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Abstract 

The technique of mutation testing, in which the 
eflectiveness of tests is determined by creating variants of 
a program in which statements are mutated, is well 
known. Whilst of considerable theoretical interest the 
technique requires costly tools and is computationally 
expensive. Very large numbers of ‘mutants’ can be 
generated for even simple programs. 

More recently it has been proposed that the concept 
be applied to specijkation based (black box) testing. The 
proposal is to generate test cases by systematically 
replacing data-items relevant to a particular part of a 
specijkation with a data-item relevant to another. If the 
specification is considered as generating a language that 
describes the set of valid inputs then the mutation process 
is intended to generate syntactically valid and invalid 
statements. Irrespective of their ‘correctness’ in terms of 
the specijkation, these can then be used to test a 
program in the usual (black box) manner. 

For this approach to have practical value it must 
produce test cases that would not be generated by other 
popular black box test generation approaches. This 
paper reports a case study involving the application of 
mutation based black box testing to two programs of 
diflerent types. Test cases were also generated using 
equivalence class testing and boundary value testing 
approaches. The test cases from each method were 
examined to judge the overlap and to assess the value of 
the additional cases generated. It was found that less 
than 20% of the mutation test cases for a data-vetting 
program were generated by the other two methods, as 
against 75% for a statistical analysis program. l%is 
paper analyses these results and suggests classes of 
specifcations for which mutation based test-case 
generation may be efective. 

1 Introduction 

Testing software after it is completed remains an 
important aspect of software quality assurance despite the 
recent emphasis on the use of formal methods and 
‘defect-free’ software development processes. As has 
been widely stated, testing does not prove the absence of 
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errors. However, for some classes of programs it is 
possible in principle to define a ‘safe’ operational 
envelope based upon the set of test cases that it processes 
successfidly [l]. Further, clients will frequently write 
contracts with acceptance testing clauses with the 
objective of verifying that the software does indeed 
perform as specified with the intention of taking legal 
action if it does not. Pre-delivery testing by developers 
can also provide critical data on the overall effectiveness 
of the development cycle by identifying residual fault 
rates. 

Over time, a number of specification based (black 
box or prescriptive) test generation procedures have 
become popular and have been the subject of numerous 
studies as to their effectiveness. Broadly speaking, these 
provide a set of rules of varying detail and clarity that can 
be applied to a specification to generate test cases. 

Traditional mutation analysis is a testing technique 
that was not originally intended for use with specification 
based testing. In traditional mutation analysis, a single 
fault is introduced into the program source code to create 
a new program version called a ‘mutant.’ Tests are 
created and are processed by the original and mutant 
programs with the goal of causing each mutant to fail (i.e. 
to produce output that differs from the non-mutant 
program). The effectiveness of the program test set is 
evaluated in terms of the number of mutants detected. 

Budd and Gopal [2] found it was possible to apply 
the concept of mutation analysis to specification based 
testing. Rather than creating mutants from the program 
source code they are created by mutating the program 
specification. 

In our proposal for mutation analysis, language 
elements (terminal elements) of the specification are used 
as mutation substitution elements. Each terminal element 
is systematically substituted for every other terminal 
element. A single element substitution produces one 
mutant specification. A mutation test set is then 
developed fiom the mutated specifications. 

The goals of this research are: 
1. to determine whether or not the mutant tests are 

able to detect errors in programs and if so, is 
there a class of specifications that would benefit 
fiom this type of testing and, 



2. whether this type of testing generates classes of 
tests that are not produced by other popular 
forms of black box testing and, 

3. whether this type of testing produces small 
numbers of program-critical tests. 

In the case study reported [3], the effectiveness of 
specification based mutation analysis was compared to 
boundary value analysis and equivalence class testing. In 
what follows, we summarise the case study and its results 
and make suggestions of the classes of programs for 
which this approach to testing would be effective. 

2 Traditional Testing Techniques 

2.1 Black Box Testing 

The term ‘black box’ testing is used to describe tests 
that are derived primarily from a program’s specification. 
In principle, the internal program source code is not 
considered. Test data derived from the specification is 
used to systematically test the input and output behaviour 
of the program. [4]. The goal is to generate a test set that 
l l l y  exercises the program’s functional requirements. 
Types of testing in this category include equivalence class 
testing, boundary value analysis, cause-effect graphing, 
error guessing, model checking and random testing. 

2.2 Equivalence Class Testing 

Equivalence class testing is based upon the 
assumption that a program’s input and output domains 
can be partitioned into a finite number of (valid and 
invalid) classes such that all cases in a single partition 
exercise the same functionality or exhibit the same 
behavior. Test cases are designed to test the input or 
output domain partitions. Only one test case from each 
partition is required, which reduces the number of test 
cases necessary to achieve functional coverage [4]. The 
success of this approach depends upon the tester being 
able to identify partitions of the input and output spaces 
for which, in reality, cause distinct sequences of program 
source code to be executed [l]. 

Jorgensen [5] identified one problem with 
equivalence partitioning. Often a specification does not 
define the output for an invalid equivalence class. Tucker 
[6] also noted that problems occur when the test data 
chosen for an equivalence class does not represent that 
partition in terms of the behaviour of the program 
function that is being tested. 

Hamlet and Taylor [7] state that ‘‘Partition testing can 
be no better than the information that defines its sub- 
domains.” If one input in an invalid equivalence class 
causes a failure in the program then all other inputs in that 
class must also cause a failure. If this is not the case then 
the equivalence class is not a good representative of that 
part of the program and thus the identification of 
additional partitions may be required. Due to the nature of 
this approach such problems may not be identified. 

2.3 Boundary Value Analysis 

Boundary value analysis is performed by creating 
tests that exercise the edges of the input and output 
classes identified in the specification. Test cases can be 
derived fiom the ‘boundaries’ of equivalence classes. 
Choices of boundary values include above, below and on 
the boundary of the class. 

One disadvantage with boundary value analysis is 
that it is not as systematic as other prescriptive testing 
techniques. This is due to the fact that it requires the 
tester to identify the most extreme values inputs can take. 
Jorgensen noted that it is this type of abstract thinking 
that may allow a tester to improve the quality of the test 
sets used [5]. 

2.4 White Box Testing 

White box testing involves the examination and 
testing of the program’s internal composition, Test data is 
derived from examining the internal logic, branches and 
paths of the source code [4]. The goal is either to reach 
some coverage goal by testing and executing as many 
paths, branches and statements or other source 
characteristics as possible [8], or to ensure that certain 
expressions, decisions, branches, paths or source- 
attributes are exercised in particular a manner [9]. The 
number of source-attributes and coverage measures is 
language dependent and quite large (see for example Wu 
et a1 [lo]). 

White box and black box testing are complimentary 
and when used together can help to check whether a 
program conforms to its specification 161 (see for example 
Ofi t t  and Liu [ 1 lll). 

Rapps and Weyuker [12] noted that as the input 
domain of a program is generally very large, exhaustive 
testing is often impractical. Even for a small program 
containing a limited number of loops and branches, 
executing every statement is usually infeasible. They 
furthermore stated that ensuring all paths have been 
traversed does not guarantee that all errors in the code 
will have been detected, pointing for example to the 
problems in detecting ‘def-use’ errors. This view is 
supported by Weiser et a1 [9]. 

2.5 Traditional (Code-Based) Mutation Analysis 

The main objective of traditional (code based) 
mutation analysis is to determine the effectiveness of a 
particular test suite. Faults are systematically introduced 
into the program’s source code creating ‘flawed clones’ 
of the program called mutants. Each mutant has one 
language element in a single statement of the original 
program changed. The element substitution is based on a 
set of operators called ‘mutation operators’ [lo]. 

A test case is designed for each mutant to try to detect 
the ‘seeded’ error. If the output from the mutated and 
non-mutated program under this test differs, then the test 

O a t t  and Liu did state that functional testing had several advantages 
over structural testing. 
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has been successful in locating the mutant code and is 
assumed to be capable of locating similar errors. The 
mutant is ‘killed’ and is not executed again against other 
test cases [13]. Conversely, if the behaviors of the two 
programs are the same then the error was not detected and 
the test is discarded. New tests are then designed to try to 
detect the mutant code. In a complete mutation test all 
possible mutants of a particular program are produced 
and tested. 

The mutation process may generate changes that 
leave the mutant functionally equivalent to the original 
program. This type of mutant should not be killed by any 
given test case which ‘passes’ testing the original 
program. The locating of these ‘equivalent mutants’ is 
usually done by hand. 

The mutation score is the ratio of the number of 
killed mutants to the number of non-equivalent mutants 
and is the measure of the adequacy of the test set. Of€utt 
and Lee stated that a test set is ‘mutation-adequate’ if the 
mutation score is 100% [14]. Generally, mutation scores 
of 90% are dficult to reach and scores over 95% are 
extremely difficult to achieve [ll]. The ultimate goal of 
mutation analysis is to locate test cases which kill all non- 
equivalent mutants. Test sets which achieve this are 
referred to as “adequate relative to mutation” [13]. 

3 Specification Based Mutation Analysis 

Specification based mutation analysis was first 
suggested by Budd and Gopal in 1984 [2]. Their 
approach involved mutating formal specifications whose 
language was defined using predicate calculus. Input test 
cases were generated by changing operators and 
predicates of the specification. More recent studies 
include the use of model checkers to automatically 
generate specification mutation test sets using several 
different types of mutation operators (see for example 
Black et a1 [16] [17] [18]). 

In our case, we treat the specification as a language in 
which terminal sets can be mutated [3]. A specification 
can be characterised as a set of language elements which 
together describe the input and output behavior of a 
program, in much the same way as the syntax and 
semantics of the programming language determine valid 
forms of a program. Each data-item in the specification 
can be considered as a language or ‘terminal’ element. 
Collections of terminal elements are referred to as 
terminal sets. Production rules define how the terminal 
elements can be combined. 

Substituting one terminal element for another creates 
one mutant specification. This process is repeated until 
every terminal element has been substituted for every 
other terminal element. Since each mutant contains one 
substituted element it can be referred to as a ‘single- 
defect’ mutant. ‘Double-defect’ mutants can be devised 
by substituting two terminal elements at a time. 
‘Production rule mutants’ could also be created by 
mutating the production rules used to generate the input 
cases. 

The ‘mutation operator’ substitutes one terminal 
element for another. A simple example is as follows. The 

terminal set <terminallxtermina12Xtermaina13> could 
create the mutant <termina12xtermina12xtermaina13> by 
substituting the second terminal element for the first. 

One test case is created from each mutant. Mutant 
test cases are classified as either a ‘syntactically valid’ or 
‘syntactically invalid’ input. A syntactically valid input 
would make a program behave in a way that would be 
expected from a non-mutant input. In an input of this 
type, the terminal element that was substituted is 
‘syntactically equivalent’ to the terminal element it 
replaced. 

The syntactically invalid class of inputs can be 
decomposed into ‘correct’ and ‘incorrect’. A syntactically 
invalid correct input is one that the program should and 
does recognise as containing a syntactic error. A 
syntactically invalid incorrect input is one that the 
program should recognise as containing a syntactic error 
but does not. This type of input may have located an 
inadequacy or fault in the program. 

Creating a set of double-defect mutants could result 
in a more rigorous test set, as could production rule 
mutation. However the number test cases generated could 
be extremely large. Further, the consequences of the first 
mutation may directly interfere and complicate the 
implications of the second mutation, clouding the result of 
the test. 

For some specifications, mutation analysis may 
produce a test set that appears to resemble a test set 
produced by random testing. The difference is that 
mutation analysis produces systematic test sets and is not 
dependent on randomisation by the tester. 

One characteristic that is a requirement of this type of 
mutation analysis is that the specifications are written in a 
manner that facilitates the mutation process. It is apparent 
that some formal or semi-formal method is required 
where each terminal element is clearly defined. In the 
case study reported, the use of a semi-formal notation 
satisfied that requirement. 

A shortcoming of mutation analysis is the cost 
involved in generating and executing test cases and 
examining the results. It is proposed that this testing 
technique would benefit greatly from automatic test case 
generation. 

4 Previous Studies on Specification Based 
Mutation Analysis 

Budd and Gopal’s [2] approach to specification based 
mutation analysis involves producing specifications in 
predicate calculus based upon the predicate structure of 
the program under consideration. Their notation is chosen 
so that the input-output relationships are clear. In 
principle, the specification is mutated so that the new 
version contains an expression which if true, constitutes 
an illegal input. The expression should dBer from its 
correct counterpart in that only one element is altered. 
Special steps are taken to deal with quantifiers, and 
relational operators may be mutated. An input test case is 
then produced which meets the mutated specification (i.e. 
makes it true). 
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Fabbri, Maldonado, Sugeta and Masiero [15] 
examined the use of mutation analysis to validate 
specifications presented as state charts, defining an 
appropriate mutation operator set to be taken as a fault 
model. A tool, ProtedST,  was implemented to support 
the validation of finite state machine models. The goals of 
their research were to investigate ways of selecting useful 
test sets and how to ensure that a specification and its 
program had been thoroughly tested. 

Black, Ammann and Majurski [16] experimented 
with using a (low-level language) model checker called 
‘Symbolic Model Version’ or S M V  to automatically 
generate complete specification based mutation test sets. 
“Complete” test sets include inputs and expected results. 
They used two types of mutation operators, creating both 
valid and invalid test sets. The model checker was used to 
produce counterexamples for each mutation operator, 
where each counterexample was a mutant of the original 
specification. They noted that their mutation operators 
were only useful for specifications that were described as 
finite models (within the context of a model checker). 
Branch coverage analysis was used to examine the 
usefulness of the test cases generated, finding that the 
tests were “quite good, but not perfect.” The reported 
advantages of using a model checker for specification 
based mutation analysis was that the test case generation 
was completely automatic, as was the detection of 
equivalent mutants. 

Ammann and Black [17] found that in order to make 
mutation analysis with a model checker possible they had 
to decompose specifications to lower language levels. 
They investigated a way of reducing larger state machines 
to sub-machines enabling these to be processed by model 
checkers. This reduction process was referred to as “finite 
focus.” Since model checkers can handle finite state 
machines of no more than a few thousand states, the 
specification must allow decomposition. Thus the 
reduction of the specification’s state machine allowed 
very large s o h a r e  systems to have test cases generated 
automatically. They proved that finite focus was a sound 
reduction technique, producing smaller state machines 
that were valid and creating a smaller mutation adequate 
test set. 

Black, O b  and Yesha [18] examined a method 
involving the use of the S M V  model checker to 
automatically generate complete mutation test sets ftom 
formal specifications using a predefined set of mutation 
operators. In order to perform the mutation testing, the 
specification had to be in a form that was readable by 
SMV. They focussed on redefining and comparing 
different types of operators and then reducing the number 

of mutation operators required for good test coverage. 
They presented classes of operators that provided 
Merent levels of coverage (up to 100’Yo) and numbers of 
mutants created. 

Black et al and Budd et al describe complex 
specification mutation schemes involving conditional 
logic which will inevitably be reflected in the processing 
programs. We consider that in many cases the practical 
advantages can be realised by merely permuting the input 
specification. Therefore our method of mutation analysis 
differs fiom these techniques in the following ways. 

1. Only one mutation operator is required making 
the process far more simple and practical. 

2. If the terminal elements are defined then the 
specification does not have to be changed to fit 
some predefined format. 
The more complex the input specification the 
better the result of testing, for no increase in the 
complexity of the method. 

3. 

5 The Case Studies and their Interpretation 

The case study involved the comparison of boundary 
value analysis and equivalence partitioning to 
specification based mutation analysis [3]. The objective 
of this comparison was to examine the size and nature of 
the ‘overlap’ between the mutation analysis test set and 
the boundary value and equivalence class test sets. Two 
semi-formal specifications were used in this approach. 
Their syntax used a combination of COBOL or PLA 
syntax and Backus-Naur Form notation. Both were 
programming assignments fiom Software Engineering 
subjects of La Trobe University (see [19] and [20]). 

5.1 The Address Parser Specification 

The first specification defmes the input for an address 
parser (data-vetting) program. The input to this program 
is an address comprised of specific elements, shown in 
Figure 1, The aim of the program is to parse an address 
and if it is of a ‘correct’ format, write it to a file. If not the 
program is to report which elements of the address are 
incorrect. The symbols used in the specification are 
explained in Table 1, while the results of testing are 
outlined in Table 2. The complete specification included 
the requirement of directional indicators, for example the 
address 150 Main Road North Eltham 3095. In the 
interests of limiting the test set, this variant was not 
covered. 
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A standard address: 
[{ UNIT }] Add& { , / } AdddA <street> A... <suburb> A... <postcode>. 

FLAT 

Number of Tests Created 
Mutation Analysis Equivalence Class Testing Boundary Value Analysis 

A special flat/unit address: 
[ { UNIT >] Add& <streeth. . . <suburb>/\. . . <postcode>. 

FLAT 
RSD 

%of Overlap with 
Mutation Analysis 

A country or care-of address: 
[{ c/- 13 A... <stree P A . . .  <suburbBA ... <postcode>. 

c /o  

Figure 1 Input elements of the address parser specification. 

Table 1 Definition of specification notation. All other symbols are characters 

Table 2 The results of testinu the address Darser Drouram. 

Total I Passed I Failed I Total 1 Passed I Failed I Total I Passed I Failed I ECT 1 BVA 
290 1 10 I 280 I 29 I 10 1 19 I 89 I 31 I 58 1 14.5 I 17.9 

A requirement of the address parser program was that 
if an invalid address was entered then the program has to 
be capable of recognising the ‘incorrect’ element(s) and 
output an appropriate message. This ability is illustrated 
by test cases one to three of Table 3, which shows sample 
data and the test methods capable of generating the test 
cases. The standard address is used as an example in this 
sample. 

Conversely, the output generated by mutation test 
cases four and five highlight a program fault which was 
not found by boundary value or equivalence class testing. 
The fault is that the program produced an output message 
that did not correctly state which element of the address 
was incorrect. This illustrates that due to the extreme 
nature of some of the mutation tests generated, program 
faults were detected which were not found by 
conventional black box testing approaches. 
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d e  3 Sample test data and results of testing the address parser program. 
Test Case Program Output Could be Method of Generation 

d Generated 
by 

UNIT 3095 Main Number has too manv digits. MA Substitute vostcode for unit number. 
Road Eltham 3095. I , Y  

ECT I Invalid class of unit number. 
BVA Upper boundary of unit number. 

UNIT 99 Main Number has too few digits. BVA Lower boundary of unit number. 
Road Eltham 3095. ECT Invalid class of unit number. 
UNIT Test Main Number has too few digits. ECT Invalid class of unit number. 
Road Eltham 3095. 
UNIT C/o Main Number has too few digits. MA “Care-of’ address identifier 
Road Eltham 3095. Space required after suburb. 

Street not found. 
Invalid suburb. 

substituted into the unit number. 

I Full stop not found. 
UNIT 100 Clo I Space required after suburb. I MA I “Care-of’ address identifier 
Eltham 3095. Street not found. 

Full stop not found. 
Invalid suburb. 

substituted into the street name. 

5.2 The Statistical Analysis Specification letter identifier. The elements of this specification are 
listed in Figure 2. The overall results of testing this 
specification are shown in Table 4. Sample test data and 
results are shown in Table 5. 

The second specification defines the input of a 
statistical analysis program which computes the standard 
deviation and average of values that are tagged by a one- 

Batches of these letters and values are bracketed with the following records. 
sbatch.. .<batchnoxeor> 
and 
ebatch.. .<batchnoxeor> 

The last record in any collection of batches is: 
lbatch.. .<eor>Jlbatch.. .<eof> 

The records in each batch are of the following form: 
<recor&: :=<lpart><rpartxeor> 
<lpart>::=<null>lA.. . 
<rp&: :=<letter>r\ccvalue>l<~&A<letter>A<value> 
<letter>::= any letter chosen from the set [B-L, S-W, Z] 
<value>::= any valid, non-floating point decimal value in the range [-99,991 

1 
Figure 2 Input elements of the statistical analysis specification. 
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Table 5 Sample test data and results of testing the statistical analysis 
nrouram. 

# TestCase Program Behaviour Could be Method of Generation 
* Generated 

by 
I 1 I sbatch20 I Programacceptstheinput as I MA I Substitute sbatch number for ebatch I 

I sbatch sbatch 
1 G-99 
ebatch 20 
sbatch ebatch 
G -99 
ebatch 20 

Valid. number. 
ECT 
BVA 

Valid class of rpart number. 
Upper boundary of rpart number. 
sbatch tag substituted into the sbatch 
number. 

Program outputs error message MT 
stating that there was no sbatch 
number found. 
Program outputs error message MT ebatch tag substituted into sbatch 
stating that there was no sbatch 
number and the rpart and ebatch 
tae: was not found. 

number. 

5.3 An Examination of the Results 

In the specification for the address parser, few 
terminal elements were syntactically equivalent. 
Consequently, ftom the mutation test set produced the 
program found only a small number of addresses that 
were syntactically valid. For example the house number 
could be substituted for the unidflat number without an 
error being raised, as both were three digits long. 
However if the house or unidflat numbers were swapped 
with a text sentence such as the street name the program 
found a syntactic error in the input. The element that was 
the most interchangeable was the ‘space.’ One-space 
markers could be swapped for any one-or-more space 
markers without errors being detected in the input. The 
reverse was not equivalent, however the space marker 
could also be replaced for elements such as all of the 
optional address elements. 

It was found that there was 17.93% equivalence 
between the mutation analysis and the boundary value 
analysis test sets, and 14.48% between the mutation 
analysis and the equivalence class test sets. 

For the statistical program there was an extensive 
overlap between the mutation analysis test set and the 
boundary value and equivalence class test sets. For 
example, all three testing methods located errors in inputs 
involving a missing sbatch or ebatch tag and in inputs 
containjng a letter or value outside of the specified range. 
Another type of test that produced equivalencies was the 
replacement of an element with the <null> element. When 
replacing with the <null> element, the three test sets 
produced equivalent results in most situations. Therefore 
there was a large overlap in the tests ftom the three 
methodologies. 

A 75.96% equivalence was found between the 
mutation analysis test set and the boundary value and 
equivalence class test sets. 

The testing process showed that although the 
programs were returning error messages when invalid 
inputs were entered, in many cases they were not 
correctly stating which section of the input contained the 
error. For the statistical program this inadequacy was 
located by all three testing methodologies. However, for 
the address parser program most mutation test cases were 
able to detect these types of errors, whereas the majority 
of the boundary value and equivalence class tests did not. 

6 Mutation Testing.Amenable Specifications 

In the results reported in the previous section, the 
address parser specification produced a mutation test set 
in which there was a modest overlap with the boundary 
value analysis and equivalence class test sets (less than 
20%), while the statistical program’s specification 
produced a substantial overlap in the test sets (75%), 

A closer examination of the two specifications 
suggests that some specifications will be more amenable 
to mutation based testing than others. While this issue is 
the subject of future work, we can make some informal 
comments that will be of practical guidance to 
practitioners. Consider a simple specification of the 
following form. 

where each of the <sepi> = {sil,. . .,sa) 
and each of the terminalj> = {tj,, ... ,tjm) 

In general, the nature of the si. E <sepi> and the Gk E 

<terminalj> will be such that it would be unlikely that 
substituting some arbitrary f jkE <terminals> for <sep3> 
would produce a test case that would have been generated 
by either equivalence class testing or boundary value 
analysis. However, we also need to consider the case of 
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substituting <terminat> for <terminall>, which 
would be a valid mutation operation. 

Constructing an equivalence class test requires that 
there be some basis for dividing the terminal sets (or 
combinations of them) to construct equivalence partitions. 
We then choose one element fiom the partition as a test 
case. If for some reason the intersection of the terminal 
sets is non-null then we may have constructed a mutation 
test by default. However if the terminal sets are distinct 
then by definition, a valid equivalence class test cannot 
choose an element fkom another terminal set. Whether or 
not invalid equivalence class tests will generate cross- 
terminal set substitutions depends upon how the terminal 
set is extended to include illegal values. 

In the case of boundary value tests, we point out that 
if the sets are discrete and finite then the concept of 
boundaries may have no practical meaning. If they are in 
some sense continuous or are in a sequence, then 
boundary values may be considered to exist. Alternatively 
the boundary values may be stated explicitly. A typical 
specification for such a terminal might be (without loss of 
generality) as follows. 

<terminali> ::= (R&N:ubi 5 R 5 Ibi} 

where ub and lb are upper and lower boundaries 
respectively. 

In this case, if there are multiple terminal sets with 
this definition and their intersection is non-null, then both 
mutation analysis and boundary value and equivalence 
class testing can generate test cases that will be identical. 

7 Conclusions and Future Work 

While specification based mutation analysis can 
provide a tester with valuable information about the 
correctness of program behaviour, it is clear that it would 
not benefit all types of specifications. Future work will 
include an examination of the feasibility of identifj4ng 
specifications that will benefit from mutation analysis and 
the development of mutation operators. Empirical 
experimentation will determine whether there is a 
statistical overlap between specification based mutation 
analysis and other popular forms of black box testing. An 
additional goal is to investigate whether specification 
based mutation analysis is effective at producing 
program-critical tests. 

It is also clear that given an appropriate set of 
(formal) production rules that specify a program’s input, a 
test case generator can be constructed using standard 
compiler writing techniques. It would then be possible, 
given appropriate mutation operators, to generate mutant 
test cases automatically. The simple substitution operator 
used in the test cases would be straightforward. 

Finally, the authors recognise that the approach taken 
here has properties similar to random test case generation 
and might generally be regarded as a particular case of 
this approach. 
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