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Introduction 
 
In Software Engineering, the benefits of modularity and re-use have been well documented in 
the past. Advantages of these techniques include shortened development time, additional 
flexibility, and the ability to build and enhance systems from libraries of conceptually simple, 
re-useable modules. Building and enhancing systems becomes faster and more cost effective. 
 
Techniques for effective module decomposition have been practiced since the late 1950's. 
Parnas [3] outlined methods for the decomposition of systems into modular form, contrasting 
both the stepwise refinement and information hiding techniques. The aim of this paper is to 
present and analyse another technique for the decomposition of a system into modular form. 
This technique is the analysis-synthesis approach to system or program design. We will also 
attempt to show that a good modular design will allow for more flexible software 
construction. 
 
The basic principal of the analysis-synthesis approach as stated by Reed [1] in his software 
engineering lecture series is quoted below. 
 
"Given a collection of (related) functions on a collection of (related) data, there should exist a 
set of primitive functions from which complete systems may be built." 
 
Using the strategy we will outline in the following paragraphs, we will develop parts of a 
small test system to demonstrate the analysis-synthesis principle, and contrast it some of the 
other techniques of system decomposition. What follows is in fact a re-write of the case-
study by Reed in 1980 [5], with additional discussion. 
 
The Analysis-Synthesis Approach 
 
Our first task is to perform the initial system design. This involves identifying the functions 
and subsystems that need to be developed to achieve the specified system functionality. 
Once this is complete, we should then attempt to find what appear to be sensible 
components in each identified module. By sensible components we mean look for a plausible 
breakdown of tasks that each module is likely to perform. This only needs to be done at a 
general level initially, since we will examine each component in more detail at a later stage. 
 
The second part of our strategy is to utilise our initial breakdown, our sensible components, 
to identify any components which are common across each module. These components could 
possibly be routines that may be used throughout the system in some other modules, but not 
necessarily all. It is these routines that will form the basis from which we will build the 
system, and minimise the number of components required for construction. 
 
Thirdly we analyse each component design, and make the identified common useable 
components identical. This means that we need only support a single version of the identical 
code across the system. Each identical component identified should then encompass the 
functionality required by all programs or modules, and ensure their correct operation. 
 
Example of Analysis-Synthesis 
 
In the following example we are going to analyse the functions necessary to use and maintain 



a linked list of nodes. All nodes in the list are ordered by some key, and also contain some 
form of other data. The list is to be stored in some form of random access file whose physical 
structure may be quite different to that of it's logical organisation. The list is to be ordered 
such that for each node i, 1 <= i <= n where n represents the number of nodes currently 
maintained in the list. It must also be true that ki relop ki+1 where "relop" represents any 
binary relation which is in a total order. 
 
We begin the design process by examining the operations which may be performed on the list 
and giving a brief description of their actions. This list of operations has been tabulated 
below. 
 

Operation Description 
INSERT Will place a record in it's correct place 
DELETE Will remove a record from the list 
FIND Will locate and print a records details 
CHANGE  Will alter a records data, key or both 
PRINTALL  Prints the file in key order 
 
Other useful operations may be defined such as functions to create the file if it does not exist, 
or a function to dump the file in record order. 
 
The first step toward our design should begin with a graphical examination of each function if 
possible. This will give us more of an insight into what we are trying to achieve, and help us 
better understand the manipulations which will be applied to the list. It is important not 
begin by implementing a single function as we choose incorrectly, and as a consequence could 
incorrectly identify or specify some of the systems primitive components. We may also miss 
our chance to minimise the number of functions or modules which need to be developed. The 
graphical representations on the following page give us a clearer picture of what is required to 
change the list for the insert, delete, and change of key operations. 
 
Following our graphical analysis, we should now re-examine each of the listed functions and 
include some statement eluding to error conditions which may arise during processing. This 
just needs to be some form of written statement expressed in english, and establishing the 
criterion under which our functions will operate. We will scrutinise our operations in greater 
detail at a later stage. A list of function conditions follows. 
 
Function Conditions 
 
INSERT :-  
 
We cannot perform an insertion if there is not a place to insert into the list. That is, there must 
be place which satisfies ki relop "new" relop ki+1. 
 
DELETE :-  
 
We cannot delete a key from the list if the key we wish to delete does not exist. 
 
FIND :-  
 



We cannot find a key and print the node details if that key does not exist in the list. 
 
CHANGE :-  
 
We cannot change a key if the key does not exist in the list, or if there is no place for the new 
key in the list. 
 
Function Descriptions 
 
The function conditions give us an idea about some of the restrictions which must be 
considered during the design phase. Now we are in a position to make some form of verbal 
description of each functions operation. 
 
INSERT :- to insert a node into the list. 
 
search for node with the corresponding key 
if a place is found then 
  link new node to key+1 node 
  link key node to new node  
 
DELETE :- to delete a node from the list. 
 
search for node with the corresponding key 
if node with required key is found then 
  link key-1 node to key+1 node 
 
FIND   :- to find a node with a key value. 
 
search for node with the corresponding key 
if node with required key is found then 
  print key and contents of the node 
 
CHANGE :- to change a nodes key value. 
 
search for nodes with key* value and key** value 
if found node with key* value and  
   place for node with key** value then 
  link key* -1 node to key*  +1 node 
  link key*    node to key** +1 node 
  link key**   node to key*     node  
  change key* value to key** value  
 
Discovering Primitive Functions 
 
By this stage we should have gathered enough information to begin recognising some of the 
primitive functions used in our list operations. The first observation about the performed 
actions notes the necessity for a linking operation. Both the insert and delete list operators 
perform one or more linking operations. The change key action consists of a delete operation 
followed by an insert operation. From this we conclude that linking must be a primitive 



operation. 
 
Notice that above we had an option to specify the change operation in terms of insert and 
delete operations. This may have presented problems if a place for the changed key cannot be 
found. We would then need the ability to be able to recover from the previously preformed 
deletion. 
 
If we examine the conditions applied to each function we find that our chief concerns are the 
existence of a place in the list, or whether or not a node with a matching key value to that 
sought can be found. That is, either there is a position in the list such that ki relop k* relop 
ki+1 can be satisfied, or k* = ki can be satisfied. In each case we are performing basically the 
same test, but with the required result being the only difference. Determination of these 
conditions obviously involves a search of the list. 
 
The Search Primitive 
 
If we examine the search primitive in more detail, we find that if the list follows some kind of 
order, there is no need to return to the beginning of the list to resume searching. In our first 
optimisation step we can pass the starting point as a parameter to the search function. The 
format of the call to the search function will then resemble that given below. 
 
procedure search {keysought, startpt : in, node pointer : out} 
if (search key relop current^.key) then 
  finish searching 
 
If we consider a single step search process as written above, we find are comparing the 
current key to the search key passed as a parameter. The result of the comparison, and hence 
our choice, depend upon the relation relop in use. The ordering of the keys is also important 
if equality is to be included. The graphical representations of our operations listed previously 
reveals that to satisfy the above condition such that the association will hold in all cases, we 
require a second pointer indicating the predecessor to the current node. The current node will 
be the node where the key establishing the relationship as true has been found. This also 
implies that we need another parameter to be returned representing this predecessor to the 
current node. 
 
As a side note, the statements which advance the pointers during the search operation could 
also be described as a primitive function. Writing the code fragment for the search routine, 
including pointer advancement, reveals the following. 

procedure search {k*, startpt : in, pred, current : out} 
while not k* relop current^.key do begin 
  pred = current 
  current = current^.next 
end 
 
To investigate the usefulness of our newly defined primitive, we should consider the 
requirements of the originally specified list operations. If we consider the insert operation, 
and what is required from the search function during processing, our list of actions to be 
performed would be as follows. 



 
1) Check to see if the list is empty, 
2) Obtain the first element if necessary, 
3) Initialise both pred and current,  
4) Find the key which satisfies k* relop current^.key, 
5) Assume a place is found, and current points to this node, 
6) Assume new represents the node to be inserted, 
6) Link pred to new and new to current. 
 
The assumption we are making with the above list of actions is that a place was successfully 
found. This is an unsatisfactory supposition caused by the fact that no values indicating the 
success of the operation are returned by the search function. The table below examines the 
results required from the search function by each of the specified list operations. 
 

Operation Search Result 
INSERT Place Found 
DELETE Key Found 
FIND Key Found, Key not Found 
CHANGE KEY Key Found, Place Found 
 
The Linking Operation 
 
Since it is now necessary for the search function to return a result, we may become aware of 
situations where our search primitive may produce some erroneous results. This necessitates 
the testing of some boundary conditions to verify that our search function behaves in the 
correct manner. Analysing the insert operation once again, we need to consider cases such as 
insertion at both the head, and tail of the list.  
 
Examining the case of insertion at the tail of the list we find that the list end does actually 
qualify as a "place found". We must however still analyse the impact on our pointer system 
and the method of terminating the search. On reaching the end of the list, current points to 
null, and pred points to the last node in the list. So no special case is required here since our 
linking operation will append the new node to the end of the list regardless of whether a true 
place was found. Having established that a special result is not necessary for the insert 
operation, analysis of a similar type performed for the find operation reveals that a returned 
result of "key not found" is necessary (the above table). 
 
If we examine our linking operation and it's behaviour when inserting nodes at the head of the 
list we find it will fail. This is due to the fact that current and pred are always assumed to be 
distinct nodes which they are not. In this case it is really start which needs to be modified. 
For the linking operation to succeed pred must point to a node. To overcome this we could 
either introduce a header node, or initialise current and pred to be identical in the initial 
instance. Header nodes may not always be practical due to both physical or relational 
constraints, so we will use the latter, more elegant method. For the case of our insert 
operation, the code will start to take the form of that given below. 
 
search {k*, startpt; pred, current} 
if pred <> start then 
  linkin {new^.next, pred^.next, new} 



else linkin {new^.next, start, new} 
 
The linkin primitive will simply perform a pointer reshuffle to include the new node between 
the current and previous nodes. 
 
function linkin {newpt, predpt, new} 
  newpt = predpt 
  predpt = new 
 
Here we do not need to worry about the case of equality in the search. If we now focus our 
attention on the other functions to be implemented we find that delete can be described as 
searching for a key, then linking it out of the current list of nodes. 
 
search {k*, startpt; pred, current} 
if key is found then 
  if pred <> start then 
    pred^.next = current^.next 
  else start = pred^.next 
return pred 
 
The find operation is identical to delete but performs a different action. 
 
search {k*, startpt; pred, current} 
if key is found then 
  display (key) 
 
For the change operation we have two cases to consider. The case where the first key 
precedes the second in the current relationship, and vice versa. Analysing what is needed to 
perform this operation, we find that we require four pointers. These four pointers can be 
picked up from two calls to the search routine, one for each key. The order in which the 
searches are performed depends upon the order of the two keys with respect to the 
relationship k* relop k** or k** relop K*. 
 
The Search Primitive Refinement 
 
Having defined our search routine to this level, we are still to make the final refinements 
necessary to render it fully functional across the range of our specified list operations. These 
refinements involve things like the actual use of the search procedure, and the search 
parameters. The searching operation would be more efficient if it began from startpt, thus 
saving some initialisation. The result parameter is currently undefined, and there is no test for 
the end of the list. In the following code fragments we are going to look at the cases where the 
relationships vary, and the differences for each case. The purpose of this is to attempt to 
make them identical so they may be applied across the whole system or module. In the first 
instance we will examine the case where relop involves equality. 
 
procedure search {keysought, startpt :in, pred, curr : out} 
foundres = notfound, curr = startpt 
while not curr = null and not foundres = found do 
  if keysought <= curr^.key then 



    if keysought = curr^.key then 
      foundres = found 
  else begin 
    pred = curr 
    curr = curr^.next 
  end 
return 
 
Note that in the above fragment there is always a place for the key regardless of whether it 
was found or not. As previously stated, the exact requirement of the search function depends 
on the relationship relop being used in the comparison. When the search terminates, we have 
located the first instance where the relationship relop is satisfied. In this case the sought key 
may or may not be equal to the required stopping point. It is interesting to note that outside 
of the search routine we are not concerned with the nature of the relation. Instead we are 
interested in three results, key found, key not found, and place found. The actions inside the 
search however are dependant on the nature of the relation. We now analyse the code 
fragment where the relationship relop does not involve equality. 
 
procedure search {keysought, startpt : in, pred, curr : out} 
curr = startpt 
while not (curr = null or foundres = place, found) do begin 
  if keysought < curr^.key then 
    foundres = foundplace 
  if keysought = curr^.key then 
    foundres = found 
  else begin 
    pred = curr 
    curr = curr^.next 
  end 
end 
return 
 
Comparing the two code fragments above we find they are equivalent. The only exception is 
that we have called the results in one of these fragments not found instead of place found. 
This may not always be true so we will need to revise the detail of the search for each 
relationship relop with the aim of making them equivalent. What we have been able to 
conclude is that if the list is ordered by some relation, then when the search halts, a target 
may be found. If a target was not found then we still have a valid place for insertion. This 
indicates we are only interested in two of three results. So found may or may not mean place 
found. Now we are in a position to fully specify the search primitive. 
 
Search Primitive Final Definition 
 
The search function will scan a list of nodes looking for the node with the key value matching 
that passed. The search will commence from the node pointed to by start. Termination occurs 
when either the sought key is found, or if not found, a place in the list is found for it. 
Separate indications of these two events should be returned. If the search terminates with 
curr = startpt, pred is meaningless, otherwise curr points to the first item for which the 
relation relop is true, and pred points to the predecessor of curr. The code fragment for the 



search will then have the below form with relop being substituted for the relation of the 
designers choice. The result parameter has been included in the following fragment. 
 
SEARCH :- 
 
procedure search {key, start :in; pred, curr, result : out} 
result = place found, curr = start 
while not (curr = null or result = found) do begin 
  if key relop curr^.key then 
    result = place 
  if key = curr^.key then 
    result = found 
  if result <> found, place begin 
    pred = curr 
    curr = curr^.next 
  end 
end 
return 
 
Review of the Process 
 
A review of the process to this point reveals the following. We began with the specification 
of a linked list of nodes, and a set of operations which may be applied to the list. We 
examined these operations graphically to obtain a better understanding of their actions in 
terms of the list. This examination then yielded the set of conditions which must be satisfied 
for the successful execution of each operation. From this we were able to form a verbal 
definition of the functionality we required from each operation. These function descriptions 
allowed us to begin discovering our primitive components which will constitute the list 
operations.  
 
The search primitive was chosen for further investigation. We proceeded to define it's 
operation by specifying code fragments and analysing functionality with respect to the 
specified list processing operations. We were able to establish requirements of the search in 
relation to the nodes tracked, the parameters it must be passed, and the results that need to be 
returned. Once this was completed we would have a useful common useable component. The 
linking operation was also examined along with it's behaviour under boundary conditions such 
as insertions at the head or tail of the list. 
 
We were then able to compare the search code fragments, analyse their behaviour under 
different relational conditions, and highlight the differences. Once these differences were 
identified we could then attempt to make the code fragments identical for each of the 
relations. Then we could finally specify the search primitive. 
 
To follow on from this point we must perform the above actions in detail for each primitive 
component of the system that is common useable. Having completed this, we may then 
specify or implement our list operations in terms of these primitive components. After initial 
implementation we may then return and simplify these routines if this is necessary. The code 
for some of our list operations will resemble that given below. 
 



INSERT :- 
 
procedure insert(keysought, start, begin, resultab) 
begin { Find a place for the insertion }  
  search(start, keysought, pred, curr, result) 
  if resultab["search", result] = foundplace then begin 
    get_free_rec(new) 
    if curr <> start then 
      linkin(new^.next,pred^.next, curr^.next)       
    else linkin(new^.next, start, curr^.next) 
  end else logerr("No place for key") 
end {procedure} 
 
DELETE :- 
 
procedure delete(start, keysought) 
begin 
  search(start, keysought, pred, curr, result) 
  if result = found then begin 
    if curr <> start then 
      link(pred^.next, curr^.next) 
    else link(start, curr^.next) 
    reclaim(curr) 
  end else logerr("Record not found") 
end  
 
Note that in the previous examples resultab is a table lookup for the type of search we are 
performing. That is, whether equality is included or not. 
 
Analysis of the Method 
 
In his paper of 1990, Hoffman [4] specified some criteria which could be used for the 
formalisation of specification of module interfaces. While these criterion were specified for 
module interfaces using an information hiding decomposition strategy, I believe many are still 
relevant for the analysis-synthesis approach. Indeed many of these practices should be 
employed for system design in general. Hoffman stated the following characteristics for 
module interfaces to which their applicability to analysis-synthesis is contrasted. 
 
Consistency: This is essential in almost all aspects of design regardless of the method 
employed. eg. naming conventions etc. 
 
Essential: States that interfaces should not have needless features. In fact analysis-synthesis 
ensures a minimal set of functions offering non-duplicated services to the system. 
 
Minimal: All independent features are also separated which satisfies the minimality criteria. 
Analysis-Synthesis goes a step further and combines similar features if possible. 
 
Generality: All operations are designed in such a way that they are as general as possible. The 
design of the search function and the consideration of the relational aspects demonstrated 



this. When common components are made identical this introduces a greater level of 
generality. 
 
Opaque: This criteria is more reserved for systems designed with information hiding as the 
criteria for module breakdown. If we examine our search function more closely however, we 
find that we have actually hidden a secret from our list manipulation routines. This secret has 
been addressed continuously throughout the design process, and is in the nature of the 
relation between the keys. 
 
The analysis-synthesis technique is remarkably similar to the information hiding method 
outlined by Parnas [3] in the results that are produced. By results it is meant that both 
techniques produce systems whose design aspects are desirable according to the above 
criterion. System functionality should be identical regardless of the design methodology 
employed. Both produce flexible modular code whose modules do not necessarily correspond 
to sequential steps in processing. Information hiding also seems to be more of a design only 
technique with the method and design of programs left to the developers discression.  
 
Analysis-synthesis on the other hand is a more flexible methodology which may be applied 
to both system design and the programming of the system. There is no conscious decision to 
encapsulate secrets although this may occur in the manner as outlined by our search function. 
There is also no reason why an information hiding design strategy could not be implemented 
with an analysis-synthesis approach to the programming of the system. This combination it 
would appear incorporates all of the desirable features outlined by Hoffman [4] in both the 
design and programming of any developed systems. It would undoubtedly be one of the more 
flexible approaches. 
 
Using a bottom up programming technique with a top down design method like stepwise 
refinement could be usefully employed, although it would be more restrictive than some of 
the other methods already mentioned. The sequential nature of the processing used by 
stepwise refinement would seem to indicate that the number of common useable components 
that we could identify would be less. Therefore a smaller amount of reusable code is available 
to develop the system. 
 
Another advantage of the analysis-synthesis approach, as with information hiding, is the 
promotion of a hierarchical model. We find that we have developed a set of primitive 
functions at the lowest level, and then use these functions to build other more complex 
functions. This layered approach continues until the most complex function has been 
implemented, and we have enough functions to implement our target system. 
 
Conclusion 
 
As a concluding note, we have tried to demonstrate the analysis-synthesis approach for a 
small system where it was possible graphically visualise the operations that were to be 
performed. This may not always be possible when developing for larger systems. What it 
does indicate is that a detailed understanding of each modules operation, and the requirements 
from each common component is needed. If this is achieved then analysis-synthesis offers an 
efficient means to design, construct, and program systems in a most flexible manner. 
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Appendix A - A Sample Program 



Start

Start

K1
K2

K3
K4

K4
K3

K5
K2

K1

K*
New

Record 4
Record 2

Record 1
Record 5

Record 4
Record 2

Record 1
Record 4

Record 3

Start

K4
K5

K3
K2

K1
Record 4

Record 2
Record 1

Record 5
Record 3

Record X

(K**)

INSERT
node w

ith key K* (K2 relop K* relop K3)

DELETE
node w

ith key K* = K3

CHANGE
key of the node w

ith K* = K4 to K** (K2 relop K** relop K3)

(Deleted Link)

(Deleted Link)
(Deleted Link)

(Deleted Link)
(Deleted Link)

(Deleted Link)

 


