Testing, Testing, Testing.. an ACS Survey of Industry Practice
By Karl Reed, FACS,HLM, MSc,ARMIT

Director, Computer Systems and Software Engineering Board
Visiting Professor
School of Information Technology'
Bond University

A CONFLICT OF INTEREST!

Dear reader, firstly, I teach about testing and research in the area. I have a conflict
of interest, even beyond this. I am part of a research project, funded by ACS through its
SERCC, to undertake the Australian end of a regional survey of industry practice...
The purpose of this piece is, dear reader, to.. well, .. get you in!

1. To Test or Not to Test.. That is the Question

I am sitting in the gate lounge® of an unnamed international airport, and there is an
announcement. Yes, there are always announcements, but this one is different.. “Crash
and Burn Airlines”, she says, “are offering you a choice of aircraft for your flight to
Singapore today. The XX 380 on the left, like the YY 370 on the right, has computer
controlled fly-by-wire flight control systems. The ‘380’s systems have been thoroughly
tested, and the 370’s have been formally verified and proven correct, but, they have NOT
been tested, and this is the aircraft’s very first flight! The YY company believes its OK..
and, today, dear customers, you can chose which one you will fly on.”

If you think this is ridiculous, then you may have missed some of the most
important philosophical and practical arguments in our field. The problem looks
something like this. Pick any modest-sized program with a realistic input specification,
and try to construct a set of tests that will guarantee that the program meets the
specification. For even simple programs, many hundreds of test-cases will be produced
by any test-generation method you care to choose. But, if the program passes all your
tests, will this mean it is “correct”?

The answer is .. “you can’t be sure”. We will discuss the reasons for this
shortly. However, if you find an error (or fault), then its possible to say something
definite... “We found a fault (and hopefully corrected it)’”. This has lead to the oft
quoted aphorism, due to Edgar Dijkstra, “Testing cannot prove the absence of errors”
By implication, it can only prove their presence. This follows, it is argued, because test-
sets are limited in number (finite) while the set of all possible inputs for any real
program could extremely large (near infinite, consider a compiler). You can add to this
some serious doubts about the “true” (read “theoretical”) usefulness of test
generation techniques (more later), and the argument for arguing against testing can
seem to have more than academic validity!

If, as we shall see, testing is hard, and (as we shall see) unable to locate all the
errors which may exist in code, then why persist at all? Firstly, despite all the problems,
thorough testing DOES locate faults, whose removal increases a systems quality.
Secondly, testing need not be limited to simply the detection of faults, it should also
address usability issues. Thirdly, the test-sets that a system passes, if properly
constructed, can define an operational envelope. It would be possible to restrict the

! On leave from the Department of Computer Science and Computer Engineering, La Trobe
University, Bundoora 3083, Vic. Australia

% This is not original. I forget who first made this point, but is told repeatedly..

3 Of course there are four options here...One, fix the fault, Two add it the list of known bugs, Three
hope the users won’t notice,

Paoce 1

systems operation to this “envelope” of valid operations, even if they were a limited set
of the intended functionality. In mission-critical or safety-critical applications, this is
essential. In more mundane applications, it would certainly improve users effectiveness
and save them vast amounts of inconvenience. In addition, it is consistent with (rather, it
inverts) concepts of incremental delivery advocated by some methodologies (See for
example Pressman [Pres2001] p.35)

At this point, we need to draw attention to a quite old area of research in computer
science called “formal methods”. In practice, this is also known as “program
proving”, and the idea arose quite early in our field. The basic idea is that, since a
program is a series of transforms of data, then, if we can describe these transforms
mathematically in an appropriate system, then we should be able to regard each program
as a theorum which can be proved correct or incorrect. This field can be said to have
come of age when C.A.R. Hoare [Hoal969] published a series of proofs of algorithms
and analyses of problems that demonstrated that programs could indeed be “proved”.
Hoare built on earlier work by Floyd. (The paper [Elspal972] contains an excellent
survey area. Chapter 25 of Pressman contains a useful overview as well [Press2001]).
A few years later, Cliff Jones at the IBM labs in Vienna led an effort which produced
the Vienna Definition Method and Language.(See his much latter text book for an
excellent presentation [Jone1990])

Program proving has come a long way in the last 35 years. There have been a
large number of formal systems developed, and quite extensive experience in their use.
There have been significant claims of success. In addition, the approach is now often
applied to specifications of programs, where it can be used to prove that they are correct,
some thing generally easier than proving the program itself. From a teaching
perspective, one interesting example is that of Hall’s. This is based upon the real-life
case where the company Praxis used the formal system Z to specify an air-traffic
control system. Hall presented this as a tutorial at the 1994 ICSE in Sorrento. The
general flavour of the work can be seen from [Hall2002].

But, program proving suffers from the same problems that programming itself
does. Firstly, the proofs, like any mathematical proof, can contain errors (there are
famous examples of published program proofs containing errors. Secondl;/, the
methods require special training and skill, and some mathematical aptitude®.. and hence
are not widely used. In addition, it is difficult to formally verify or prove code
containing many of today’s favourite programming devices. For example, the critical
parts of the Boeing 777 digital flight control systems are reputed to be written in a
variant of Ada which has no dynamic storage allocation, and no generic packages. An
example of the kind of restrictions can be found in [Carr1990]. There has also been a
significant amount of work on the use of formal specifications to derive test cases, what
is called “specification based testing”. This is a little different from the Model
Checking mentioned later, and work by Phil Stocks and David Carrington provides a
useful example [Stock1996]).

Where formal® methods are concerned, a major debate washes across the
community. Claim and counter claim are made. Perhaps the best accessible discussion
of this can be found by Norman Fenton and Shari Pfleeger [Fent1997] in Shari
Pfleeger and Les Hatton’s paper of 1997 [Pfle1997]. The survey by Carre and Wing is
more optimistic[Carr1996].

* Of course, this raises an interesting aside. Engineers generally are expected to be proficient in calculus
and applied maths to fourth year university level. Why is it that IT community has such an abhorrence
of maths ?

> We should add that the University of Queensland’s Software Verification Research Centre is a world-
class contributer in this area . See http://svrc.it.uq.edu.au/

A middle ground was proposed by Harlan Mills in the mid 1980’s [Ling1994]
with the Clean-Room approach. This required a (semi) formal approach to design,
coupled with partial deliveries and statistical testing.. however, the
developer/programmers are not allowed to unit test their code! Instead, a test group
certified the code. Again the jury is out as to whether this is a practical way of building
software.

But the debate on “why test software” was given a nasty twist in 1987 when Vic
Basili (now a Visiting Professor at UNSW, and a collaborator of Ross Jeffery)
published a study that showed that errors could be found in programs more effectively
by reading them then testing them! Vic conducted three error locating experiments®
[Basil1987] on a single piece of software as follows:-

A/ Functional-testing-The first groups were given only the spec and the
executable, and allowed to execute the program, using equivalence class and boundary
value analysis,

B/ Structural-testing- The second groups were given the source code
and the spec, and allowed to execute the program with the goal of achieving 100%
statement coverage.

C/ Code-Reading- The third groups were NOT given the executable code,
but were given the source code and the spec, and could only read the program

The result was that the experienced cohort in group C/ was significantly more
effective in finding errors in the code than their counterparts in the other two! This may
not be surprising in terms of what we now know about inspections, however, it was not
an outcome that was expected at the time.

As we speak, however, formal methods are still an area for specialists, so, we come
back to testing...

2. What do we know about testing?

It turns out that we know quite a lot about testing. We have been doing if since the
inception of the computer field. Some of the things that we know from research and
practice, however, are rather disquieting. For example, it is known that in practice, it is
difficult and unusual to achieve 100% statement coverage or path coverage no matter
how carefully we generate input cases ([Basi1l987]). By the way, this fact was known
well before the problem of “code bloat” was raised by the practices of some large
microprocessor s/w developers. A seminal paper’ by Peter Herman [Herm1976],
published in the Australian computer Journal in 1976 described a testing tool based on
data-flow anaylsis, that measured “coverages” and proposed special steps to exercise
code that was not covered by normal means.

Over the years, a large number of testing techniques have evolved. Some have
extremely “formal” bases, and some are less formal. Approaches are divided into
“white-box” and “back-box”, according to whether they involved detailed analysis of
the code, or allow testers to work from the specification. Not all “back-box™ tests
deserve that title. Several (equivalence-class and boundary value) require the tester to
“..partition the input into equivalence classes that have the property that any test chosen
from such a class is equivalent to any other test in the class”. This means only one test
is needed instead of many. However, a little careful thought leads one to conclude that
for the tests to be equivalent in this way, then they must all execute the same code!

®T am simplifying things. There in fact more than three experiments, split across experienced
programmers and students.
" This paper is extraordinarily widely cited by serious researchers in data-flow testing

Inverting this, it becomes clear that if they don’t execute the same code, then they are not
equivalent! This suggests that the only way of being sure that the “partitions” are
correct is by looking at the code!

Some of the earliest work in area (see Richardson [Rich1985] for example),
indeed proposed that this was exactly how this (equivalence class) testing should be
performed. Recent work by T. Y . and his co-workers also proposes that these two
techniques “black box and white box™ need to be used jointly [Chen2000] However,
as often happens, the popularised version of the approach (see for example. Myers or
Pressman) ignores the hard bit. There has been considerable work in attempting to
automate the generation of test-cases based upon formalized specifications that are
“parsable” in some sense. One important approach which treads this path is that of
Model Checking[Atle1993]. “Model checking is a technique that relies on building a
finite model of a system and checking that a desired property holds for that model.
Roughly speaking, the check is performed as an exhautsive state space seaarch that is
gauranted to terminate since the model is finite” [Carr1996] This approach is now
supported by tools which are claimed to be effective in, well checking the models.

There seem to be two core elements of white box testing. The first is “coverage”
based, and the second is fault location. By coverage, we mean that a set of tests are
constructed, and their effectiveness gauged by stating that n% of some program feature
is exercised by them.(Zhu [Zhu1997] is a reasonable summary of the coverage topic).
For example, we could report that a particular test-set caused 90% of the statements to
be exercised. Obvious candidates for “coverage” are:-

A/ Statements

B/ Paths,

C/ Procedures/Classes

D/ Procedure Calls/Class/Method invocations
F/ Predicates

G/ Exception or event raising

H/ Exception or event interception

The list of features worth including in coverage testing is language dependant. For
example, a problem with languages such as Ada and the OO languages arise with
procedures/classes that can be invoked with a wide variety of parameter types. In most
older languages, it is possible to call a procedure ONLY with specific parameter types.
All this has changed with the OO languages.

Again, it can be difficult attach meaning to some of these coverage measures, and
the there has been considerable evolution in the “features” considered worth covering.
An interesting extension of applying data-flow issues to testing has been the “def-use”
coverage measures proposed by Weyuker and her co-workers [Fran1988]. The work
builds upon the very vast (and by our field rather ancient) body of knowledge in
optimising compilers, and is called “def®-use chaining”. The “formal” approach to
this rather is complex, but, the idea, as I encapsulate it for my students, is “In general,
all results computer in a program are intended to be used to produce a final outcome.
Hence, if one can find a path through a program which produces a final outcome,
AND there are unused variable assignments on that path, the there may be an error,
and you need to check that this is intentional”. Of course, we sometimes write

¥ A variable which has been assigned a value is said to have been “defined”.

“opportunistic” code, in which we computer partial results with the intention of
discarding them, but, we do need to be sure!

Achieving “all statement” coverage does not guarantee that all paths have been
covered, and, if all paths have been covered, this will not guarantee that all unused
“defs” will be found. The scale of the problem can be seen from a very readable paper
by Weiser and company [Weis1985]. A tutorial on the problems of testing, this paper
describes a number of difficulties of which the following are examples:-

The sub-expression problem is demonstrated by a statement of the kind:-

A:= B+(3-X)*(X-5). If we test this with inputs that cause X to either 3 or 5, the
right sub-expression will always be zero, and an error in either of
the factors is masked.

The multi-value problem could also be seen from this if, for the same
statement, if B was always 6 for the two test-cases above, the
value assigned to A is always 6.

Hence, code further down the execution path may not be
properly exercised, since it sees only one value for A.

Adding both sub-expression and muli-value to our coverage list makes life even
more interesting, and the Wieser et. al. Paper includes more.

. The use of OO creates additional problems for coverage and unit testing. Unit
testing is complicated by the fact that OO systems often consist of relatively small
classes whose functionality is inherited from elsewhere, so the true function of the class
only “exists” when it is executed in the appropriate hierarchy. Pressman devotes a
complete chapter to this subject (chap 23, [Pres2001]) and advocates that the testing of
OO systems should really begin by a detailed examination of the analysis and design
models, to ascertain the semantic context of classes under test. We have already
mentioned the problems created by the “genericity” of parameters in the absence of
strong typing (or rather, in the presence of type overloading). In practice, a class/method
(generic package, etc.) cannot be considered to have been tested unless it is exercised
with all the possible parameter types for which operations within it are valid. It is worth
pointing out the Paul Strooper at University of Queensland, has developed a special
purpose test harnesses to support OO testing[Hoff1998].

The “fault-location” arm of white-box testing is related, in my view, to debugging
and to “test-quality”. Once a fault or error (i.e. a deviation from the spec.) has been
identified, the cause must be found in the code. While of considerable interest, we do
not have space here to discuss more than two examples of this approach. In 1970, Ernie
Zimmer, a colleague working with an Australian team at Ericsson’s in Stockholm,
developed a test harnesses’ for the AKE130 family of computer controlled telephone
exchanges. The test-harness relied upon the fact the names of data-items, system and
call states, device types, switches and their controlling features, and operations, as
described in specifications, had almost completely one-to-one mappings onto the code.
In other words, if a particular device has a register, and that register had some setting
indicating that (say) a particular signal had been received, then all of these entities would
have (documented) symbolic names in the code. Ernie developed a language for
describing the expected behaviour of a system at the system-level, in terms of the values
expected in a series of data items, at a sequence of points traversed during execution.
The test-harness would check that indeed the values and points reached were correct,
and could re-set incorrect values to allow execution to continue. Test harnesses do not
seem to be as popular as they once were.

? The are other examples of test harnesses.

While I am not sure that the GUARD system was derived from the test-harness
concept directly, it can certainly be considered to be a generalisation. Developed by
Abramson and Sosic [So0si97] the system uses the data generated by a version known
to be a valid, working version of a program, and allows it to be compared with the same
data generated by a modified version, or one which was ported to another platform. The
interesting thing about GUARD is that it actually works by allowing both programs to
be run ‘simultaneously’, either on one machine, or on two, and it may need to
communicate over a network to make the comparisons. This has great value. GUARD is
currently used for testing evolving computationally intensive programs, however, it is
capable of being used to test, and debug, distributed systems.

Test-quality relates to having confidence that our tests would indeed find errors
with they were there. The “white-box” aspect of this deals with the process of seeding
of adding bugs to the code, and running the tests to see if they produce a detectable
fault. Again there has been significant research on this. Knight looks at the capiry of
tests to dect syntactic errors, [Knig1985] and Shooman explains how a statistical device
called the “fish pond test” can be used to estimate the number of errors in a program'’
[Shoo1983]). The most extreme approach is known as “code-based mutation testing”
[King1991] (to differentiate it from the more recent approach of “specification-based
mutation testing”, a black-box approach being investigated by my student, Tafline
Murnane [Murn01]. In this, every single statement in a program is “mutated”, one at a
time, and tests run for each single mutation to see whether the output differs from an
un-mutated version of the program. Each statement is mutated many times (generating
many runs), since each syntactic element of the statement must be replaced by another
(syntactically valid) element, until a mutant has been generated for all (of the
syntactically valid) elements known to the program. This approach is not genuinely
useful, since it generates large numbers of mutants and hence test-runs. However, it
requiresltlruly virtuostic skills in range of technologies to produce even vaguely usable
systems’ .

4. Operational Testing

Earlier, we mentioned the possibility of using a set of test results to define an
operational envelope for a system. We advocated constraining the system to that
envelope via a filter. The result would be, we hope, a system containing (working)
features that a customer wanted. However, it is also possible to invert this argument
(N.B. I am not arguing that this was how Musa developed his operational approach),
and to seek to test those functions which are used most often. John Musa[Musal1993]
proposed that one should collect data on the actual usage patterns of a systems (or,
develop them for a new system), and use them to construct tests which verified that the
functionality required to support this actually worked. To achieve this, one collects
statistical data on functional usage, and tests the most those most likely to be used first.
In fact, Musa’a system seem to suggest that one should ONLY test for those case that
appear in a usage profile. Since it is possible to deal with low-probability but critical
functions by weighting them accordingly, the objection that these may be overlooked is
dealt with. The approach is not dissimilar to that proposed for statistical testing in the
Cleanroom methodology, where test-sequences are generated randomly as sequences of
input events based upon frequency of occurrence of their constituents.

S. When to Stop Testing

1% As with many of these approaches, it is hard to find useful experimental evidence that this is
effective.

' Readers, as a “thought” exercise, might like to design a support system for this approach, without
cheating and looking at the refernce.

When should testing stop is a question fundamental of practical and theoretical
importance. In practice, we would like to know that either we have found all the faults in
a systems, or, that it is no-longer economic to continue trying to find (what we hope will
be minor) faults. To find all the faults in a system when we don’t how many there were
when it was delivered for testing, requires a means of estimating the number of faults
based the results of the early phases of testing. We may also be aided by historical data
which recorded the fault rates for particular teams producing similar software. The
practical importance lies in a producer’s need to control costs, pure and simple. The
theoretical importance lies in solving a complex statistical problem which has great
practical importance. There are a wide range of mathematical models, some rather
intractable, which can be used to estimate the number of faults to be found (the “fish
pond method has already been mentioned). Musa’s[Musal1990] two models, the
“basic” and the “logarithmic”, provide tractable estimates, although I have not seen
much recent work validating them. Ehrlich and company[Ehrl1993] present a rather
theoretical analysis, whose methods are not easy for practioners to use, but which
illustrate the mathematical sophistication involved.

From a pragmatic point of view, one can suggest a cyclic process which should be
followed as the number of faults detected (cumulatively) begins to plateau as testing
progresses. Check the test sets carefully, to ensure that they seem to have been
thoroughly constructed. In particular, check that any prescriptive methods are being
followed, and that the test-cases are reviewed to ensure that obvious'* erroneous input
has been included. If necessary, introduce new test-cases, and test some more. Else stop.
If one has historic data, or can use one of the techniques for estimating the number of
errors, then this should be done as well.

Implicit in this discussion is the possibility that a company may simply decide to
release some software even though there are known errors. The purists amongst us
would argue against this on the grounds that it is not good software engineering. Sadly,
my daily experience with the software I depend on in my work place, Mac 0S9.2,
Navigator 4.7, Acrobat 4 and 5, and three generations of Microsoft products) clearly
show that some suppliers consider their buggy products “good enough'*”. Currently,
there is (yet another) debate in which senior figures in the Software Engineering
community have become proponents of the “good enough” software movement. Each
company, in the current I'T climate, is making is own judgments here, balancing legal
liabilities against product development cost against reputation and market penetration.
The inevitable result will be that products will contain known errors.

We have already referred to the possibility of creating an “operational envelope” ,
a filter, which restricts the product to those inputs which it is known to process
correctly......

Ultimately, being well informed on the art of testing, being aware of latest
developments, and above all, understanding that no matter how matter what, reducing the
inherent error rates in the programming process as at least as important as simply
testing. As Whitaker points out in his excellent summary of testing [WhitO1ref],
customers seem to report bugs, no matter how hard you test. Which suggests its much
harder than some of us think!

6. The regional Survey-the Australian Connection. Australia, you’re
testing in it!

"2 It is often the case that, even when using prescriptive methods, this is not easy to do.

'3 As a caveat, one needs to state that despite this, the achievements of the suppliers are considerable,
and the software impressive. It is possible that even the fault densities are also impressive. It is just
that they should be even better!

In a short article such as this, it is not possible to cover all the issues associated
with testing. Apart from the various types of testing that are possible, there is the
question of exactly how those in industry actually perform testing, and, how effective is
it? Anecdotal evidence is that more and more effort is being put into testing. How much
more? Well, the purpose of this article is to encourage you to participate in a survey of
software testing, so, the objective is to find out. The survey is being conducted by
Swinburne University of Technology and La Trobe University, and is being financially
supported by the ACS.

We do know that in recent years, software testing has been receiving increasing
attention by the Australian IT industry. From the large number of delegates attending
the first AsiaSTAR Conference held in Sydney last July and the popular demand of
software testing training courses, there is little doubt that software testing has emerged
as a specialised profession in the contemporary IT industry.

The proposed study will be based on a survey using a questionnaire intended to
measure several key aspects of software testing practices in the Australian IT industry,
such as the extent to which software testing practices have been adopted by
organizations in Australia, and the subsequent benefits and related problems that have
followed as a result of adopting these practices. The aim is to provide a clear indication
of future trends and demands in the following areas of software testing:

* Industry practice
* Education and training
* Research.

Parallel research, using the same methodology, is being conducted by
collaborators in South East Asian countries. Since the focus is wholly on industrial
practice, one outcome of the research should be the identification of best practice that
may enable the Australian software industry to develop competitive advantage.

The questions are designed to gather information from software testing
practitioners and management in the areas of software testing techniques, automated
tools, training and education, standards and external consultancy. Hypotheses will be
tested against the collected data to derive measures and trends for the current and future
software testing industry in Australia. For the survey to be effective, we need responses
from a large number of software developers, whether they are heavily engaged in testing
or not. The survey team is..

Doug. Grant, Swinburne Univ. Tech, Principal Investigator,
T. Y. Chen, and S. Ng, Swinburne Univ. Tech, Principal Investigator
T. Murnane and K. Reed, La Trobe University.

Companies interested in participating should contact the Survey Coordinator,

Dr. Sebastian Ng.

School of Information Technology
Swinburne University of Technology
John St.

HAWTHORN, VIC

Email:- sng@it.swin.edu.au

Ph:- +61 (0) 3 9214 8666

7. Conclusion and Acknowledgements

It has not been possible to deal with important current issues such as web-
application and script-based testing in this article. The references have chosen for their
relevance and accessibility, however, they may not always be the best on the topic
concerned. The author gratefully acknowledges input and assistance from Phil Stokes
(Bond University) and Tafline Murnane (La Trobe) who proofed the drafts, and
provided some key references, and Dave Abramson (Monash), and Paul Strooper
(University of Queensland). In the end, however, any errors of fact and sins of omission
are the responsibility of the author.

8. Refs
[Atle1993]

[Basi1984]

[Basi1987]

[Carr1990]

[Chen2000]

[Clar1996]

[Ehr11993]

[Elsp1972]

[Fent1997]

[Fran1988]

[Herm1976]

Atlee,J.M. and Gannon, M State-Based Model Checking of
Event-Driven System Requirements IEEE trans. On Software
Engineering, Vol 19 No 1, January 1993 pp24-40

Basili, V. R. and Ramsey, G.. Structural coverage of functional
testing. Tech. Rep. TR- 1442, Department of Computer Science,
University of Maryland at College Park, Sept. 1984

Victor R. Basili and Richard Selby, Comparing the Effectiveness
of Software Testing Strategies, IEEE Transactions on Software
Engineering, pp 1278-1296, December 1987.

Bernard Carré , Jonathan Garnsworthy SPARK —an
annotated Ada subset for safety-critical programming
Proceedings of the conference on TRI-ADA '90 December 1990

Chen, T.Y, Tang, S.F, Poon, P. L. and Yu, Y. T White on Black: A
White-Box Approach to Selectinbg Black-Box-Generated Test
Cases Proceedings of the First Asian Pacific Conference on
Quality Software, IEEE Computer Society, Hong Kong 2000

Edmund M. Clarke , Jeannette M. Wing Formal Mathods :
State of the Art and Future Directions ACM Computing Surveys
December 1996 Volume 28 Issue 4

W Ehrlich, B Prasanna, J Stampfel, J] Wu, “Determining the
Cost of Stop-Test Decision”, IEEE Software, March 1993,
Pages 33-42.

Elspas, B., Levitt, K. N., Waldinger, R. J. and Waksman, A An
Assessment of Techniques for Proving Program Correctness
ACM Computing Surveys, Vol. 4, No. 2, June 1972, pp. 97-147

Fenton,N and Pfleeger, S.L. Do Formal methods Always
Deliver? Side-bar in [Pfle1997]

P G Frankl, E J Weyuker, “An Applicable Family of Data Flow
Testing Criteria”, IEEE Transactions on SW Eng., Vol 14,
No.10, October 1988, Pages 1483-1498.

P M Herman, “A Data Flow Analysis Approach to Program
Testing”, The Australian Computer Journal, Vol 8, No.3,
November 1976, Pages 92-96.

[Hall96]

[Hoa96]

[Hoff1998]

[Jone1990]

[King1991]

[Knig1985]

[Ling94]

[MurnO1]

[Musal990]

[Musal993]

[Pfle1997]

[Rich1985]

[Shoo1983]

[So0si97]

[Stock1996]

Hall, A Using Formal Methods to Develop an ATC Information
System 1EEE Software, Mar 1996, pp. 66-76.

Hoare, C. A. R. (1969). “An Axiomatic Basis for Computer
Programming.” Communications of the ACM 12(10): pp. 576-
580,583.

Hoffman, D.M. and Strooper, P.A. ClassBench: A Methodology
and Framework for Automated Class Testing In Testing Object-
Oriented Software, Kung, D.C. and Hsia, P. and Gao, J. (ed), pg
152-176, IEEE Computer Society, 1998.

Jones, C.B. Systematic Software using VDM 2"* ed., Prentice
Hall, 1990

King, K N, Offut, A Jefferson, “A Fortran Language System for
Mutation-based Software Testing” Software - Practice and
Experience, Vol. 21 (7), July 1991, Pages 685-718.

Knight, J. C. and Amman, P. E. An experimental evaluation of
simple methods for seeding program errors Proc. 8"
International Conference on Software Engineering, London,
1985, pp. 337-342

Linger, R.C. (1994) " Cleanroom Process Model" IEEE
Software (May 1994) Vol. 11 No. 2 pp.50-58

Murnane, T and Reed, K On the Effectiveness of Mutation
Analysis as a Black Box Testing Technique Proceedings of the
Australian Software Engineering, Conference Canberra, ieee
press, August 2001

Musa, J.D., Iannino, A. and Okumoto (1990) Software
Reliability, Professional Edition, McGraw-Hill Software
Engineering Series.

J D Musa, “Operational Profiles in Software-Reliability
Engineering”, IEEE Software, March 1993, Pages 14-32.

Pfleeger, S.L and Hatton, L Investigating the Influence of Formal
Methods leee-Cs Software Vol 13 February 1997 pp 33-43

Richardsom, D. J. and Clarke, L. A. Partition Analysis: A
Method Combining Testing and Verification 1EEE Transactions
on Software Engineering, Vol. SE-11, no. 12, December 1985,
pages 1477 — 1985

Shooman, M. Software Engineering: Design, Reliability and
Management, McGraw-Hill, 1983.

Sosic, R. and Abramson, D. A. Guard: A Relative Debugger,
Software Practice and Experience, Vol 27(2), pp 185 — 206 (Feb
1997)

Stocks, P. and Carrington, D. A Framework for Specification-
Based Testing IEEE Transactions on Software Engineering, Vol.
22 No. 11, November 1996 pp777-793

[Weis1985]

[Whit2001]

[Zhu1997]

Weiser, M D, Gannon, J D, McMullin, P R,“Comparison of
Structural Test Coverage Metrics”, IEEE Software, March 1985,
Pages 80 - 85.

Whitaker, J what is software testing? and why is it so hard? ieee
software january/february 2001 pp 70-79

Zhu, H., Hall, P. A. V. and May, J. H. R. Software unit test
coverage and adequacy ACM Computing Surveys December
1997 Volume 29 Issue 4

