DETRACT: A DEsign TRACking Tool

TR028

by

Torab Torabi, Karl Reed

Amdahl Australian Intelligent Tools Program

Department of Computer Science and

Computer Engineering

La Trobe University

Bundoora, Victoria, Australia 3083
Abstract

1. Introduction
2. Representation
3. Design and Reasoning Repository
4. Recording
5. Navigation
6. User Query
7. Reasoning
8. Architecture
9. Support
10. Reflecting Decisions on Design
11. Conclusion
12. Bibliography
Abstract

This report is a review of the paper presented by G T Jayaputera and K E Cheng [50]. The report compares the Jayaputera's paper and his prototype, SoftEAM, with DETRACT [18] project implemented in AAITP. Finally we will discuss the extent to which each system would be able to help the designers during their development of a design.

1. Introduction

DETRACT, DEsign TRACking Tool, is part of HyperCase [*] project in AAITP. Our study of DETRACT has been extended to a Design Tracking and Reasoning Tool. DETRACT Model is designed to not only be able to record design decisions, but also to be able to reason about the decisions made and alternatives rejected. While Design Recording provides for a better design documentation, Replay of Design History, and support for Maintenance; Design Reasoning will provide for Design Consistency and Integrity, Designer's support for decision making, and Design Reusability. With above objective the design recording is carried out with respect to other important information in design life cycle.
2. Representation

The DETRACT model consists of the following artifacts and the relations among them:

- Design artifact: This is any kind of design document or object in design.
- Issue/Problem Artifact: This artifact represents an issue or problem relating to a design artifact.
- Decision Artifact: The Decision artifact represents a decision made regarding an issue.
- Alternative Artifact: This alternative decision could be chosen regarding an issue.
- Constraint artifact: This artifact represents any constraint relating to a design artifact.
- Goal artifact: This artifact represents a goal pertaining to a specific design artifact.
- Agenda Item: This is an issue regarding a design artifact which has been encountered, but decision making for the issue is postponed to the future in design process.

Therefore we consider 2 types of artifacts, Design artifact and Design Reasoning artifact. On the next page you can see an abstract representation of the Design Decision environment and the relationships between the design artifacts:
Figure 5: Abstract Model for Design Decision
3. Design and Reasoning Repository

For recording design and Reasoning information two separate repositories are considered. The design repository contains all information regarding the design. The reasoning repository consists of all information resulted from the relationships between artifacts and information pertaining to the reasoning artifacts.

The provision of separate repositories provides for logical separation of design documents and reasoning information. It also enables the designer to access the design information without disturbing reasoning repository. Information in Reasoning repository can also be accessed in a new design as a reusable data base or guidelines for decision making.
4. Recording

Using an event mechanism, every decision made by the designer during the design process is recorded in design decision artifact. Every Design Decision artifact is linked to the Issue artifact which "required" this decision to be made, and also linked with any artifact resulting from that Design Decision. These relations are automatically recorded in each artifact (see figure 6).

The information recorded in this process would provide a hierarchical and relational design history. This information is also augmented with further information provided by the designer.

Decisions tracked during design are categorised into different levels of hierarchies. Decisions recorded in one level are saved as a set of Decision Transactions. The decisions in a transaction are processed only when a decision belonging to the upper level, which this Transaction relates to it, is made. This would signal the end of decision making process in the lower level. This process will ensure that a unique instance of a specific decision would be present in a Decision Transaction. This type of processing of decisions is very important, otherwise the Design Decision Repository would be saturated with repetitive information.

This categorisation of decisions also provides the design history with well organised and structured information.
We divide decisions into two types of Implicit and Explicit. Implicit Decision occur and are recorded when the designer creates or refines a design artifact. Such a decision is recorded without designer's intervention. The instance would contain all the environment design information related to the decision. Explicit Decision is recorded when the designer makes a decision after he/she is prompted with possible alternatives for resolving an issue.
5. **Navigation**

Because the reasoning artifacts and the design artifacts are related together using various type of relations, it is possible to navigate to desired design artifact. The navigation of design artifacts provides a design history of the system. The DETRACT provides number of ways of navigating between reasoning and design artifacts.

Based on relations between the different artifacts of the design represented in figure x the following kinds of navigation is provided in the DETRACT:

- Within a set of artifacts of a specific type.
- To all artifacts immediately resulted from a specific artifact.
- To an artifacts where a specific artifact immediately resulted from it.
- To the index for a specific artifact
- Within different indexes
6. User query

The designer should be able to ask a question regarding the design decision he/she has made and to receive cross-referencing information regarding different artifacts or concepts in the design.

Type of queries the designer may ask can be categorised to the following groups:

- Ordering Design Decisions: Decisions can be ordered by different attribute of design decision such as: time, person, level of Design Life Cycle, artifacts they relate to, ...

- Finding Design Decisions: Design Decisions can be located by the same attributes mentioned earlier.

- Finding Design Artifacts: Different Design Artifacts can be located with the respect of their relations to each other and to Design Decision.

- Making Future Design Decisions: Agenda Items serve as a resource for answering queries regarding future decision making.

This information would provide the designer with a picture of design issues involved during different stages of the design and kind of actions was taken for issues. Thus providing the designer a better understanding of the design.
7. **Reasoning**

We believe that Reasoning regarding the design decision can be provided if design decision are recorded and relations between different artifacts of the design is retained. This reasoning would constitute a "justification" for individual decisions were made, why some alternative decisions were rejected, and how these decisions affected the design.

Recording justifications during the design also enables DETRACT to verify that design decision would not conflict with the design constraint and do satisfy the design goals.

During this process certain issues are postponed for decision making. Those issues are recorded as Agenda Items. Agenda Items would be given priority based on number of criterias such as stage of design, latest time for resolving an issue, ...
8. Architecture

DETRACT, Design Tracking and Reasoning Tool, is been implemented on Macintosh using HyperTalk Event-Based language.

Below is a schematic of the architecture of the DETRACT Showing its relation with different part of the system. In final implementation the DETRACT would be integrated with the HyperEdit, the graphical design editor of the AAITP.

![Figure 7: DETRACT System Architecture](image-url)
9. **Support**

Design reasoning sub-system provides a support environment for the designer. Some the functions provided by **system are:**

- Component Reuseability: Since the user can query to look for the type of decisions made, therefore he/she would know what functions have been designed or decided on. The designer, if necessary, can use the reusable components related to those decisions further down the design.

- Small-Scale Design Plan: Knowing the Agenda Items and priorities and other attributes of them, the designer can sort out a Small-Scale Dynamic Design Plan which would guide the designer for future activities.

- Design Integrity: The reasoning can cross check the design decision with the design Constraints. This facility would provide the design Integrity and consistency which is hard to provide in a large scale design.
10. Reflecting Decisions on Design

Decisions made during the design have a direct impact on present status of the design and also the future of design process. It is a valuable process to reflect the effect of design decision on relating design artifacts. The following three set of artifacts would directly be affected as a result of a design decision:

- Recent Design Artifact: The recent design artifact in process of creation or modification will be affected as a result of a decision made. For example when deciding which alternative indexing technique to be used, the selected technique specification/implementation will be added to the design artifact.

- Constraint Artifact: As a result of a design decision made, some constraints will be added to the design, an existing constraint artifact will be modified or a new one will be created.

- Goal Artifact: As a result of a design decision made, some goals or sub-goals may be removed or added to the design, an existing goal artifact will be modified or a new one will be created.
11. Conclusion

In DETRACT we introduced the concept of Decision Transactions. Decision Transactions not only provide for delta evaluation of design revisions, but also allows the designer to roll back to some point of previous design stage. Decisions Transaction concept also allows for unique copy of a decision in the design repository.

DETRACT provides different kinds of navigation between design artifacts and reasoning artifacts as mentioned in section 3.4. Recording the relationships between artifacts and the use of event handling in HyperTalk has provided a very smooth type of navigation between artifacts.

The provision of Relating design decisions to Alternatives, Constraints, Goals and Agenda Items enables DETRACT to reason about design decisions. The advantages of this provision is stated in more detail in sections 3.6 and 3.8.

User query sub-system in DETRACT provides the designer with different search and ordering facilities. In a large scale design and specially when the designer is working in a team, the above information can provide him with component reusability, design integrity and better understanding of the large design.

The provision of reflecting design decision to the design itself and to the reasoning artifacts in DETRACT has a very important significance. This feature would keep the design up to date with regarding the decisions made, it will allow for a consistent and non conflicting decision making environment. Simulation of alternative decision reflection on design will provide with different design spaces, therefore a different design scenarios can be simulated.
12. Bibliography

Dept. of Computer Science & Computer Engineering, La Trobe University, 1991.

