

Analysis-Synthesis Approach to Design

Project for CSMSE, Software Engineering

by Michael Cooper, 82505793
V03. 26/5/2013

Introduction

In Software Engineering, the benefits of modularity and re-use have been well documented in
the past. Advantages of these techniques include shortened development time, additional
flexibility, and the ability to build and enhance systems from libraries of conceptually simple,
re-useable modules. Building and enhancing systems becomes faster and more cost effective.

Techniques for effective module decomposition have been practiced since the late 1950's.
Parnas [3] outlined methods for the decomposition of systems into modular form, contrasting
both the stepwise refinement and information hiding techniques. The aim of this paper is to
present and analyse another technique for the decomposition of a system into modular form.
This technique is the analysis-synthesis approach to system or program design. We will also
attempt to show that a good modular design will allow for more flexible software
construction.

The basic principal of the analysis-synthesis approach as stated by Reed [1] in his software
engineering lecture series is quoted below.

"Given a collection of (related) functions on a collection of (related) data, there should exist a
set of primitive functions from which complete systems may be built."

Using the strategy we will outline in the following paragraphs, we will develop parts of a
small test system to demonstrate the analysis-synthesis principle, and contrast it some of the
other techniques of system decomposition. What follows is in fact a re-write of the case-
study by Reed in 1980 [5], with additional discussion.

The Analysis-Synthesis Approach

Our first task is to perform the initial system design. This involves identifying the functions
and subsystems that need to be developed to achieve the specified system functionality.
Once this is complete, we should then attempt to find what appear to be sensible
components in each identified module. By sensible components we mean look for a plausible
breakdown of tasks that each module is likely to perform. This only needs to be done at a
general level initially, since we will examine each component in more detail at a later stage.

The second part of our strategy is to utilise our initial breakdown, our sensible components,
to identify any components which are common across each module. These components could
possibly be routines that may be used throughout the system in some other modules, but not
necessarily all. It is these routines that will form the basis from which we will build the
system, and minimise the number of components required for construction.

Thirdly we analyse each component design, and make the identified common useable
components identical. This means that we need only support a single version of the identical
code across the system. Each identical component identified should then encompass the
functionality required by all programs or modules, and ensure their correct operation.

Example of Analysis-Synthesis

In the following example we are going to analyse the functions necessary to use and maintain

a linked list of nodes. All nodes in the list are ordered by some key, and also contain some
form of other data. The list is to be stored in some form of random access file whose physical
structure may be quite different to that of it's logical organisation. The list is to be ordered
such that for each node i, 1 <= i <= n where n represents the number of nodes currently
maintained in the list. It must also be true that ki relop ki+1 where "relop" represents any
binary relation which is in a total order.

We begin the design process by examining the operations which may be performed on the list
and giving a brief description of their actions. This list of operations has been tabulated
below.

Operation Description
INSERT Will place a record in it's correct place
DELETE Will remove a record from the list
FIND Will locate and print a records details
CHANGE Will alter a records data, key or both
PRINTALL Prints the file in key order

Other useful operations may be defined such as functions to create the file if it does not exist,
or a function to dump the file in record order.

The first step toward our design should begin with a graphical examination of each function if
possible. This will give us more of an insight into what we are trying to achieve, and help us
better understand the manipulations which will be applied to the list. It is important not
begin by implementing a single function as we choose incorrectly, and as a consequence could
incorrectly identify or specify some of the systems primitive components. We may also miss
our chance to minimise the number of functions or modules which need to be developed. The
graphical representations on the following page give us a clearer picture of what is required to
change the list for the insert, delete, and change of key operations.

Following our graphical analysis, we should now re-examine each of the listed functions and
include some statement eluding to error conditions which may arise during processing. This
just needs to be some form of written statement expressed in english, and establishing the
criterion under which our functions will operate. We will scrutinise our operations in greater
detail at a later stage. A list of function conditions follows.

Function Conditions

INSERT :-

We cannot perform an insertion if there is not a place to insert into the list. That is, there must
be place which satisfies ki relop "new" relop ki+1.

DELETE :-

We cannot delete a key from the list if the key we wish to delete does not exist.

FIND :-

We cannot find a key and print the node details if that key does not exist in the list.

CHANGE :-

We cannot change a key if the key does not exist in the list, or if there is no place for the new
key in the list.

Function Descriptions

The function conditions give us an idea about some of the restrictions which must be
considered during the design phase. Now we are in a position to make some form of verbal
description of each functions operation.

INSERT :- to insert a node into the list.

search for node with the corresponding key
if a place is found then
 link new node to key+1 node
 link key node to new node

DELETE :- to delete a node from the list.

search for node with the corresponding key
if node with required key is found then
 link key-1 node to key+1 node

FIND :- to find a node with a key value.

search for node with the corresponding key
if node with required key is found then
 print key and contents of the node

CHANGE :- to change a nodes key value.

search for nodes with key* value and key** value
if found node with key* value and
 place for node with key** value then
 link key* -1 node to key* +1 node
 link key* node to key** +1 node
 link key** node to key* node
 change key* value to key** value

Discovering Primitive Functions

By this stage we should have gathered enough information to begin recognising some of the
primitive functions used in our list operations. The first observation about the performed
actions notes the necessity for a linking operation. Both the insert and delete list operators
perform one or more linking operations. The change key action consists of a delete operation
followed by an insert operation. From this we conclude that linking must be a primitive

operation.

Notice that above we had an option to specify the change operation in terms of insert and
delete operations. This may have presented problems if a place for the changed key cannot be
found. We would then need the ability to be able to recover from the previously preformed
deletion.

If we examine the conditions applied to each function we find that our chief concerns are the
existence of a place in the list, or whether or not a node with a matching key value to that
sought can be found. That is, either there is a position in the list such that ki relop k* relop
ki+1 can be satisfied, or k* = ki can be satisfied. In each case we are performing basically the
same test, but with the required result being the only difference. Determination of these
conditions obviously involves a search of the list.

The Search Primitive

If we examine the search primitive in more detail, we find that if the list follows some kind of
order, there is no need to return to the beginning of the list to resume searching. In our first
optimisation step we can pass the starting point as a parameter to the search function. The
format of the call to the search function will then resemble that given below.

procedure search {keysought, startpt : in, node pointer : out}
if (search key relop current^.key) then
 finish searching

If we consider a single step search process as written above, we find are comparing the
current key to the search key passed as a parameter. The result of the comparison, and hence
our choice, depend upon the relation relop in use. The ordering of the keys is also important
if equality is to be included. The graphical representations of our operations listed previously
reveals that to satisfy the above condition such that the association will hold in all cases, we
require a second pointer indicating the predecessor to the current node. The current node will
be the node where the key establishing the relationship as true has been found. This also
implies that we need another parameter to be returned representing this predecessor to the
current node.

As a side note, the statements which advance the pointers during the search operation could
also be described as a primitive function. Writing the code fragment for the search routine,
including pointer advancement, reveals the following.

procedure search {k*, startpt : in, pred, current : out}
while not k* relop current^.key do begin
 pred = current
 current = current^.next
end

To investigate the usefulness of our newly defined primitive, we should consider the
requirements of the originally specified list operations. If we consider the insert operation,
and what is required from the search function during processing, our list of actions to be
performed would be as follows.

1) Check to see if the list is empty,
2) Obtain the first element if necessary,
3) Initialise both pred and current,
4) Find the key which satisfies k* relop current^.key,
5) Assume a place is found, and current points to this node,
6) Assume new represents the node to be inserted,
6) Link pred to new and new to current.

The assumption we are making with the above list of actions is that a place was successfully
found. This is an unsatisfactory supposition caused by the fact that no values indicating the
success of the operation are returned by the search function. The table below examines the
results required from the search function by each of the specified list operations.

Operation Search Result
INSERT Place Found
DELETE Key Found
FIND Key Found, Key not Found
CHANGE KEY Key Found, Place Found

The Linking Operation

Since it is now necessary for the search function to return a result, we may become aware of
situations where our search primitive may produce some erroneous results. This necessitates
the testing of some boundary conditions to verify that our search function behaves in the
correct manner. Analysing the insert operation once again, we need to consider cases such as
insertion at both the head, and tail of the list.

Examining the case of insertion at the tail of the list we find that the list end does actually
qualify as a "place found". We must however still analyse the impact on our pointer system
and the method of terminating the search. On reaching the end of the list, current points to
null, and pred points to the last node in the list. So no special case is required here since our
linking operation will append the new node to the end of the list regardless of whether a true
place was found. Having established that a special result is not necessary for the insert
operation, analysis of a similar type performed for the find operation reveals that a returned
result of "key not found" is necessary (the above table).

If we examine our linking operation and it's behaviour when inserting nodes at the head of the
list we find it will fail. This is due to the fact that current and pred are always assumed to be
distinct nodes which they are not. In this case it is really start which needs to be modified.
For the linking operation to succeed pred must point to a node. To overcome this we could
either introduce a header node, or initialise current and pred to be identical in the initial
instance. Header nodes may not always be practical due to both physical or relational
constraints, so we will use the latter, more elegant method. For the case of our insert
operation, the code will start to take the form of that given below.

search {k*, startpt; pred, current}
if pred <> start then
 linkin {new^.next, pred^.next, new}

else linkin {new^.next, start, new}

The linkin primitive will simply perform a pointer reshuffle to include the new node between
the current and previous nodes.

function linkin {newpt, predpt, new}
 newpt = predpt
 predpt = new

Here we do not need to worry about the case of equality in the search. If we now focus our
attention on the other functions to be implemented we find that delete can be described as
searching for a key, then linking it out of the current list of nodes.

search {k*, startpt; pred, current}
if key is found then
 if pred <> start then
 pred^.next = current^.next
 else start = pred^.next
return pred

The find operation is identical to delete but performs a different action.

search {k*, startpt; pred, current}
if key is found then
 display (key)

For the change operation we have two cases to consider. The case where the first key
precedes the second in the current relationship, and vice versa. Analysing what is needed to
perform this operation, we find that we require four pointers. These four pointers can be
picked up from two calls to the search routine, one for each key. The order in which the
searches are performed depends upon the order of the two keys with respect to the
relationship k* relop k** or k** relop K*.

The Search Primitive Refinement

Having defined our search routine to this level, we are still to make the final refinements
necessary to render it fully functional across the range of our specified list operations. These
refinements involve things like the actual use of the search procedure, and the search
parameters. The searching operation would be more efficient if it began from startpt, thus
saving some initialisation. The result parameter is currently undefined, and there is no test for
the end of the list. In the following code fragments we are going to look at the cases where the
relationships vary, and the differences for each case. The purpose of this is to attempt to
make them identical so they may be applied across the whole system or module. In the first
instance we will examine the case where relop involves equality.

procedure search {keysought, startpt :in, pred, curr : out}
foundres = notfound, curr = startpt
while not curr = null and not foundres = found do
 if keysought <= curr^.key then

 if keysought = curr^.key then
 foundres = found
 else begin
 pred = curr
 curr = curr^.next
 end
return

Note that in the above fragment there is always a place for the key regardless of whether it
was found or not. As previously stated, the exact requirement of the search function depends
on the relationship relop being used in the comparison. When the search terminates, we have
located the first instance where the relationship relop is satisfied. In this case the sought key
may or may not be equal to the required stopping point. It is interesting to note that outside
of the search routine we are not concerned with the nature of the relation. Instead we are
interested in three results, key found, key not found, and place found. The actions inside the
search however are dependant on the nature of the relation. We now analyse the code
fragment where the relationship relop does not involve equality.

procedure search {keysought, startpt : in, pred, curr : out}
curr = startpt
while not (curr = null or foundres = place, found) do begin
 if keysought < curr^.key then
 foundres = foundplace
 if keysought = curr^.key then
 foundres = found
 else begin
 pred = curr
 curr = curr^.next
 end
end
return

Comparing the two code fragments above we find they are equivalent. The only exception is
that we have called the results in one of these fragments not found instead of place found.
This may not always be true so we will need to revise the detail of the search for each
relationship relop with the aim of making them equivalent. What we have been able to
conclude is that if the list is ordered by some relation, then when the search halts, a target
may be found. If a target was not found then we still have a valid place for insertion. This
indicates we are only interested in two of three results. So found may or may not mean place
found. Now we are in a position to fully specify the search primitive.

Search Primitive Final Definition

The search function will scan a list of nodes looking for the node with the key value matching
that passed. The search will commence from the node pointed to by start. Termination occurs
when either the sought key is found, or if not found, a place in the list is found for it.
Separate indications of these two events should be returned. If the search terminates with
curr = startpt, pred is meaningless, otherwise curr points to the first item for which the
relation relop is true, and pred points to the predecessor of curr. The code fragment for the

search will then have the below form with relop being substituted for the relation of the
designers choice. The result parameter has been included in the following fragment.

SEARCH :-

procedure search {key, start :in; pred, curr, result : out}
result = place found, curr = start
while not (curr = null or result = found) do begin
 if key relop curr^.key then
 result = place
 if key = curr^.key then
 result = found
 if result <> found, place begin
 pred = curr
 curr = curr^.next
 end
end
return

Review of the Process

A review of the process to this point reveals the following. We began with the specification
of a linked list of nodes, and a set of operations which may be applied to the list. We
examined these operations graphically to obtain a better understanding of their actions in
terms of the list. This examination then yielded the set of conditions which must be satisfied
for the successful execution of each operation. From this we were able to form a verbal
definition of the functionality we required from each operation. These function descriptions
allowed us to begin discovering our primitive components which will constitute the list
operations.

The search primitive was chosen for further investigation. We proceeded to define it's
operation by specifying code fragments and analysing functionality with respect to the
specified list processing operations. We were able to establish requirements of the search in
relation to the nodes tracked, the parameters it must be passed, and the results that need to be
returned. Once this was completed we would have a useful common useable component. The
linking operation was also examined along with it's behaviour under boundary conditions such
as insertions at the head or tail of the list.

We were then able to compare the search code fragments, analyse their behaviour under
different relational conditions, and highlight the differences. Once these differences were
identified we could then attempt to make the code fragments identical for each of the
relations. Then we could finally specify the search primitive.

To follow on from this point we must perform the above actions in detail for each primitive
component of the system that is common useable. Having completed this, we may then
specify or implement our list operations in terms of these primitive components. After initial
implementation we may then return and simplify these routines if this is necessary. The code
for some of our list operations will resemble that given below.

INSERT :-

procedure insert(keysought, start, begin, resultab)
begin { Find a place for the insertion }
 search(start, keysought, pred, curr, result)
 if resultab["search", result] = foundplace then begin
 get_free_rec(new)
 if curr <> start then
 linkin(new^.next,pred^.next, curr^.next)
 else linkin(new^.next, start, curr^.next)
 end else logerr("No place for key")
end {procedure}

DELETE :-

procedure delete(start, keysought)
begin
 search(start, keysought, pred, curr, result)
 if result = found then begin
 if curr <> start then
 link(pred^.next, curr^.next)
 else link(start, curr^.next)
 reclaim(curr)
 end else logerr("Record not found")
end

Note that in the previous examples resultab is a table lookup for the type of search we are
performing. That is, whether equality is included or not.

Analysis of the Method

In his paper of 1990, Hoffman [4] specified some criteria which could be used for the
formalisation of specification of module interfaces. While these criterion were specified for
module interfaces using an information hiding decomposition strategy, I believe many are still
relevant for the analysis-synthesis approach. Indeed many of these practices should be
employed for system design in general. Hoffman stated the following characteristics for
module interfaces to which their applicability to analysis-synthesis is contrasted.

Consistency: This is essential in almost all aspects of design regardless of the method
employed. eg. naming conventions etc.

Essential: States that interfaces should not have needless features. In fact analysis-synthesis
ensures a minimal set of functions offering non-duplicated services to the system.

Minimal: All independent features are also separated which satisfies the minimality criteria.
Analysis-Synthesis goes a step further and combines similar features if possible.

Generality: All operations are designed in such a way that they are as general as possible. The
design of the search function and the consideration of the relational aspects demonstrated

this. When common components are made identical this introduces a greater level of
generality.

Opaque: This criteria is more reserved for systems designed with information hiding as the
criteria for module breakdown. If we examine our search function more closely however, we
find that we have actually hidden a secret from our list manipulation routines. This secret has
been addressed continuously throughout the design process, and is in the nature of the
relation between the keys.

The analysis-synthesis technique is remarkably similar to the information hiding method
outlined by Parnas [3] in the results that are produced. By results it is meant that both
techniques produce systems whose design aspects are desirable according to the above
criterion. System functionality should be identical regardless of the design methodology
employed. Both produce flexible modular code whose modules do not necessarily correspond
to sequential steps in processing. Information hiding also seems to be more of a design only
technique with the method and design of programs left to the developers discression.

Analysis-synthesis on the other hand is a more flexible methodology which may be applied
to both system design and the programming of the system. There is no conscious decision to
encapsulate secrets although this may occur in the manner as outlined by our search function.
There is also no reason why an information hiding design strategy could not be implemented
with an analysis-synthesis approach to the programming of the system. This combination it
would appear incorporates all of the desirable features outlined by Hoffman [4] in both the
design and programming of any developed systems. It would undoubtedly be one of the more
flexible approaches.

Using a bottom up programming technique with a top down design method like stepwise
refinement could be usefully employed, although it would be more restrictive than some of
the other methods already mentioned. The sequential nature of the processing used by
stepwise refinement would seem to indicate that the number of common useable components
that we could identify would be less. Therefore a smaller amount of reusable code is available
to develop the system.

Another advantage of the analysis-synthesis approach, as with information hiding, is the
promotion of a hierarchical model. We find that we have developed a set of primitive
functions at the lowest level, and then use these functions to build other more complex
functions. This layered approach continues until the most complex function has been
implemented, and we have enough functions to implement our target system.

Conclusion

As a concluding note, we have tried to demonstrate the analysis-synthesis approach for a
small system where it was possible graphically visualise the operations that were to be
performed. This may not always be possible when developing for larger systems. What it
does indicate is that a detailed understanding of each modules operation, and the requirements
from each common component is needed. If this is achieved then analysis-synthesis offers an
efficient means to design, construct, and program systems in a most flexible manner.

References

1. Reed, K. "Lecture notes in Computer Science",
"Complex Example of Analysis-Synthesis".

2. Parnas, D.L. CACM Vol 15 No 5, May 1972 pp 330-336,
"A Technique for Software Module Specification with Examples".

3. Parnas, D.L. CACM Vol 15 No 12, Dec 1972 pp 1053-1058,
"On the Criteria used in Decomposing Systems into Modules".

4. Hoffman, D. IEEE-TSE Vol 16 No 5, May 1990 pp 537-542,
"On Criteria for Module Interfaces".

5. Reed, K. “Modularity-Processing on a linked list ordered" Lecture Notes, cs280 Software
Engineering I RMIT 1980

Appendix A - A Sample Program

Start

Start

K1
K2

K3
K4

K4
K3

K5
K2

K1

K*
New

Record 4
Record 2

Record 1
Record 5

Record 4
Record 2

Record 1
Record 4

Record 3

Start

K4
K5

K3
K2

K1
Record 4

Record 2
Record 1

Record 5
Record 3

Record X

(K**)

INSERT
node w

ith key K* (K2 relop K* relop K3)

DELETE
node w

ith key K* = K3

CHANGE
key of the node w

ith K* = K4 to K** (K2 relop K** relop K3)

(Deleted Link)

(Deleted Link)
(Deleted Link)

(Deleted Link)
(Deleted Link)

(Deleted Link)

