
On the Effectiveness of Mutation Analysis as a Black Box Testing Technique

Tafline Murnane
TATE Associates
Carlton Victoria

Australia
tmurnane@tate.com.au

Abstract

The technique of mutation testing, in which the
eflectiveness of tests is determined by creating variants of
a program in which statements are mutated, is well
known. Whilst of considerable theoretical interest the
technique requires costly tools and is computationally
expensive. Very large numbers of ‘mutants’ can be
generated for even simple programs.

More recently it has been proposed that the concept
be applied to specijkation based (black box) testing. The
proposal is to generate test cases by systematically
replacing data-items relevant to a particular part of a
specijkation with a data-item relevant to another. If the
specification is considered as generating a language that
describes the set of valid inputs then the mutation process
is intended to generate syntactically valid and invalid
statements. Irrespective of their ‘correctness’ in terms of
the specijkation, these can then be used to test a
program in the usual (black box) manner.

For this approach to have practical value it must
produce test cases that would not be generated by other
popular black box test generation approaches. This
paper reports a case study involving the application of
mutation based black box testing to two programs of
diflerent types. Test cases were also generated using
equivalence class testing and boundary value testing
approaches. The test cases from each method were
examined to judge the overlap and to assess the value of
the additional cases generated. It was found that less
than 20% of the mutation test cases for a data-vetting
program were generated by the other two methods, as
against 75% for a statistical analysis program. l%is
paper analyses these results and suggests classes of
specifcations for which mutation based test-case
generation may be efective.

1 Introduction

Testing software after it is completed remains an
important aspect of software quality assurance despite the
recent emphasis on the use of formal methods and
‘defect-free’ software development processes. As has
been widely stated, testing does not prove the absence of

0-7695-1254-2/01 $10.00 0 2001 IEEE
12

Associate Professor Karl Reed
Department of Computer Science

and Computer Engineering
La Trobe University Australia

kreed@cs.latrobe.edu.au

errors. However, for some classes of programs it is
possible in principle to define a ‘safe’ operational
envelope based upon the set of test cases that it processes
successfidly [l]. Further, clients will frequently write
contracts with acceptance testing clauses with the
objective of verifying that the software does indeed
perform as specified with the intention of taking legal
action if it does not. Pre-delivery testing by developers
can also provide critical data on the overall effectiveness
of the development cycle by identifying residual fault
rates.

Over time, a number of specification based (black
box or prescriptive) test generation procedures have
become popular and have been the subject of numerous
studies as to their effectiveness. Broadly speaking, these
provide a set of rules of varying detail and clarity that can
be applied to a specification to generate test cases.

Traditional mutation analysis is a testing technique
that was not originally intended for use with specification
based testing. In traditional mutation analysis, a single
fault is introduced into the program source code to create
a new program version called a ‘mutant.’ Tests are
created and are processed by the original and mutant
programs with the goal of causing each mutant to fail (i.e.
to produce output that differs from the non-mutant
program). The effectiveness of the program test set is
evaluated in terms of the number of mutants detected.

Budd and Gopal [2] found it was possible to apply
the concept of mutation analysis to specification based
testing. Rather than creating mutants from the program
source code they are created by mutating the program
specification.

In our proposal for mutation analysis, language
elements (terminal elements) of the specification are used
as mutation substitution elements. Each terminal element
is systematically substituted for every other terminal
element. A single element substitution produces one
mutant specification. A mutation test set is then
developed fiom the mutated specifications.

The goals of this research are:
1. to determine whether or not the mutant tests are

able to detect errors in programs and if so, is
there a class of specifications that would benefit
fiom this type of testing and,

2. whether this type of testing generates classes of
tests that are not produced by other popular
forms of black box testing and,

3. whether this type of testing produces small
numbers of program-critical tests.

In the case study reported [3], the effectiveness of
specification based mutation analysis was compared to
boundary value analysis and equivalence class testing. In
what follows, we summarise the case study and its results
and make suggestions of the classes of programs for
which this approach to testing would be effective.

2 Traditional Testing Techniques

2.1 Black Box Testing

The term ‘black box’ testing is used to describe tests
that are derived primarily from a program’s specification.
In principle, the internal program source code is not
considered. Test data derived from the specification is
used to systematically test the input and output behaviour
of the program. [4]. The goal is to generate a test set that
l l l y exercises the program’s functional requirements.
Types of testing in this category include equivalence class
testing, boundary value analysis, cause-effect graphing,
error guessing, model checking and random testing.

2.2 Equivalence Class Testing

Equivalence class testing is based upon the
assumption that a program’s input and output domains
can be partitioned into a finite number of (valid and
invalid) classes such that all cases in a single partition
exercise the same functionality or exhibit the same
behavior. Test cases are designed to test the input or
output domain partitions. Only one test case from each
partition is required, which reduces the number of test
cases necessary to achieve functional coverage [4]. The
success of this approach depends upon the tester being
able to identify partitions of the input and output spaces
for which, in reality, cause distinct sequences of program
source code to be executed [l].

Jorgensen [5] identified one problem with
equivalence partitioning. Often a specification does not
define the output for an invalid equivalence class. Tucker
[6] also noted that problems occur when the test data
chosen for an equivalence class does not represent that
partition in terms of the behaviour of the program
function that is being tested.

Hamlet and Taylor [7] state that ‘‘Partition testing can
be no better than the information that defines its sub-
domains.” If one input in an invalid equivalence class
causes a failure in the program then all other inputs in that
class must also cause a failure. If this is not the case then
the equivalence class is not a good representative of that
part of the program and thus the identification of
additional partitions may be required. Due to the nature of
this approach such problems may not be identified.

2.3 Boundary Value Analysis

Boundary value analysis is performed by creating
tests that exercise the edges of the input and output
classes identified in the specification. Test cases can be
derived fiom the ‘boundaries’ of equivalence classes.
Choices of boundary values include above, below and on
the boundary of the class.

One disadvantage with boundary value analysis is
that it is not as systematic as other prescriptive testing
techniques. This is due to the fact that it requires the
tester to identify the most extreme values inputs can take.
Jorgensen noted that it is this type of abstract thinking
that may allow a tester to improve the quality of the test
sets used [5].

2.4 White Box Testing

White box testing involves the examination and
testing of the program’s internal composition, Test data is
derived from examining the internal logic, branches and
paths of the source code [4]. The goal is either to reach
some coverage goal by testing and executing as many
paths, branches and statements or other source
characteristics as possible [8], or to ensure that certain
expressions, decisions, branches, paths or source-
attributes are exercised in particular a manner [9]. The
number of source-attributes and coverage measures is
language dependent and quite large (see for example Wu
et a1 [lo]).

White box and black box testing are complimentary
and when used together can help to check whether a
program conforms to its specification 161 (see for example
Ofi t t and Liu [1 lll).

Rapps and Weyuker [12] noted that as the input
domain of a program is generally very large, exhaustive
testing is often impractical. Even for a small program
containing a limited number of loops and branches,
executing every statement is usually infeasible. They
furthermore stated that ensuring all paths have been
traversed does not guarantee that all errors in the code
will have been detected, pointing for example to the
problems in detecting ‘def-use’ errors. This view is
supported by Weiser et a1 [9].

2.5 Traditional (Code-Based) Mutation Analysis

The main objective of traditional (code based)
mutation analysis is to determine the effectiveness of a
particular test suite. Faults are systematically introduced
into the program’s source code creating ‘flawed clones’
of the program called mutants. Each mutant has one
language element in a single statement of the original
program changed. The element substitution is based on a
set of operators called ‘mutation operators’ [lo].

A test case is designed for each mutant to try to detect
the ‘seeded’ error. If the output from the mutated and
non-mutated program under this test differs, then the test

O a t t and Liu did state that functional testing had several advantages
over structural testing.

13

has been successful in locating the mutant code and is
assumed to be capable of locating similar errors. The
mutant is ‘killed’ and is not executed again against other
test cases [13]. Conversely, if the behaviors of the two
programs are the same then the error was not detected and
the test is discarded. New tests are then designed to try to
detect the mutant code. In a complete mutation test all
possible mutants of a particular program are produced
and tested.

The mutation process may generate changes that
leave the mutant functionally equivalent to the original
program. This type of mutant should not be killed by any
given test case which ‘passes’ testing the original
program. The locating of these ‘equivalent mutants’ is
usually done by hand.

The mutation score is the ratio of the number of
killed mutants to the number of non-equivalent mutants
and is the measure of the adequacy of the test set. Of€utt
and Lee stated that a test set is ‘mutation-adequate’ if the
mutation score is 100% [14]. Generally, mutation scores
of 90% are dficult to reach and scores over 95% are
extremely difficult to achieve [ll]. The ultimate goal of
mutation analysis is to locate test cases which kill all non-
equivalent mutants. Test sets which achieve this are
referred to as “adequate relative to mutation” [13].

3 Specification Based Mutation Analysis

Specification based mutation analysis was first
suggested by Budd and Gopal in 1984 [2]. Their
approach involved mutating formal specifications whose
language was defined using predicate calculus. Input test
cases were generated by changing operators and
predicates of the specification. More recent studies
include the use of model checkers to automatically
generate specification mutation test sets using several
different types of mutation operators (see for example
Black et a1 [16] [17] [18]).

In our case, we treat the specification as a language in
which terminal sets can be mutated [3]. A specification
can be characterised as a set of language elements which
together describe the input and output behavior of a
program, in much the same way as the syntax and
semantics of the programming language determine valid
forms of a program. Each data-item in the specification
can be considered as a language or ‘terminal’ element.
Collections of terminal elements are referred to as
terminal sets. Production rules define how the terminal
elements can be combined.

Substituting one terminal element for another creates
one mutant specification. This process is repeated until
every terminal element has been substituted for every
other terminal element. Since each mutant contains one
substituted element it can be referred to as a ‘single-
defect’ mutant. ‘Double-defect’ mutants can be devised
by substituting two terminal elements at a time.
‘Production rule mutants’ could also be created by
mutating the production rules used to generate the input
cases.

The ‘mutation operator’ substitutes one terminal
element for another. A simple example is as follows. The

terminal set <terminallxtermina12Xtermaina13> could
create the mutant <termina12xtermina12xtermaina13> by
substituting the second terminal element for the first.

One test case is created from each mutant. Mutant
test cases are classified as either a ‘syntactically valid’ or
‘syntactically invalid’ input. A syntactically valid input
would make a program behave in a way that would be
expected from a non-mutant input. In an input of this
type, the terminal element that was substituted is
‘syntactically equivalent’ to the terminal element it
replaced.

The syntactically invalid class of inputs can be
decomposed into ‘correct’ and ‘incorrect’. A syntactically
invalid correct input is one that the program should and
does recognise as containing a syntactic error. A
syntactically invalid incorrect input is one that the
program should recognise as containing a syntactic error
but does not. This type of input may have located an
inadequacy or fault in the program.

Creating a set of double-defect mutants could result
in a more rigorous test set, as could production rule
mutation. However the number test cases generated could
be extremely large. Further, the consequences of the first
mutation may directly interfere and complicate the
implications of the second mutation, clouding the result of
the test.

For some specifications, mutation analysis may
produce a test set that appears to resemble a test set
produced by random testing. The difference is that
mutation analysis produces systematic test sets and is not
dependent on randomisation by the tester.

One characteristic that is a requirement of this type of
mutation analysis is that the specifications are written in a
manner that facilitates the mutation process. It is apparent
that some formal or semi-formal method is required
where each terminal element is clearly defined. In the
case study reported, the use of a semi-formal notation
satisfied that requirement.

A shortcoming of mutation analysis is the cost
involved in generating and executing test cases and
examining the results. It is proposed that this testing
technique would benefit greatly from automatic test case
generation.

4 Previous Studies on Specification Based
Mutation Analysis

Budd and Gopal’s [2] approach to specification based
mutation analysis involves producing specifications in
predicate calculus based upon the predicate structure of
the program under consideration. Their notation is chosen
so that the input-output relationships are clear. In
principle, the specification is mutated so that the new
version contains an expression which if true, constitutes
an illegal input. The expression should dBer from its
correct counterpart in that only one element is altered.
Special steps are taken to deal with quantifiers, and
relational operators may be mutated. An input test case is
then produced which meets the mutated specification (i.e.
makes it true).

14

Fabbri, Maldonado, Sugeta and Masiero [15]
examined the use of mutation analysis to validate
specifications presented as state charts, defining an
appropriate mutation operator set to be taken as a fault
model. A tool, ProtedST, was implemented to support
the validation of finite state machine models. The goals of
their research were to investigate ways of selecting useful
test sets and how to ensure that a specification and its
program had been thoroughly tested.

Black, Ammann and Majurski [16] experimented
with using a (low-level language) model checker called
‘Symbolic Model Version’ or S M V to automatically
generate complete specification based mutation test sets.
“Complete” test sets include inputs and expected results.
They used two types of mutation operators, creating both
valid and invalid test sets. The model checker was used to
produce counterexamples for each mutation operator,
where each counterexample was a mutant of the original
specification. They noted that their mutation operators
were only useful for specifications that were described as
finite models (within the context of a model checker).
Branch coverage analysis was used to examine the
usefulness of the test cases generated, finding that the
tests were “quite good, but not perfect.” The reported
advantages of using a model checker for specification
based mutation analysis was that the test case generation
was completely automatic, as was the detection of
equivalent mutants.

Ammann and Black [17] found that in order to make
mutation analysis with a model checker possible they had
to decompose specifications to lower language levels.
They investigated a way of reducing larger state machines
to sub-machines enabling these to be processed by model
checkers. This reduction process was referred to as “finite
focus.” Since model checkers can handle finite state
machines of no more than a few thousand states, the
specification must allow decomposition. Thus the
reduction of the specification’s state machine allowed
very large s o h a r e systems to have test cases generated
automatically. They proved that finite focus was a sound
reduction technique, producing smaller state machines
that were valid and creating a smaller mutation adequate
test set.

Black, O b and Yesha [18] examined a method
involving the use of the S M V model checker to
automatically generate complete mutation test sets ftom
formal specifications using a predefined set of mutation
operators. In order to perform the mutation testing, the
specification had to be in a form that was readable by
SMV. They focussed on redefining and comparing
different types of operators and then reducing the number

of mutation operators required for good test coverage.
They presented classes of operators that provided
Merent levels of coverage (up to 100’Yo) and numbers of
mutants created.

Black et al and Budd et al describe complex
specification mutation schemes involving conditional
logic which will inevitably be reflected in the processing
programs. We consider that in many cases the practical
advantages can be realised by merely permuting the input
specification. Therefore our method of mutation analysis
differs fiom these techniques in the following ways.

1. Only one mutation operator is required making
the process far more simple and practical.

2. If the terminal elements are defined then the
specification does not have to be changed to fit
some predefined format.
The more complex the input specification the
better the result of testing, for no increase in the
complexity of the method.

3.

5 The Case Studies and their Interpretation

The case study involved the comparison of boundary
value analysis and equivalence partitioning to
specification based mutation analysis [3]. The objective
of this comparison was to examine the size and nature of
the ‘overlap’ between the mutation analysis test set and
the boundary value and equivalence class test sets. Two
semi-formal specifications were used in this approach.
Their syntax used a combination of COBOL or PLA
syntax and Backus-Naur Form notation. Both were
programming assignments fiom Software Engineering
subjects of La Trobe University (see [19] and [20]).

5.1 The Address Parser Specification

The first specification defmes the input for an address
parser (data-vetting) program. The input to this program
is an address comprised of specific elements, shown in
Figure 1, The aim of the program is to parse an address
and if it is of a ‘correct’ format, write it to a file. If not the
program is to report which elements of the address are
incorrect. The symbols used in the specification are
explained in Table 1, while the results of testing are
outlined in Table 2. The complete specification included
the requirement of directional indicators, for example the
address 150 Main Road North Eltham 3095. In the
interests of limiting the test set, this variant was not
covered.

15

A standard address:
[{ UNIT }] Add& { , / } AdddA <street> A... <suburb> A... <postcode>.

FLAT

Number of Tests Created
Mutation Analysis Equivalence Class Testing Boundary Value Analysis

A special flat/unit address:
[{ UNIT >] Add& <streeth. . . <suburb>/\. . . <postcode>.

FLAT
RSD

%of Overlap with
Mutation Analysis

A country or care-of address:
[{ c/- 13 A... <stree P A . . . <suburbBA ... <postcode>.

c /o

Figure 1 Input elements of the address parser specification.

Table 1 Definition of specification notation. All other symbols are characters

Table 2 The results of testinu the address Darser Drouram.

Total I Passed I Failed I Total 1 Passed I Failed I Total I Passed I Failed I ECT 1 BVA
290 1 10 I 280 I 29 I 10 1 19 I 89 I 31 I 58 1 14.5 I 17.9

A requirement of the address parser program was that
if an invalid address was entered then the program has to
be capable of recognising the ‘incorrect’ element(s) and
output an appropriate message. This ability is illustrated
by test cases one to three of Table 3, which shows sample
data and the test methods capable of generating the test
cases. The standard address is used as an example in this
sample.

Conversely, the output generated by mutation test
cases four and five highlight a program fault which was
not found by boundary value or equivalence class testing.
The fault is that the program produced an output message
that did not correctly state which element of the address
was incorrect. This illustrates that due to the extreme
nature of some of the mutation tests generated, program
faults were detected which were not found by
conventional black box testing approaches.

16

d e 3 Sample test data and results of testing the address parser program.
Test Case Program Output Could be Method of Generation

d Generated
by

UNIT 3095 Main Number has too manv digits. MA Substitute vostcode for unit number.
Road Eltham 3095. I , Y

ECT I Invalid class of unit number.
BVA Upper boundary of unit number.

UNIT 99 Main Number has too few digits. BVA Lower boundary of unit number.
Road Eltham 3095. ECT Invalid class of unit number.
UNIT Test Main Number has too few digits. ECT Invalid class of unit number.
Road Eltham 3095.
UNIT C/o Main Number has too few digits. MA “Care-of’ address identifier
Road Eltham 3095. Space required after suburb.

Street not found.
Invalid suburb.

substituted into the unit number.

I Full stop not found.
UNIT 100 Clo I Space required after suburb. I MA I “Care-of’ address identifier
Eltham 3095. Street not found.

Full stop not found.
Invalid suburb.

substituted into the street name.

5.2 The Statistical Analysis Specification letter identifier. The elements of this specification are
listed in Figure 2. The overall results of testing this
specification are shown in Table 4. Sample test data and
results are shown in Table 5.

The second specification defines the input of a
statistical analysis program which computes the standard
deviation and average of values that are tagged by a one-

Batches of these letters and values are bracketed with the following records.
sbatch.. .<batchnoxeor>
and
ebatch.. .<batchnoxeor>

The last record in any collection of batches is:
lbatch.. .<eor>Jlbatch.. .<eof>

The records in each batch are of the following form:
<recor&: :=<lpart><rpartxeor>
<lpart>::=<null>lA.. .
<rp&: :=<letter>r\ccvalue>l<~&A<letter>A<value>
<letter>::= any letter chosen from the set [B-L, S-W, Z]
<value>::= any valid, non-floating point decimal value in the range [-99,991

1
Figure 2 Input elements of the statistical analysis specification.

17

Table 5 Sample test data and results of testing the statistical analysis
nrouram.

TestCase Program Behaviour Could be Method of Generation
* Generated

by
I 1 I sbatch20 I Programacceptstheinput as I MA I Substitute sbatch number for ebatch I

I sbatch sbatch
1 G-99
ebatch 20
sbatch ebatch
G -99
ebatch 20

Valid. number.
ECT
BVA

Valid class of rpart number.
Upper boundary of rpart number.
sbatch tag substituted into the sbatch
number.

Program outputs error message MT
stating that there was no sbatch
number found.
Program outputs error message MT ebatch tag substituted into sbatch
stating that there was no sbatch
number and the rpart and ebatch
tae: was not found.

number.

5.3 An Examination of the Results

In the specification for the address parser, few
terminal elements were syntactically equivalent.
Consequently, ftom the mutation test set produced the
program found only a small number of addresses that
were syntactically valid. For example the house number
could be substituted for the unidflat number without an
error being raised, as both were three digits long.
However if the house or unidflat numbers were swapped
with a text sentence such as the street name the program
found a syntactic error in the input. The element that was
the most interchangeable was the ‘space.’ One-space
markers could be swapped for any one-or-more space
markers without errors being detected in the input. The
reverse was not equivalent, however the space marker
could also be replaced for elements such as all of the
optional address elements.

It was found that there was 17.93% equivalence
between the mutation analysis and the boundary value
analysis test sets, and 14.48% between the mutation
analysis and the equivalence class test sets.

For the statistical program there was an extensive
overlap between the mutation analysis test set and the
boundary value and equivalence class test sets. For
example, all three testing methods located errors in inputs
involving a missing sbatch or ebatch tag and in inputs
containjng a letter or value outside of the specified range.
Another type of test that produced equivalencies was the
replacement of an element with the <null> element. When
replacing with the <null> element, the three test sets
produced equivalent results in most situations. Therefore
there was a large overlap in the tests ftom the three
methodologies.

A 75.96% equivalence was found between the
mutation analysis test set and the boundary value and
equivalence class test sets.

The testing process showed that although the
programs were returning error messages when invalid
inputs were entered, in many cases they were not
correctly stating which section of the input contained the
error. For the statistical program this inadequacy was
located by all three testing methodologies. However, for
the address parser program most mutation test cases were
able to detect these types of errors, whereas the majority
of the boundary value and equivalence class tests did not.

6 Mutation Testing.Amenable Specifications

In the results reported in the previous section, the
address parser specification produced a mutation test set
in which there was a modest overlap with the boundary
value analysis and equivalence class test sets (less than
20%), while the statistical program’s specification
produced a substantial overlap in the test sets (75%),

A closer examination of the two specifications
suggests that some specifications will be more amenable
to mutation based testing than others. While this issue is
the subject of future work, we can make some informal
comments that will be of practical guidance to
practitioners. Consider a simple specification of the
following form.

where each of the <sepi> = {sil,. . .,sa)
and each of the terminalj> = {tj,, ... ,tjm)

In general, the nature of the si. E <sepi> and the Gk E

<terminalj> will be such that it would be unlikely that
substituting some arbitrary f jkE <terminals> for <sep3>
would produce a test case that would have been generated
by either equivalence class testing or boundary value
analysis. However, we also need to consider the case of

18

substituting <terminat> for <terminall>, which
would be a valid mutation operation.

Constructing an equivalence class test requires that
there be some basis for dividing the terminal sets (or
combinations of them) to construct equivalence partitions.
We then choose one element fiom the partition as a test
case. If for some reason the intersection of the terminal
sets is non-null then we may have constructed a mutation
test by default. However if the terminal sets are distinct
then by definition, a valid equivalence class test cannot
choose an element fkom another terminal set. Whether or
not invalid equivalence class tests will generate cross-
terminal set substitutions depends upon how the terminal
set is extended to include illegal values.

In the case of boundary value tests, we point out that
if the sets are discrete and finite then the concept of
boundaries may have no practical meaning. If they are in
some sense continuous or are in a sequence, then
boundary values may be considered to exist. Alternatively
the boundary values may be stated explicitly. A typical
specification for such a terminal might be (without loss of
generality) as follows.

<terminali> ::= (R&N:ubi 5 R 5 Ibi}

where ub and lb are upper and lower boundaries
respectively.

In this case, if there are multiple terminal sets with
this definition and their intersection is non-null, then both
mutation analysis and boundary value and equivalence
class testing can generate test cases that will be identical.

7 Conclusions and Future Work

While specification based mutation analysis can
provide a tester with valuable information about the
correctness of program behaviour, it is clear that it would
not benefit all types of specifications. Future work will
include an examination of the feasibility of identifj4ng
specifications that will benefit from mutation analysis and
the development of mutation operators. Empirical
experimentation will determine whether there is a
statistical overlap between specification based mutation
analysis and other popular forms of black box testing. An
additional goal is to investigate whether specification
based mutation analysis is effective at producing
program-critical tests.

It is also clear that given an appropriate set of
(formal) production rules that specify a program’s input, a
test case generator can be constructed using standard
compiler writing techniques. It would then be possible,
given appropriate mutation operators, to generate mutant
test cases automatically. The simple substitution operator
used in the test cases would be straightforward.

Finally, the authors recognise that the approach taken
here has properties similar to random test case generation
and might generally be regarded as a particular case of
this approach.

Acknowledgements

We would like to acknowledge the contributions to
this paper of Mr. John Murnane of the Department of
Science and Mathematics Education, University of
Melbourne, Australia.

We also acknowledge the support of the Department
of Computer Science and Computer Engineering at La
Trobe University, including the work of Mark Santos,
whose use of this technique in a programming assignment
lead to our formalisations and to the case study reported
here.

Finally, we would like to acknowledge the support of
TATE Associates.

References

[11 Karl Reed, Software Reliability, Testing and Security Class
Lecture Notes. CSE31STM, subject of the Department of
Computer Science and Computer Engineering, La Trobe
University, Australia, 1998.

[2] Timothy A. Budd, Ajei S. Gopal. Program Testing by
Specification Mutation. Computer Language, vol. IO, no. I,
Great Britain, 1985, pp. 63-73.

[3] Tafline Mumane. The Application of Mutation Techniques
to Specifcation Testing. Honours Thesis, Department of
Computer Science and Computer Engineering, La Trobe
University, Australia, 1999.

[4] Glenford Myers. The Art of Software Testing. Wiley-
Interscience Publication, 1979.

[5] Paul Jorgesen. Software Testing: A Craftsman’s Approach.
Department of Computer Science and Information Systems,
Grand State University Allendale, Michigan and Software
Paradigms, Rockford, Michigan, CRC Press 1995.

[6] Allen Tucker, Robert Cupper, W. Bradley, Richard Epstein,
Charles Kelemen. Fundamentals of Computing ZZ. Abstractions,
Data Structures, and Large Sojiware Systems. McGraw-Hill
Inc, 1995.

[7] D. Hamlet, R Taylor. Partition Testing Does Not Inspire
Confidence. IEEE Transactions on Software Engineering, vol.
16, no. 12, December 1990, pp. 1402 - 141 1.

[8] Michael Dyer. The Cleanroom Approach to Quality
Software Development. John Wiley & Sons Inc, Canada, 1992.

[9] M. D. Weiser, J. D. Gannon, and P. R. McMullin.
Comparison of Structural Test Coverage Metrics ZEEE
SoJiware, March 1985, Pages 80 - 85.

19

[lo] Basili Wu and Karl Reed. A Structure Coverage Tool for
ADA Software Systems. Proceedings of the Joint Ada
Conference, Washington, D.C. (WADAS) March 1987.

[ll] A. offutt, S . Liu Generating Test Data from SOFL
Specifications. Preliminary draft yet to be published, written
April 1997.

[12] Sandra Rapps, Elaine J Weyuker. Selecting Software Test
Data Using Data Flow Information. ZEEE Transactions on
Software Engineering, vol. SE-1 1 no. 4 April 1985.

[13] A. offutt, J. Voas. Subsumption of Conditional Coverage
Techniques by Mutation Testing. Technical Report ISSE-TR-
96-01. 1996.

[14] A. O m , Stephan Lee. An Empirical Evaluation of Weak
Mutation. IEEE Transactions on Sof)ware Engineering, vol. 20,
no. 5, May 1994.

[15] S.C.P.F. Fabbri, J.C. Maldonado, J.C. Sugeta and P.C.
Masiero. Mutation Testing Applied to Validate Specifications
Based on Statecharts. International Symposium on
Software Reliability Engineering, Proceedings Los Alamitos:
IEEE Computer Society, Boca Raton, USA, pp. 210-219.

[16] Paul Am”, Paul Black, William Majurski. Using
Model Checking to Generate Tests from Specifications.
Proceedings of the 2“‘ IEEE Internutional Conference on
Formal Engineering Methods Brisbane Australia, December
1998, pp 46-54.

[17] Paul Am”, Paul Black. Abstracting Formal
Specifications to Generate Software Tests via Model Checking.
Proceedings of the 1gh Digital Avionics System Conference, St.
Louis Missouri, October 1999. IEEE vol. 2, section 10.4.6, pp
1-10.

[18] Paul Black, Vadim Okun, Yaacov Yesha Mutation
Operators for Specifications. ISth Annual Software Engineering
Conference, IEEE Computer Society, Grenoble, France,
September 2000, pp. 81-88.

[19] Karl Reed. CSE31STM Assignment Two. CSE31STM,
subject of Department of Computer Science and Computer
Engineering, Latrobe University, Australia 1998.

[20] Karl Reed. CSE32SRT Assignment Two. CSE32SRT,
subject of Department of Computer Science and Computer
Engineering, Latrobe University, Australia 1998.

20

