

AAITP April 1994 TR029 Page 1

Extending Visual Programming:

Graphical Component Based Design

TR029

by

Jason Baragry & Karl Reed

Amdahl Australian Intelligent Tools Programme

Dept of Computer Science and Computer

Engineering

La Trobe University, Bundoora

Victoria, Australia 3083

AAITP April 1994 TR029 Page 2

INDEX

 Abstract 3

1. Introduction 4

1.1 Limitations of Software Diagramming
 Techniques 4
1.2 Towards a Graphical Component Based 5
 Approach to Software Development

2. Diagramming Techniques and Methods
 in Software Development 7

2.1 Design Level Diagrams 7
2.2 Visual Languages 8

3. A Graphical Component Based Design 10
 Approach to Software Development

4. A Component Based Development 12
 Approach to Huron Systems

5. Conclusion 19

6. References 20

AAITP April 1994 TR029 Page 3

Abstract

 This paper argues that a major weakness in the software development process

is the absence of a coherent Graphical Component Based Design
methodology. We examine existing, re-use oriented engineering design
approaches and conclude that a major feature on many of these is the
interaction between graphical process of design and the sets of pre-defined
components available. We also argue that, in general, diagrammatic
representation of a system is the system itself, since no further design work is
required to implement that system.1 This is so because the diagrams consist of
direct representations of the building blocks of that discipline. Software
design diagrams, on the other hand, represent abstract concepts such as
processes and states and arbitrarily chosen procedures, rather than actual
software components. It is suggested that this prevents designers from
constructing software diagrams in the same manner and with the same intent
and result as in other engineering disciplines. There are usually significant,
non-deterministic processes required to complete the implementation of a
software system given its final diagrams.

 The paper goes on to suggest that visual programming languages allow the

construction of diagrams which represent a completed design directly.
However, we propose that their low level of granularity be raised to allow
"larger" components to be represented. This, it is proposed, will lead to a
Graphical Component Based Design methodology for software, combining
the cognitive advantages of visual programming with the economic and
efficiency advantages promised by software reuse. We demonstrate this,
developing a component based visual language for the proprietary
programming language Huron, Amdahl Corporation's rule-based
development vehicle for large-scale data intensive systems. The prototype
shows how a complete graphical development environment would provide
links between the component level of design (graphical components) and the
source code level of design (visual languages).

1 In making this observation, we accept there may be additional steps needed to
realise the design physically. For example, it may be necessary to produce a wiring
or lay-out diagram of an electronic circuit showing the physical juxtapositioning of
the components.

AAITP April 1994 TR029 Page 4

1. Introduction

1.1. Limitations of Software Diagramming Techniques.

 Diagramming techniques are an established part of software development,

having been in continuous use since the beginning of programming [1].
Despite the existence of a large number of diagramming systems, there has
been very little research directed at either measuring their effectiveness or
their relationship to diagramming techniques used in traditional engineering
disciplines.

 Diagramming forms an integral part of engineering design. Most designers

will think in terms of images rather than words, and many great designers
have also been great draftsman - Leonardo da Vinci being an outstanding case
[2]. There are a number of specialised types of drawings in the traditional
engineering disciplines which could be replaced by calculations (and are
usually checked by them), but often the calculation does not provide the all
important physical insights the drawing does.

 While the methods used to develop engineering systems are varied and are

still being investigated [3], the diagramming techniques used to represent the
designs during system development generally have an important property -
the components represented in the design diagram are either direct
representations or have a simple mapping to the components used to
implement the system in that engineering discipline. The design diagram is
therefore a direct representation of the implementation. As a consequence,
when a designer completes the diagrammatic design of a system, no further
design work is required to implement that system. At most, there may be an
implementation step which involves describing the physical interconnections
of components shown in a circuit diagram for instance. In many cases,
analysis techniques required to test the system and establish its integrity can
be applied to the design diagram using simulation techniques (cf. digital
electronics, automotive component testing, distribution systems) or are
already implied by the design process (cf. civil, mechanical engineering, etc.).
We argue that such diagrams could be considered to be 'executable' [4] in the
sense that they are complete representations of the system requiring no
further design activity.

 Software engineering is often compared with other engineering disciplines.

This reflects the widely held view that software development may become
more tractable if it becomes an engineering discipline. Amongst the particular
aspects of engineering practice which receive continuous attention are those
relating to the impact of components on design [5], and the nature of re-use in
design [6]. In our view, these two issues are linked, and, we now add to them
the issue of diagramming systems and their relationship to components, and
their impact on the design process.

AAITP April 1994 TR029 Page 5

 Graphical design constitutes a major part of engineering design. In civil,
mechanical, structural (etc) engineering, it performs two functions. It allows
the physical interconnections of components to be determined, and to be
described. In this (and other cases) the result is a representation of the final
artefact which shows directly its physical appearance. This must be
contrasted with electronic, electrical, and process control engineering in
which the complete design may be represented by a schematic diagram which
shows the interconnections between and the nature of components but not
always their actual physical arrangement. We believe traditional software
diagramming systems are similar in conceptual function to these, but that they
are not used in the same manner as traditional engineering systems. This is
due to their nature, the design methods with which they are used, and the
absence of predefined components.

 A major factor limiting the effectiveness of some software diagramming

systems is that the symbols used do not represent pre-defined components. In
some cases, (eg., data-flow-diagrams, state-charts and structure charts)
component-based design could be used while in others (eg. state-transition-
diagrams, petri-nets and Warnier-Orr diagrams), the very nature of the
concepts represented precludes this. While the existence and use of pre-
defined components may not be an inherent property of any particular
diagramming system, there is no doubt in our mind that their presence makes
a major contribution to their effectiveness. In fact, the existence of these
predefined components is a major attribute of engineering disciplines such as
electronics and helps determine the design strategies.

 Fundamental problems also exist in terms of the definition and properties of a

'component'2 and their impact on design. In some areas of engineering, the
use and influence of components is so persuasive that it could be said that
those disciplines use a "graphical component based approach" to system
development. We believe that this must be integrated into software
development techniques if they are to realise the same levels of component
reuse. Some clarification of this remark is required, since we are assuming
that some volume of functionality is encapsulated in the component. We do
this for the simple reason that if the definition of a 'component' is simple
enough to incorporate any of the building blocks the developer uses to design
a system, programming language constructs can be considered to be software
components. In fact they are analogous to the use of low-level components
such as resistors, capacitors etc in electronics and beams, reinforcing rods,
and concrete in civil engineering for example. There are clearly diagramming
systems in other engineering disciplines that operate at that level.

 In Section 2 we argue that visual languages can be considered to be the

beginnings of a graphical component based development approach for
software. The difference is software components have been traditionally stuck
at the level of the source code while the graphical-component-based design
engineering disciplines have developed components with a larger granularity.

2 This is part of on-going research in AAITP.

AAITP April 1994 TR029 Page 6

From this point of view, the visual languages are closer to the engineering
drawings used in the construction industry than in digital electronics. Our
research goal is to develop a graphical component based approaches to
software development which utilise pre-defined components that are of a
larger granularity than the programming level constructs we presently
develop with, coupled with a diagramming systems which allows other
attributes of the system structure to be visualised.

1.2. Towards a Graphical Component Based Approach to

Software Development

 This paper presents the concept of Graphical Component Based Design for

Software (GCBDS) as an evolutionary step from visual programming, which
incorporates the cognitive advantages of visual development with the
efficiency benefits achieved through the utilisation of large scale software
reuse. GCBDS is intended to be similar to the development approaches
employed by other engineering disciplines, such as electronic and mechanical
engineering, who utilise Graphical, Component-Based (GCBD) approaches to
system development and achieve high levels of component reuse.

AAITP April 1994 TR029 Page 7

2. Diagramming Techniques and Methods in

Software Development

 Diagramming techniques used in software development are simply the visual

manifestations of the components / concepts we manipulate at a particular
level of the prescribed development process. Using this basic definition there
are two broad categories into which software development diagram systems
can be classified3 : design level diagrams and visual languages.

2.1. Design Level Diagrams

 Traditional software development methods have emphasised a 'top-down'

approach to system design. These methods were adequate for producing
systems from scratch or for novice designers with no previous experience.
However, top-down approaches do not arrive at reusable components [7] nor
do they preserve the series of abstractions through which the developer
created the system [8]. The top-down approaches assume no systems have
been previously developed and no usable components exist above the
programming language constructs. Consequently these approaches
manipulate abstract concepts, such as processes, states and arbitrary
procedural entities, and refine these until the developer can implement these
abstract concepts using the assumed highest level implementation
components - programming language constructs.

 Graphical tools have been developed to represent these abstract concepts.

There are a large number of computer based tools which have allowed these
essentially paper-based methods to be handled by computer.4 However at no
stage are the graphical objects a direct representation of an implementation
component nor is there a simple mapping from the design diagram to the
'physical' implementation medium. Consequently, there is a discernible
cognitive gap between the design and implementation stages of software
development. This manifests itself in two ways. Firstly, the level of
abstraction between levels in a system description, and, in the absence of
prescriptive design procedures for moving from a higher level to another. The
information needed to bridge this gap between remains in the developers head
rather than being recorded in the system design / implementation diagrams5 ,
and the steps necessary to perform the transformations (from one level to
another) as loosely defined informal process. Consider, for example, the

3 Naturally, as soon as any classification scheme is mentioned someone will develop
or produce a technique which blurs the boundaries. The basic classification should be
able to be applied to most general software diagramming techniques.

4 Most common diagramming systems pre-date both CASE and SDE's.

5 Of course, a designer can record this information in the system's documentation but
this rarely happens.

AAITP April 1994 TR029 Page 8

following 'definition' of the point to which data-flow diagram processes
should be refined .

 "How long should levelling continue for? Generally, until a set of

processes that can be described by about one page of detailed process
specifications are reached" [9].

 This has led these design level diagramming techniques to be labelled as

merely documentation tools [10].

2.2. Visual Languages

 Although a concise definition of what is a visual language is hard to find, it is

generally agreed that it consists of the use of graphical notions, such as icons,
either exclusively or at least as a major component, in the specification of a
computer program.

 Visual languages differ from traditional software design level diagrams

because the graphical objects they manipulate are actual representations of
the components used to implement the system. In this regard they are similar
to the diagramming techniques of traditional engineering disciplines, ie., "no
additional design work is required to implement the system". The use of
visual languages to create software systems is increasing, especially in very
specific application domains. This can be seen in Glinert's books [11] [12].
Visual languages have not yet received wide acceptance for the development
of general purpose software systems. However, tools such as Prograph [13]
are gaining an increased utilisation and are promoting the potential benefits of
graphical development techniques over their textual counterparts6 . Despite
this, it has been suggested that visual languages suffer from two major
deficiencies which have stopped them being widely utilised [14]: (a) they
cause a lot of screen clutter, and (b) they do not scale up for use in the
development of general purpose, large-scale software systems. We believe
this is due to their failure to provide an environment which facilitates the
promotion, creation, and utilisation of larger granularity components.

 The "screen clutter" is likely to be due to the fact that the graphical

components used are often of a granularity close to that of programming
language statements. For instance, a visual language program which
represents an additional symbol in its own icon is obviously going to be
larger than its textual counterpart. Visual languages will be utilised because
of their cognitive advantages over textual methods when they begin to
represent components of a larger granularity than existing code.

 It has been previously stated that visual programming is a primitive, graphical

component based approach to design where the objects depicted in the visual
language are of a granularity similar to that of programming language

6 If the creation of a dedicated UseNet newsgroup, comp.lang.prograph, can be used a
measure ot this popularity or utilisation.

AAITP April 1994 TR029 Page 9

constructs. In order to provide a visual development environment for the
creation of general purpose, large-scale applications the visual language must
represent software components of a larger granularity than is currently
available. As traditional engineering disciplines have matured, the complexity
of the systems being produced has increased. The efficiency of the
discipline's development process has subsequently improved by increasing
the granularity of the components thereby reusing the knowledge gained in
producing the original systems. The diagramming techniques used in system
development merely represent the components used by the discipline
regardless of their granularity.

 Our view is that efficient diagramming techniques depend in part on the

existence of pre-defined components encapsulating some abstract, higher
level of functionality. (Higher than the atomic level of granularity, and
abstract in the sense that some level of reuse across applications is needed).
The problem is creation of these higher level components and the
standardisation of those components for use by other developers. There are
two impediments, as we have pointed out. The first is the absence of standard
module producing design strategies, the second is the absence of component
based design. Large scale reuse is sometimes achieved in well defined
problem domains, such as user interface development and operating system
interfaces, because it is possible to have well defined and universally
understood pieces of functionality. With a standard set of high level
functional components it has been seen how visual languages can be used in
the development of large scale applications in a limited problem domain. For
visual languages to be utilised for the development of large scale general
purpose software systems, a graphical component based approach to
development is required which incorporates a collection of pre-defined and
understood components which have a granularity larger than the traditional
programming language constructs.

AAITP April 1994 TR029 Page 10

3. A Graphical Component Based Design

Approach to Software Development

 We will now outline the issues involved in developing a Graphical

Component Based Design approach which is intended to make some of the
component based approaches used by traditional engineering disciplines
accessible to software designers. Our approach is to use graphical notations to
support a design process which uses predefined building blocks, accepted as
standard within some section of the discipline, instead of the arbitrary abstract
concepts yielded by current software methodologies. Our belief is that this
will result in significantly higher levels of reuse, at least at the lowest levels,
while improving the understandability (and hence the maintainability) of
systems. The design approach should also lead to reuse at higher levels of
functional abstraction.

 In what follows, we assert that the interconnection technology needed to join

components together already exists, either in the form of direct procedure
calls, or through the use of software busses and/or module interconnection
languages [5, 15, 16].

 The initial step in the design of large software systems is to break the problem

into manageable sections. The architecture level of design, as noted by Shaw
[17], may determine the major modules of the systems and their method of
communication regardless of the implementation medium. Ideally, this should
lead to a degree of design reuse since Shaw's architectures are composed of
very high level functional abstractions. Each module is subsequently designed
using a suitable methodology to allow implementation using a particular
programming language. It is claimed software designers need to develop an
engineering mindset in order to improve their development techniques [18].

 An engineering mindset is simply the method of creating systems by utilising

the component base of that engineering discipline. Given this definition, there
is a sense in which software developers already have an engineering mindset.
The difference is that other engineering fields maintain a progressive
improvement, utilisation, and standardisation of that component base. The
component base of traditional engineering disciplines has continued to
expand through the evolution of components and the invention of new
functionality [2].

 This process of improvement includes the identification and creation of new

functional elements. In some cases (cf electronics), this process is itself
technology driven where improved implementation techniques allow
increasingly large (standard) functional units to be 'componentised'.
Moreover, the process of locating, understanding, and utilising those
components is standard and has remained relatively unchanged component
data books. Alternatively, the component base used to develop general
purpose software systems has remained at the level of granularity of the

AAITP April 1994 TR029 Page 11

programming language construct with no design method for utilising any
component above this level. There have been well-defined problem domains
in which the granularity of the software components has progressed, for
instance Fortran math libraries and graphical user interface development kits7
. However, standard software development components which are applicable
across problem domains have not been widely adopted although the discipline
of software engineering accepts the need for large scale modules along with
the concepts of information hiding and encapsulation It is this progressive
improvement of usable, standard, well-defined, and understood engineering
components which is the difference between the software development
community and other engineering disciplines. To utilise a graphical
component based design approach which provides the benefits promised by
reuse with the cognitive advantages of visual development, methods must be
developed to utilise an evolving set of general purpose, well-defined, and
understood components.

 With the number of different programming languages currently available

(functional, procedural, object-orientated, hybrids, etc) it is often hard to
generalise about the development strategies used in the development of
general purpose software systems. It is possible to argue that object orientated
programming languages already offer some of the attributes of GCBD that we
are submitting. Indeed the notion of GCBD was initiated in the object
orientated community [19]. However, we believe that object orientated
programming languages are not the panacea to the problems software
development and that the principles of GCBD need to be applied to all
software development regardless of whether some of those attributes are
inherent in the development language or not.

 The authors have identified a number of attributes of traditional engineering

development practices which, we believe, must be incorporated into a
graphical component based approach to large scale software development.
Firstly, the developer must be able to manipulate graphical objects which
represent software components with a larger granularity than that of
programming language statements. Secondly, the tools used to manipulate
those components must allow connections between different types of high
level components. Thirdly, the development environment must allow the user
to easily locate these high level components and provide the designer with an
ability to determine the functionality of any component. This is analogous to
engineering data books which provide the engineer with a standard method of
locating components and also standard ways of modelling the functionality of
that component so the user can easily determine if it is suitable for the
required purpose.

7 There are numerous other examples of component kits in specific application
domains.

AAITP April 1994 TR029 Page 12

4. A Component Based Development Approach to
Huron Systems

 A prototype for a graphical component based development environment is

currently being developed as part of the AAITP HyperCASE project [20].
The prototype utilises the HyperCASE tools to implement the graphical
component based approach to developing systems using Amdahl
Corporation's Huron Rule Language [21].

AAITP April 1994 TR029 Page 13

The Concept of Huron

The goal of Huron is to provide the developer with a comprehensive, integrated
software approach to application development by facilitating system creation from
start to finish within one environment.

Huron provides an application prototyping method for transaction based processing
systems by comprising the following features: Internal database and links to external
databases, rules language, screen painter, report definer/generator, security
management and administration, as well as customisable design interfaces.

Huron Rule Language

The Rule Language is the programming language used to build application within the
Huron environment.

Rule Features

Rules are short, structures programming modules which facilitate condition
processing and branching through a simple Yes/No decision tree.

Order_Count(Region);
 Local Count;

Region > 0; | Y N

ForAll Customers where Orders > 0; | 1
 Count = Count + Customers.Orders; |
 End; |
Call EndMsg('There are ' || Count || ' Orders'); | 2
Call EndMsg('Department must be greater than 0'); | 1

On SecurityFail:
 Call EndMsq('Security Violation');

Definition Condition Y/N
Quadrant

Action
Number
Sequence

ActionException

When a rule is invoked, it evaluates the condition and processes the action statements
following the action number sequence of the appropriate column in the Y/N
Quadrant. For example, if Region > 0 the rule will execute the action statements
associated with the 'Y' column (the ForAll statement and the first Call statement). At
any time an exception can act as an interrupt and terminate the execution of the rule,
for instance if there is a database security problem.

As a result of their structure, Huron rules are small and function specific. This allows
them to be used in a very modular manner which promotes the chances of component
reuse.

AAITP April 1994 TR029 Page 14

Huron Data Access and Manipulation
The database (Table Data Store) is an entity-relationship DB which also provides a
number of additional facilities: event rules to allow other actions to be triggered as a
result of data access, validation of data to ensure the integrity of the DB, table
parameters to allow sets of data to be grouped together.

The TDS is stored as B+ trees with support for hashed storage of data rows.

The MetaStor is used to hold all information about the environment. For instance, the
MetaStor can hold information about other DBMS's which allows Huron to access
external databases.

Huron Workbench
The Huron Workbench contains utilities to create rules, tables, screens, and reports. It
also provides access to internal tables and remote databases. Reports can also be
generated from the Workbench.

Huron Operating Environment
Huron currently operates in the System 390 environment under MVS as well as under
UTS (Amdahl's mainframe implementation of Unix) and SCO Unix on PCs.

Huron: Concepts and Facilities. 1991, Amdahl Corporation:

 Initially, high level components were identified. Huron is a very modular

language with extremely structured rules. This property of the language made
it possible to easily identify three basic high level components: rules,
database tables, and user interface screens. These components could be
considered to be analogous to digital logic gates in electronic engineering.
An additional component was included into the system to represent Huron
subsystems. These represent a combination of many of the primitive
components. Again, an analogy can be made with the electronic engineering
discipline with the Huron subsystem component being similar to an VLSI
chip. The developer can think in terms of the functionality of the subsystem
during the design regardless of the combination of rules, tables, and screens
which actually comprise the component. Similarly an electronic engineer
thinks in terms of the functionality of the VLSI chip regardless of the
multitude of logic gates and other low-level components within the chip.

AAITP April 1994 TR029 Page 15

Figure 1: Huron Components

 These diagrams would be used in the same manner as an electronic engineer

uses schematic circuit diagrams. The diagram is comprised of a number of
different components with different levels of granularity. For instance rules,
table, and screens can be connected to each other or to Huron subsystems.
The resulting Huron 'schematic' diagram can be utilised in the same manner
as electronic schematic diagrams. The developer can fully understand how
the system works by viewing the schematic because the functionality of the
displayed components is understood. The developer is then given a good
representation of the overall system function by abstracting away the detail
of each components implementation. Software maintainers could also benefit
from the system because the implementation of the system can be viewed at a
higher level than that of the source code without resorting to reverse
engineering tools. That cognitive distance between the design and
implementation is reduced.

 To allow the user to locate usable components, the prototype has a Tool

Library which is categorised into the identified components: rules, tables,
screens, and subsystems. Further categories can be made to categorise the
components into problem domains and related functionality. In addition,
when the developer chooses a Huron component to include in the current
diagram, the components which it invokes as part of its implementation are
also automatically added to the diagram. Software reuse is limited by the fact
that developers only reuse software they are familiar with and there is an
enormous amount of diverse software which exists over an ever increasing
problem domain. In addition to the traditional component retrieval
capabilities such as keyword searching, it is envisaged that the Tool Library
will eventually use other aspects of HyperCASE to assist the designer by
using the current design reasoning information and system requirements to
suggest relevant, usable software components to the developer. This would

AAITP April 1994 TR029 Page 16

assist the designers by informing them of useful functionality without
attempting to automate the design process.

 Designers in traditional engineering disciplines have utilised component data

books and standard modelling techniques to understand how components
work and determine if they meet the required functionality. Software does
not have standard modelling techniques or general purpose data books8 . To
overcome this deficiency, ExDess utilises the HyperText facility of
HyperCASE to provide links between the software components and the next
level of their implementation. The developer can simply click on a Huron
rule, for example, and see how it is implemented (figure 2). Figure 2
represents the rule's implementation in text format although a visual language
has also been developed which could be utilised to depict the rule's
implementation. Moreover, Huron subsystem components have links to
diagrams which show how they are comprised of particular rules, tables, and
screens. This facility provides the user with the same features that standard
data books and modelling techniques have provided for designers in
traditional engineering disciplines.

8 There are data books for this purpose for selected software domains. eg: X windows
manual for GUI development and module libraries for operating system calls.
However, these are not available for general purpose software components.

AAITP April 1994 TR029 Page 17

Figure 2: HyperText Links to display the next level of detail.

AAITP April 1994 TR029 Page 18

 In Figure 2, the Huron schematic diagram represents the OrderCount rule and

the other Huron components its interacts with. At present, the HyperEDIT
tool [23] which is being used to implement the system only allows
connections to be specified between components. Consequently, the only
method of distinguishing between the different calls to the EndMsg routine is
through the use of flow labels (these have been hidden in the diagram to
reduce the size). However, extensions are currently being made to allow
connections between specific communication ports in each component. This
would allow connections between components to be more accurately
specified by using the physical connection points of the object to infer
knowledge about the type of connection. For example it would then be easier
to show the difference in Call statements for a normal action and on an
exception interrupt. Again, this would be a similar functionality to an
electronic schematic diagram where the connections occur between certain
pins on the components thereby providing the developer with an indication of
the purpose of the connection.

 In addition to locating and utilising components, the Huron prototype

provides the developer with the ability to create components which can be
used by other developers. The user can simply choose a number of
components in an existing diagram and 'componentise' this into a Huron
Subsystem component. For example, in Figure 3a the components in the
bottom half of the diagram have been identified as a useful subsystem which
should be 'componentised' into a reusable system. The user simply clicks on
those components and chooses the 'componentise' function from the menu
system. The tool then saves these components and their interconnections as a
separate diagram and represents them with a single Huron Subsystem
component in the original diagram (figure 3b). A HyperText link is
automatically inserted between the Huron Subsystem component and the
newly saved diagram which depicts its implementation.

AAITP April 1994 TR029 Page 19

Figure 3a: Huron Subsystem Creation

Figure 3b: Huron Subsystem Creation

 The first benefit of this tool is to allow developers to create components with

a higher level of granularity which can be reused by others. The second

AAITP April 1994 TR029 Page 20

benefit is the reduction in the size of the implementation diagram by utilising
abstraction and information hiding to reduce the complexity of the diagram.

AAITP April 1994 TR029 Page 21

5. Conclusion

 This work has been prompted by the realisation that diagramming systems

play a major role in engineering design. The extent of this role varies from
discipline to discipline in that the diagramming systems either support the
design process by representing its results, or they are actually part of the
design process itself. In all cases, as we have pointed out, engineering
diagrams are executable in the sense that the system described can be
constructed without further design. In some cases, (eg. civil, mechanical,
construction engineering), the diagrams are actually representations of the
physical systems, while in others (electrical, electronic) they show the
interconnections between the components.

 Our observations were that in general, software diagrams do not have this

property. Our suggestion that the "good" diagramming system seems to be a
derivative of component based re-use requires further elucidation. Like-wise
our assertion that software diagramming systems inhibit re-use by their very
nature. We concede that such a view is arguable. It is clear that data-flow
diagram process bubbles may be pre-defined modules, as may actions in a
state-transition diagram. Our point, ultimately, however, is that these
approaches are not capable of representing the final system directly in the
sense that we described.

 In addition, the observation that there exists a GCBD "mind-set", (due to the

first author), requires further investigation, as does the origin and raison
de'etre of GCBD's themselves. Any such investigation will show that the
concept of high-level diagrammatic representations of functional modules in
electronics and control systems existed well before these modules existed as
independent, reusable modules (see for example an early electronic design
handbook). In this sense, our extension of visual languages (proposed by the
first author), is a direct analogue of electronic design as it existed prior to the
advent of integrated circuits. In fact, it could be said that we are making a
technology driven step here, in much the same way, and integrating this with
diagramming standards in much the same way. The graphic design tools
which we are now able to develop preform the same integrating function that
advances in semi-conductor technology did in the late 1950's.

AAITP April 1994 TR029 Page 22

6. References

1. Martin and McClure, Diagramming Techniques for Analysts and
Programmers. .

2. French, M.J., Invention and Evolution: Design in Nature and Engineering.

1988, Cambridge University Press.

3. Rosenman, M.A., J.S. Gero, and M.L. Maher, Knowledge-Based Design

Research at the Key Centre of Design Computing. 1993, Key Centre of
Design Computing Department of Architectural and Design Science
University of Sydney:

4. Reed, K., Personal Communication with the Author. 1992,

5. Cox, B.J., Planning the Software Industrial Revolution. IEEE Software,

1990. (November): p. 25-33.

6. Krueger, C.W., Software Reuse. ACM Computing Surveys, 1992. 24(2): p.

131-183.

7. Nierstrasz, O., et al. Objects + Scripts = Applications. in Esprit 1991

Conference. 1991. Kluwer Academic Publishers.

8. Shaw, M., Abstraction Techniques in Modern Programming Languages.

IEEE Software, 1984. (Oct): p. 10-26.

9. Hawryszkiewycz, I.T., Introduction to Systems Analysis and Design. 2nd

ed. 1991, Prentice Hall.

10. Dillon, L.K., et al. Graphical Specifications for Concurrent Software

Systems in International Conference on Software Engineering. 1992.
World Congress Centre, Melbourne Australia:

11. Glinert, E.P., ed. Visual Programming Environments: Paradigms and

Systems. Vol. 1. 1990, IEEE Computer Society Press: Los Alamitos,
California.

12. Glinert, E.P., ed. Visual Programming Environments: Applications and

Issues. Vol. 2. 1990, IEEE Computer Society Press: Los Alamitos,
California.

13. Cox, P.T. and T. Pietrzkowski, Using a Pictorial Representation to

Combine Dataflow and Object-Orientation in a Language Independant
Programming Mechanism. Proceedings International Computer Science
Conference, 1988.: p. 695704.

AAITP April 1994 TR029 Page 23

14. Myers, B.A., Visual Programming, Programming by Example, and
Program Visualization: A Taxonomy. Conference Proceedings, CHI
'86: Human factors in Computing Systems. ACM., 1986.: p. 59-66.

15. Purtilo, J., R.T. Snodgrass, and A.L. Wolf, Software Business

Organization: Reference Model and Comparison of Two Existing
Systems. 1991, DARPA Module Interconnection Formalism Working
Group:

16. Beach, B.W. Connecting Software Components with Declarative Glue in

International Conference on Software Engineering. 1992. World
Congress Centre, Melbourne Australia: IEEE Computer Society Press.

17. Shaw, M., Large Scale Systems Require Higher-Level Abstraction.

Proceedings of Fifth International Workshop on Software Specification
and Design, IEEE Computer Society., 1989.: p. 143-146.

18. D'Ippolito, R.S. and K. Lee, Putting the Engineering into Software

Engineering. 1992,

19. Nierstrasz, O., S. Gibbs, and D. Tsichritzis, Component-Oriented

Software Development. Communications of the ACM, 1992.
(September): p. 160-165.

20. Cybulski, J.L. and K. Reed, A Hypertext Based Software Engineering

Environment. IEEE Software, 1992. (March): p. 62-68.

21. Amdahl, Huron Reference Manuals. Release 1.15, 1992, Amdahl

Corporation.

22. Amdahl, Huron: Concepts and Facilities. 1991, Amdahl Corporation:

23. Proestakis, A Diagram Editor Generation System. 1991, La Trobe

University:

