analogous,
unique design abstraction, determinable at the early
stages of the design. To determine the validity of this
analogy, we contrast the nature and use of architecture
in the traditional building process with software
development to identify the differences, rather than the
similarities that exist. These differences are explained
using a theory of the software development process which
highlights why these differences arise and, subsequently,
why there has been trouble in developing a community-
wide understanding of software architecture. Our
conclusion is that due to the fundamental nature of the
systems we construct, attempts to depict the large-scale
structure of the system, in an analogous manner
traditional building disciplines, results in many different
architectures. These are fundamentally different
representations and not merely different views of a single
whole. Moreover, each of these is equally qualified to be
labelled as the system architecture with respect to the
general notion of what architecture is.

1 The Problem with the Definition of
Software Architecture.

Software developers have been discussing the
"architecture" of their systems since the late 60's (see

Dijkstra [1] and Spooner [2]) however, it was Shaw's
1989 paper, "Larger Scale Systems Require Higher Level
Abstractions" [3], and Perry and Wolf's subsequent paper
dealing with the foundations of the new research area [4],
which triggered the growth in the field we call "software
architecture". Despite the volume of research since those
papers were published, it is suprising that the software
development community has failed to agree on exactly
what we mean by the "software architecture level of
design". Even the most popularly cited definition,
provided by Garlan and Shaw [5], is not universally
agreed upon. Descriptions of system architecture range
from conceptual models of design to source code
organisation and touch on more abstract notions such as
frameworks, patterns, and styles [6]. These multiple
definitions make it hard to compare and contrast different
ideas in the field because they are based on slightly
different notions of what software architecture should be
and the purposes that it should serve. Consequently,
architectural representations of implemented systems
depict different concepts depending on which definition is
used or the architectural biases which predominate.

Clements, in his overview of the field [7], suggested
five reasons why the community has failed to reach on a
consensus on what exactly is needed by software
architecture.

1. Advocates bring their own methodological biases with
them. While most definitions of the term agree at the
core, they differ seriously at the fringes. Those differences
are attributable to the motivation each researcher has for
examining the structural issues in the first place.

2. The study is following practice, not leading it.
Research still involves observing the design principles
and actions used whilst developing real systems and
abstracting the commonalities.

3. The field is still quite new.

4. The foundations have been imprecise. The field
contains a remarkable number of undefined and ambiguous
terms. In addition to the textual terms, diagrammatic
representations of architectural structures also suffer from
ambiguity in interpretation.

5. The term is over-utilised and its meaning as it relates
to software engineering is becoming diluted.

We assert that the issues raised by Clements are
manifestations of a deeper reason preventing us from
achieving convergence. Our detailed study suggests that
much of the current research in software architecture
appears to be based on the assumption that the process of
software development is analogous to that of other
disciplines which produce built systems, yet this
assumption is rarely justified or even questioned.. As a
consequence, the research community appears to be
subscribe to the following implicit syllogism:

"Traditional engineering disciplines design and build
systems which exhibit a level of design abstraction known
as the system architecture. Software developers build
systems and can identify high level design abstractions.
Therefore software systems have a system architecture".

This paper examines that validity of that implicit
analogy to determine why it is so hard to develop a
community-wide agreement on what we mean by the
software architecture level of design. To achieve this end
we examine traditional building architecture and identify
aspects of the fundamental nature of the systems they
build and the materials used to build them. This is then
contrasted with the discipline of software development to
identify the differences between the fields. Finally these
differences are used to determine the validity of the
syllogism presented above. Comparisons between
software development and traditional engineering
disciplines occur in many aspects of software engineering
research, however, whilst most papers attempt to
highlight similarities between the disciplines to validate
the analogy, we attempt to highlight the differences and
then determine whether or not the analogies remain valid.

We conclude that, due to the differences in the
fundamental nature of the systems we build, and the
materials we use to build them, software development
does not have a unique architectural level of design. In
fact, there exists three activities in the software
development process in which high level representations
are used and these activities all attract the term
'architecture'. They are:

1. The development of the conceptual model which
defines the developers solution to the problem.

2. The arrangement of the static source code into the
module and interconnection constructs provided by
the programming language and operating
environment.

3. The abstractions which depicts the systems conceptual
operation and allows the developer to determine how
well the implemented source code realises the
solution depicted in the conceptual model.

These are not multiple views of the one architecture
they are three independent representations, all of which
can rightfully be labelled with the term 'architecture'.

2. Comparison of Traditional systems and
software systems.

2.1. The Nature of Traditional Architecture.

The architecture of a built thing, in general parlance,
refers to it's "unifying or coherent form or structure" [8].
This generic concept is easy to understand when dealing
with our vast range of physical artefacts. Moreover, the
generic term 'architecture' also appears to be appropriate
when referring to the large-scale structure or form of
software systems. In what follows, we examine the usage
of the term "architecture" in an attempt to clarify its
application to our field.

Interestingly enough, many reference books in the
field of architecture itself fail to define the term (for
example [9, 10]). Moreover, those which do, describe
something quite ethereal which fails to assist in the
application of the term to software. For example:

"The art of designing and building according to rules and
proportions regulated by nature and taste, so that the
resultant edifices arouse a response by virtue of their
qualities of beauty, geometry, emotional power,
picturesque, intellectual content, or sublime essence, is
called Architecture, a term which suggests something far
more significant, sophisticated, and intellectually complex
than a mere building, although it must also involve
sound construction, convenient planning, and durable
materials. ... Architecture implies a sense of order, an
organisation, a geometry, and an aesthetic experience of a
far higher degree than that in a mere building." [11].

However, while the discipline of architecture itself has
proceeded without a formal definition of the term - at least
not in the sense that we seek, it does possess two aspects
which our discipline lacks.

First, architects have been formally discussing the
nature of their discipline from at least as early as
Vitruvius' treatise, Ten Books On Architecture [12], in
the last century BC. While it is generally accepted that
Vitruvius was not the first person to systematically write
about architecture, his works are the most ancient which
have survived to this day. In addition, there exists a vast
number of books detailing specific architectures, the
history of the discipline, and theories explaining particular
aspects of the discipline (for instance [13-15]). Whilst not
all architects will agree on what the most appropriate
solution may be for a particular problem's requirements or
even on the best architectural design theory, the discipline
itself has a common understanding of what it means to be

an architect and what the goal of architectural design is -
"That is what architects are, conceivers of buildings.
What they do is to design, that is, supply concrete
images for a new structure so that it can be put up. The
primary task for the architect, then as now, is to
communicate what proposed buildings should be and
look like." [16]. This common understanding has
coalesced over a long period of time through the
publication of architectural theories and education of
architects in apprenticeships, guilds, schools, and
universities.

Second, there is another obvious aspect of building
architecture which has facilitated the development of a
common understanding. You can 'see' the results of
architectural design - an architecture is a tangible thing.
By looking at the architectural design of a building and
the building itself, it is possible to 'see' the direct
mapping between the two. Buildings, bridges, and even
computer hardware have physical manifestations which
can be visually observed. We note, however, that it is
interesting to observe the extent to which the architectural
'visibility' of electronics systems blurs due to the increase
in VLSI technology. Regardless, if we examine a
building's architecture, we can identify the following
characteristics:

1. At the lowest level there exists the materials from
which the building is engineered. For example: bricks,
steel, concrete, and wood.

2. Higher level concepts refer to structural arrangements of
those materials. For example: column, window, room,
staircase, house, courtyard, and town. These are not
tangible in the same sense as our building materials, they
are labels used to represent patterns of their structural
juxtaposition. However, it is possible to visually depict
the physical form of these large scale patterns. And it is
possible to define them in terms of preagreed physical
attributes of the building materials used to form the
aggregation. These juxtapositions form both components
and aggregations of components, with some of the
resulting arrangements exhibiting recognisable 'styles':
eg., Gothic, Vitruvius's Orders, etc.

All of this is combined by the means by which we
map between the physical building materials from which
larger structures are engineered and the concepts in our
minds which are the abstractions we use to refer to
particular structural arrangements. Different theories of
epistemology explain how these mappings occur in
different fashions. The goal of this paper is not to support
or refute any particular theory of knowledge. We need
merely to note the existence of the mapping between
sensory experience of the world, and the larger granularity
concepts/abstractions we use to refer to particular
arrangements in that world.

2.2. The Difference between traditional
Architecture and Software Systems.

Looking at software development in the same manner
as we did with traditional architecture reveals the
existence of similar aspects:

1. At the lowest level we also have the building materials
which are used to construct our systems. These consist of
the programming language constructs and the operating
environment within which they execute. Software systems
execute within a particular virtual environment and any
attempt to analyse how the source code operates can only
be made with reference to it. Here we are referring to the
virtual machine which exists at the language
representation level. For example, the execution of
individual statements in a procedural programming
language, such as C, has to be evaluated with respect to a
'single, sequential, thread of control' operating
environment. Similarly, the evaluation of rule-based
programming constructs, such as those found in Prolog,
must be evaluated within the overall environment of a
backward-chaining inference engine.

2. Above the level of building materials we also have
larger abstract concepts which represent particular building
components and their structural arrangements. These are
often spoken about in descriptions of the system and used
as labels on the boxes and lines which appear in graphical
depictions of the system's design. Concepts such as
queues, algorithm, message passing, and layers, are all
terms used by software engineers in a similar fashion to
concepts identified by architects and other engineers. This
level of abstraction can be divided into larger scale
components and also styles which relate to their structural
arrangement.

Finally, there also exists the mapping process which
is analogous to the one identified for architects. Software
developers construct a conceptual model of the system to
be implemented. This model consists of the structural
arrangement of high-level, abstract concepts. The
development process somehow realises those concepts and
their relationships in terms of the software building
materials. Conversely, the process of reverse-engineering
involves the reverse mapping process where the larger
level concepts, relevant to its operation, are somehow
abstracted from the programming language
implementation.

Comparing the two disciplines using a common
framework reveals a number of differences not otherwise
visible. The architecture of implemented software systems
simply does not exist in the same manner as traditional
built systems. The abstract concepts of building
architecture can be 'seen' in the physical realisation of the
system. It is possible to look at a building and identify
the rooms, windows, archways, etc, eventhough each is

merely an pattern of a particular arrangement of building
materials.

At a larger level of granularity, it is possible to
recognise building styles. Even somebody not formally
trained in architecture could recognise Notre-Dame
cathedral as an example of a building in the Gothic style.
The concept is part of common parlance. In contrast, the
only aspect of a software system which can be perceived
through the senses is the source code and its arrangement
into the program modules and interconnections, files,
directories, libraries, etc of its virtual operating
environment. The architecture of the software systems has
to be generated from the collection of source code, and
knowledge of how the code is executed by its virtual
machine, through the process of abstraction. The ability
to read the source code of our systems and attempt to
understand its architecture is comparable to reading a
description of a building rather than viewing the building
itself, in an attempt to achieve the same end. This is a
fundamental difference between our disciplines and cannot
be ignored when making analogies between them.

We are working in a discipline that has a physical
representation of the concepts we use to design which is
fundamentally different to traditional engineering
disciplines. Because we lack a direct perceptual mapping
between high level concepts and physical
implementations without resorting to abstraction, it is
harder to ground our ideas and provide a means by which
we could reach a common understanding. This, we
postulate, makes the process for forming relationships
between our ideal concepts and instantiated examples very
difficult.

In summary, initial analysis suggests that the
discipline of software development has two differences
between it and other engineering disciplines.

1. Software systems do not have a physical representation
which can be perceived in the same way as other
engineered artefacts.

2. Software systems have a distinction between the form
of the implemented system, the collection of source code,
and the form of the executing system, the way the source
code is executed by the environment to realise the
required system. This distinction does not exist to the
same extent in other engineering disciplines.

The existence of these differences serves to undermine
our ability to draw valid analogies with traditional
engineering disciplines. What is required is a better
understanding of the nature of software development before
determining whether those analogies and borrowed
terminology remain valid. This will be presented in the
next section. However, before that is done, we need to
address the concept of software 'architectural views' and
determine their relationship to the previous analysis.

Perry and Wolf [4] also compared the concepts of
software architecture with traditional engineering
disciplines, including the building industry. One of their
observations was that "the software architect needs a
number of views of the software architecture for the various
uses and users" (emphasis added) and that "at present
(1992) we make do with only one view: the
implementation". They also make the observation that "it
is very difficult to abstract the design and architecture of
the system from all the details". We have made the point
that the difference between traditional engineering and
software development is that you do not need to "abstract
the design and architecture" from buildings for example,
because their is a direct mapping between the form of the
building which is perceived by the senses (ie., seen), and
the drawn representation of the building's architecture.

Following Perry & Wolf's observation, a number of
researchers have presented a collection of views required to
depict the software architecture of a system. For example,
Kruchten [17] describes the architecture as a complex
structure which can be represented by four different views.

¥ Logical view: A decomposition into a set of key
abstractions, taken from the problem domain.

¥ Process view: How the main functional abstractions
map onto executing processes and threads of control.

¥ Physical view: Reflects distributed aspect by showing
how the software maps onto the hardware.

¥ Development view: The actual software module
organisation in the development environment.

In addition, Soni [18], following a survey of many
industrial software systems, identified four different large
scale structural depictions used throughout the
development process. And Kazman [19], while discussing
the analysis of quality attributes of system architecture,
has asserted that it can be described from (at least) three
different perspectives.

Clearly these collections of views do capture many
useful aspects of large scale software systems. Moreover,
analysis has shown that they cover the same aspects of a
software system's design using different categories.
However, they assume there exists a single software
architecture which exists in an analogous manner to
traditional notions of architecture and that these views
represent different subsets of the overall properties.

These software architecture views are compared to
views of traditional architecture such as scale models,
floor plans, elevation views, contextual drawings, and
views to allow the viewer to determine the allocation of
heating, plumbing, wiring, and natural lighting. These
views of traditional architecture are all very important.
However, there is only one building and one architecture
for that building. It has a defined physical form, and these
views depict a subset of the measurable properties of that
form. For instance, the scale model depicts only enough

information to show the relative sizes of the building
components. Similarly, the view required to depict the
effects of natural lighting represent enough properties of
the proposed building to allow the designer to determine
how the light illuminates the internals of the building as
the sun crosses the sky. These 'views' of building
architecture all depict a subset of the measurable properties
of the single building architecture.

Traditional uses of 'architecture' utilise views to
"provide an immense amount of detail about various
explicit design considerations" [4]. Software developers
have also identified a number of useful views which
provide an immense amount of detail about various
explicit design considerations. However, this does not
prove the assumption that we have a single architecture
which is analogous to traditional engineering systems
since the differences between the disciplines have not been
accounted for. To address these differences and determine
the validity of the stated assumption we need to look
more closely at what we, as software developers, actually
do.

3. What Is Software Development?

Our purpose in this section is to show the concepts of
software architecture within a single framework. This will
allow us to determine why the identified differences
between 'software architecture' and traditional architecture
exist and whether or not the underlying assumption about
the existence of a single software architecture, which is
analogous to those of traditional engineering is valid.

We begin with the conjecture, developed by the first
author [20] after compared software and hardware designs
of automotive cruise control systems - that software
developers construct executable models or theories which
satisfy the solution requirements and implementation
constraints of a particular problem. In contrast, traditional
engineers construct tangible artefacts whose constituent
materials exhibit physical properties which are combined
to satisfy the solution requirements and implementation
constraints to meet some human needs.

The software designs were those used by Shaw [21]
in her comparison of different architectural styles, while
the hardware designs were chosen from the traditional
automotive engineering literature. This made an explicit
comparison between the two approaches possible. Such
comparisons are virtually non-existent in software
engineering research.

The discipline of software development designs and
implements systems for an incredibly diverse and ever
expanding set of problem domains that. Therefore, it
would be foolish to assume that such a sweeping
characterisation as "engineers build artefacts and software
developers build models" could possibly encompass all

software development. The authors recognise that there are
certainly instances in which software development
produces artefacts in an analogous manner to engineering
development. However the construction of models appears
to be a general property of software development as it is
currently practiced, and the source of much of the
difficulties we encounter. This model-building theory has
also been suggested by other researchers, for example [22-
24].

3.1. The Conceptual Model.

The first step in the design process is the generation
of a conceptual model or theory of how the solution
should operate. This is often referred to as the conceptual
or logical architecture of the system and outlines the
structural concepts and relationships required in the
implementation. The many stages of design serve to
transform the concepts and relationships of the conceptual
model into the source code of the implemented system.
This code is subsequently executed by the machine. This
process of executing the code statements of the
implementation, results in the execution of the
explanatory theory which was devised to solve the
problem at hand.

There are many issues involved in the generation of
the conceptual model from the initial problem
requirements, its transformation to source code
implementation, and its operation as an explanatory
theory for the original problem. This paper cannot
possibly elucidate all of those aspects, however we will
present enough detail to meet the original goal, that is, to
show why it is so hard to define software architecture.

Theories and models are collections of concepts
connected by relationships that allow causal interaction to
occur. In the fields of science and natural philosophy these
models are used to explain observable phenomena. In
software development the concepts and their interactions
provide the abstractions (the theory or model) we believe
explains the phenomena we wish to realise as a means of
solving a particular problem (the system). Consequently,
the discipline of software development can gain insights
into development approaches by analysing what cognitive
psychologists have learnt about conceptual development
and what philosophers, especially philosophers of science
have learnt about the nature and limitations of theory
development.

Let us explain this briefly. Observations of the world
lead to the development of concepts, categories, and
explanatory theories, all of which have implications for
how we perform the first step of software design - the
development of the conceptual model. The software
developer does not start with a clean piece of paper and
unconstrained imagination when developing the
conceptual model. Philosophy and cognitive psychology

describe the influences that culture, languages,
psychological biases have on perception, and expertise in
particular domains has on the development of our
concepts and theories. Despite this, we still have a degree
of creativity with which to select the concepts we need to
form our models. However, the concepts we choose to use
form a particular model of reality and must be logically
consistent with each other. Moreover, there may be more
than one logically consistent collection of concepts which
constitute a useful model of the same reality. Therefore,
not only can we entertain alterative models and theories
depending on our different aims and purposes, but we can
also entertain multiple (and not fully consistent) models
and theories in the same context [25]. One set of concepts
is no closer to a 'true' reality than any other, it is only
more useful than another in so far as it yields conceptual
interpretations which better suit the needs of the situation.

Examples of the generation of multiple conceptual
models representing the same problem can be found in
software development. Mary Shaw's paper [21], compared
eleven previously published software architecture designs
for an automobile cruise control system, categorising
them into the following different types: object orientated,
control/state based, process control feedback loops, and
traditional structured design (with appropriate real-time
modelling extensions). Moreover, even the designs which
employed the same architectural style, eg., object-
oriented, consisted of collections of different concepts.

McAuley research in conceptual development [25]
points out that this general situation results in two types
of issues which need to be considered. Firstly, we need to
consider the internal relationships. Those which exist
between the constituent concepts of our cognitive models.
The second variety, external relationships, also have two
varieties. The first deals with the relative fit with one
another of two or more cognitive models for the same
problem. Such models inevitably conflict somewhere.
The second sort of fit is between our cognitive model and
the world. Does it allow us to explain the 'reality' under
observation? We have no guarantee that our "idealised
cognitive models and theories cut the world at its joints"
[25]. However our various cognitive models offer
alternative descriptions of the world and it is possible to
recognise from time to time that certain descriptions are
not only less helpful than others, but also that some are,
for all intents and purposes, false. Determining the
effectiveness of proposed models is a central issue in the
philosophy of science. For example, Popper's schemata
[26] of theory development.

Other issues which affect our ability to generate useful
conceptual models or initial architectures include our
ability to generate more abstract representations of our
theories to cover a wider range of applicability [27]. This
issue affects what we currently call styles and software
patterns yet it has a much longer history of research in
philosophy than it does in books by Christopher

Alexander. In addition, the means by which we develop
our hierarchy of categories [28, 29] and the affect domain
expertise has on what concepts we depict in our
conceptual models are also the subject of research in other
disciplines.

Following the development of the conceptual model,
the succeeding stages of development involve a series of
steps whose ultimate goal is the implementation of that
conceptual model using the chosen implementation
medium.

3.2. Implementing The Conceptual Model.

The implemented software system has two attributes
of interest to us here. First, there is the implementation
which is created using source code and, second, there is
the way in which that source code operates to realise the
different aspects of the concepts and relations of the
conceptual model.

The implementation is constructed using the
programming constructs of the chosen languages and calls
to support environments such as GUI packages, databases,
other run-time libraries, and operating system services. As
part of this realisation process, the developer always
remains aware of, and is influenced by, the way in which
that source code will operate. Run-time constructs can
combine with the source code in many ways to provide
the implementation. These include aspects such as
separate and communicating processes, threads of control,
distributed machines, communication networks, and
virtual machines. Whilst a distinction has been made here
between the implementation constructs of the source code
and the run-time constructs of the source code's
environment, the delineation is quite blurred and many
aspects can reside in either of these arbitrarily designated
categories.

This paper does not attempt an explanatory model of
the process which transforms the concepts and relations
contained in our conceptual models to the concepts and
relation types which are provided by our implementation
and run-time constructs - assuming such a complex,
cognitive process is, in fact, explainable. However, a
number of issues are worth highlighting and have been
examined by the authors. They are: the utilisation of
design methods, the affect of the implementation medium
on our ability to generate conceptual models, the nature of
modelling itself, and the use of multiple design models.
Readers will note that we are specifically focussing on the
philosophical and cognitive aspects rather than the more
traditional process-model centred argument.

In summary, the software development process begins
with a conceptual model of the solution, which the
developer believes will solve the problem. This model,
its creation, development and evaluation, is subject to the
processes and activities which have been detailed by

researchers in traditional fields of theory development.
The concepts and relationships chosen to comprise this
conceptual model can be completely arbitrary. The
designer may be influenced by issues such as education,
known design methods and knowledge of programming
languages, however, as long as the concepts form a
coherent and logically consistent system, and the model
serves as a useful theory for solving the problem, the
types of concepts and their relationships can be of any
type. However, to implement the model, the designer
must utilise the module and interconnection mechanisms
provided by the operating environments or virtual
machine(s). This implementation stage is not a mere
decomposition, it requires a cognitive leap from one
collection of concepts to the other. As a result, there is no
simple mapping between the domain of concepts used by
the designer to represent the conceptual model and the
domain of concepts provided by the implementation
environment to realise the system. This is why there can
be no single architecture which is analogous to traditional
engineering systems. Obviously it would be beneficial to
reduce the distance of this 'cognitive leap' by providing an
implementation domain which consisted of concepts
which were closely matched the domain of concepts used
of to think about the world. In fact, this has been the
claim of object-oriented design languages and methods.
However, while these approaches may have reduced the
gap somewhat, there is still some degree of cognitive
distance between the domain of the conceptual model and
that of the implementation environment. The only way
we can cross these gaps is through mental processes, such
as abstraction, which are a part of the mental faculties of
all of us. The problem is, however, that they are
subjective to the person performing the transformation
which results in different results for different developers.

4. Conclusion: What does this mean for
Software Architecture?

The use of the term architecture to deal with the
higher level abstractions used in software development is
based on the implicit assumption that we are sufficiently
analogous to other "design and construct" disciplines
(usually engineering based) that the semantics associated
with the terminology will hold across disciplines.
Objective comparisons with other disciplines, in
particular those engineering disciplines to which we
aspire, is essential. Focussing on the differences reveals
that our discipline has a number of characteristics which
makes it difficult to apply the term architecture as it is
used in common parlance.

1. Software systems have no tangible representation which
allows us to directly perceive the realisation of the large
scale abstractions which were used in the design. This
makes it difficult to identify them unambiguously and
communicate them to others.

2. The implementation of the software system consists of
two distinct parts. The static source code implementation
and the dynamic system execution. Most traditional
engineering disciplines have no such distinction between
the form and execution of their systems.

Convergence of a common view of software
architecture requires the creation of a view of software
development in general which incorporates these
characteristics. In the process we have highlighted
differences between the software concept of architecture and
that of other disciplines. This theory is based on the
conjecture that software developers are currently, when
contrasted with builders of traditional systems, model or
theory builders rather than the creators of traditional
engineering artefacts.

From this it follows that there are valid reasons for
not having a single 'architecture'. There exists three areas
within this model building process where high-level
representations of the system are considered in an
analogous manner to traditional architecture design.
However the representations depicted in these three areas
are not merely views of the one architecture. Rather, they
are fundamentally different, yet all can be labelled as the
system architecture with equal validity. This was
exemplified in a recent case-study performed by the
authors on one of their own systems [30]. The case-study
followed the evolution of the HyperEdit project over a
number of years from system conception, through initial
implementation, and finally, major maintenance. It is not
possible in the space available to detail all the design
reasoning behind these architectural representations,
however it is possible to show the actual architectures
which were used by developers and maintainers at
succeeding stages in the systems development and the
differences between them.

The conceptual model of the system is shown in
Figure 1. It represents the high-level abstractions and their
interconnections (the model) which the developers
conceived to solve the problem. Once the design was
implemented in code, the system architecture was
represented in terms of a partitioning of modules provided
by the programming environment. This was as a layered
architecture which depicted clear interfaces between the
HyperEdit engine routines, the communication layer, and
the database server routines. Moreover, it was possible to
identify these 'layers' in the source code interfaces. In
addition to the layered representation, the developers also
used a call-graph representation between specific
procedures in the code. Finally, to facilitate the
maintenance process, a representation was required which
highlighted the dynamic operation of the system. The
system was implemented in the X/Motif environment
which provides its own event-based control mechanism.
This event-based mechanism is not explicitly evident in
the source code calls, it is part of the virtual machine of
the programming language which executes the code.

Consequently, to understand how the system operates,
this global control mechanism, which is not evident in
the layered architecture, needed to be made explicit in an
another architectural representation (Figure 2).

Presentation
& Editing

Knowledge
Base

Repository

Representation
& Reasoning

Presentation

Contents

Predicates :
proc(A).
proc(B).
store(S).
flow(B, A).
flow(A, S)...

DFD Diagram

A
B

C
S

EventTalkHyperEDIT HyperCASE

Figure 1: Conceptual Architecture
In conclusion, we believe that much of the current

research in software architecture relies on the implicit
assumption that software development is analogous to
traditional building disciplines which exhibit a single,
identifiable level of abstraction in their design process
which is called the architectural level of design. We have
examined this analogy and compared software
development with these traditional disciplines in an
attempt to highlight differences between them rather than
just the similarities. A number of fundamental differences
between the disciplines were identified which were
subsequently explained by representing the process of
software development as a model building discipline.
This theory highlights why we have so much difficulty in
developing a common understanding of what the proposed
"software architecture level of design" is or should be. The
theory suggests there can be no single software
architecture which is analogous to those found in
traditional building disciplines. Rather, as the
development building process proceeds, three types of
high-level representation of the design/system are
required. Each of these consists of high-level abstractions
and represent a view of the system. However they are not
different views of a single architecture. The are
fundamentally different and all can claim to be the
architecture based on our current generic definitions.
They are:

1. The Conceptual Model Representation: Produced as
the initial step of the design process and represents the
model which is to be implemented as a solution to the
particular problem. It consists of the concepts and
relations which constitute the designer's conceptual

model. Those constructs may be similar to those
provided by the implementation medium.

2. The Static Implementation Representation: Depicts the
source code implementation of the system and their
dependencies. It represents the structural form of the
implemented system but does not contain enough explicit
information to depict the control flow through the
executing system.

3. The Dynamic Operational Representation(s): These
depict how the system operates and are a hybrid of the
previous two implementations. It contains information
which details the operation of the statically implemented
system, yet is at a higher level of abstraction than the
code.

Init

Collection
of GUI

Widgets

HyperEdit
Engine

Routines

Event
Queue

Event Handler

X Events

GUI
Manipulation

Function
Invocation

Message
Server

Interface

Repository
Interface

Message
BlackBoard

Figure 2: Event-Based Operational
Architecture

5. References.

1. Dijkstra, E.W., The Structure of the "THE" -
Multiprogramming System. Communications of the
ACM, 1968. 11(5): p. 341-346.

2. Spooner, C.R., A Software Architecture for the 70's:
Part I - The General Approach. Software - Practice and
Experience, 1971. 1(Jan-March): p. 5-37.

3. Shaw, M., Large Scale Systems Require Higher-Level
Abstraction. Proceedings of Fifth International
Workshop on Software Specification and Design, IEEE
Computer Society., 1989. : p. 143-146.

4. Perry, D.E. and A.L. Wolfe, Foundations for the Study
of Software Architecture. ACM SigSoft, 1992. 17(4).

5. Garlan, D. and M. Shaw, An Introduction to Software
Architecture, in Advances in Software Engineering and
Knowledge Engineering, V. Ambriola, Editor. 1993,
World Scientific:

6. SEI. Software Architecture Definitions.
<http://www.sei.cmu.edu/architecture/definitions.html>.
(Accessed September 1998).

7. Clements, P.C., Software Architecture: An Executive
Overview. 1996, Software Engineering Institute:

8. Miriam-Webster Dictionary: http://www.m-
w.com/netdict.htm. 1997, .

9. Pevsner, N., J. Fleming, and H. Honour, A Dictionary o f
Architecture. 1975, .

10. Standen, D., Terms in Practice: a dictionary for
Australian arthitects. 1981, Royal Austrlian Institute
of Architects.

11. Curl, J.S., Encyclopedia of Architectural Terms. 1993, .

12. Vitruvius, P., Vitruvius, On Architecture. 1931, .

13. Gelernter, M., Sources of Architectural Form: a critical
history of Western design theory. 1995, Manchester
University Press.

14. Kruft, H.-W., A History of Archiectural Theory: from
Vitruvius to the present. 1994, Zwemmer.

15. Watson, D., Rule-Generated Architecture. Course Notes
of the Advanced Design Processes Course offered by the
School of Architecture at Deakin university, 1990,
Geelong, Australia: Deakin University Press.

16. Kostof, S., The Architect: chapters in the history of the
profession. 1986, Oxford University Press.

17. Kruchten, P., Architectural Blueprints - The "4+1"
View Model of Software Architecture. IEEE Software,
1995. (November).

18. Soni, D., R.L. Nord, and C. Hofmeister. Software
Architecture in Industrial Applications. in ICSE '95.
1995. Seattle, Washington.:

19. Kazman, R., et al. SAAM: A Method for Analyzing the
Properties of Software Architectures. in ICSE. 1994.
Sorrento, Italy: IEEE Computer Society Press.

20. Baragry, J. An Initial Comparison of Software and
Engineering Designs of Automotive Cruise Control
Systems. in Australian Software Engineering
Conference. 1996. Melbourne, Australia: IEEE
Computer Society Press.

21. Shaw, M., Making Choices: A Comparison of Styles for
Software Architecture. IEEE Software: Special Issue on
Software Architecure, 1995. 12(6).

22. Blum, B.I., Beyond Programming: To A New Era Of
Design. 1996, Oxford University Press. 423.

23. Lehman, M.M., Programs, Life Cycles, and Laws o f
Software Evolution. Proceedings of the IEEE, 1980.
68(9): p. 1060 - 1076.

24. Naur, P., Programming as Theory Building.
Microprocessing and Microprogramming, 1985. 15(5
(May)): p. 253-261.

25. McAuley, R.N., The role of theories in a theory o f
concepts, in Concepts and Conceptual Development, U.
Neisser, Editor. 1987, Cambridge University Press: p.
288-309.

26. Popper, K.R., Of Clouds and Clocks, in Objective
Knowledge: an evolutionary approach. 1979, Oxford
University Press:

27. Lee, H.N., Percepts, Concepts and Theoretical
Knowledge. 1973, Memphis State University Press.

28. Neisser, U., The ecological and itellectual bases o f
categorization, in Concepts and Conceptual
Development, U. Neisser, Editor. 1987, Cambridge
University Press: p. 1-11.

29. Neisser, U., From Direct Perception to Conceptual
Structure, in Concepts and Conceptual Development,
U. Neisser, Editor. 1987, Cambridge University Press:
p. 11-23.

30. Baragry, J. and K. Reed, HyperEdit: A Case Study in
Software Architecture. 1998, La Trobe University:

