
 1

Faculty of Science, Technology and Engineering

La Trobe University

 Knowledge Loading as a Factor in Software Project

 Planning and Estimation – A Consequence of

 KABASPP

 Author: Shivraj Sabale

 Student No. 14988185

 Supervised by Assoc. Prof. Karl Reed

Course: Master of Software Engineering

Knowledge Loading as a Factor in Software Project Planning and Estimation

– A Consequence of KABASPP

October 2006

 2

 Acknowledgement

I would like to take this opportunity to thank my supervisor Assoc. Prof.

Karl Reed who has not only been an inspiration to this thesis but has been an

active participant throughout. His valuable work has provided me with a

firm foundation for exploring newer approaches. His advice and directions

have proved helpful in canalizing my efforts.

It would have been much harder without his suggestions on writing as it

made this survey comprehensive enough to cover major topics and

comprehensible enough to cover most readers.

I would also like to acknowledge the backing provided by my Father, Mr.

Sampatrao Sabale who has taught me look at a situation rationally and to be

absolutely unbiased in the approach.

 3

Table of Contents

Introduction ... 6
Literature Review.. 8

Chapter 1 ... 9
KABASPP [Knowledge an acquisition based approach to software Project planning] . 9

1.1 Applications Domain... 10

1.2 Application Solution Domain.. 11

1.3 Development Environment Domain.. 11

1.4 Run-Time Domain... 12

1.5 Project Management Domain.. 12

Chapter 2 ... 13
Traditional Software Project Planning .. 13

2.1 Feasibility Study.. 15

2.2 Requirement gathering .. 15

2.3 Planning-Design-Implementation ... 15

2.4 Testing... 15

2.5 Maintenance .. 16

Chapter 3 ... 20
Use of Knowledge acquisition Traditional Engineering Domains................................ 20

Categorization of Job Activities.. 21

Research .. 25

Chapter 4 ... 25
Pervasiveness of KABASPP Domains.. 25

Chapter 5 ... 32
Pervasiveness of the KABASPP Process .. 32

Chapter 6 ... 36
Presence of KABASPP in Traditional Software Engineering Issues............................ 36

Chapter 7 ... 38
Use of Knowledge acquisition in Traditional Engineering Domains 38

Chapter 8 ... 43
Manpower Buildup and Team Formation ... 43

The Three Competencies -Business, Technical and.. 46

Management .. 46

Chapter 9 ... 51
Proposal... 51

Conclusion & Future Work... 62

Chapter 10 ... 63
Appendices .. 63

Appendix A: Bibliography .. 63

Appendix B: Acronyms & Glossary ... 67

Glossary... 67

Acronyms .. 67

Appendix C: Unused References for future Study.. 68

 4

Table of Figures

Figure 1: Royce’s Waterfall Model... 14

Figure 2: Unidirectional Flow of Project Development.. 16

Figure 3: Work Break-Down Structure for a Software Project... 17

Figure 4: Algorithm for Calculating Weather Metrics.. 23

Figure 5: Knowledge Points [GAO] .. 34

Figure 6: TRL by NASA [GAO].. 35

Figure 7: Parallel Development... 40

Figure 8: Task Deficiencies... 48

Figure 9: Staffing pattern for a Hardware Project... 52

Figure 10: Staffing pattern for a Software Project .. 53

Figure 11: Instantiation of the Staffing Curve .. 54

Figure 12: Staffing pattern for each phase of Software Development.............................. 55

Figure 13: Knowledge Gap ... 57

 5

� Chapter 1 shall introduce the KABASPP theory. Knowledge an Acquisition based

approach to Software Project Planning forms the basis for this project and has

been borrowed from the original theory for reference.

� Chapter 2 shall deal with some basic Software Project Planning Fundamentals. It

shall also look into the circumstances under which KABASPP was introduced. It

shall further discuss some Current Software Project Planning practices.

� Chapter 3 shall deal with Project Planning issues from Traditional Engineering

domains such as Construction and Mechanical Engineering.

� Chapter 4 shall investigate the pervasiveness of KABASPP Domain structure in

the current Software Engineering Scenario.

� Chapter 5 will be an extension to Chapter 2 and investigate the pervasiveness of

KABASPP process in the current Software Project Planning Techniques.

� Chapter 6 shall extend Chapter 3 and deduce Project Planning Strategies which

recognize the criticality of knowledge acquisition. It shall also look at some

classic problems in this field and try to relate them with the Software Projects to

study the effect.

� Chapter 7 shall tackle one of the chosen units i.e. Manpower Buildup and Team

Formation, in software engineering to study the effect of Knowledge Acquisition

on it.

� Chapter 8 shall finally contain the Proposal.

� Chapter 9 contains the conclusion for the paper.

 6

Introduction

The basic capital resource, the fundamental investment, but also

 the cost center of a developed economy, is the knowledge worker

 who puts to work what he has learned in systematic education,

 that is, concepts, ideas, theories, rather than the man who puts to

 work manual skill or muscle.

 Peter F. Drucker [PETE 1]

A lot has been said and done on Software Project Planning and utilization of resources

like the staff and developers to achieve the deadlines. Many models have been introduced

to study the staff loading patterns and the amount of effort required during the process.

The underlying assumption in most of these studies has been that the developer or team

member is at the maximum knowledge or skill maturity level. General project

management wisdom contradicts this assumption and compels us to have a re-look at the

factors affecting delays in the planned schedule. The “Knowledge/Skill-factor” needs to

be considered while analyzing such situations.

A 5 layer model named KABASPP [Knowledge an acquisition based approach to

software project planning] was introduced in 1991 by Assoc. Prof Karl Reed.

This paper lays emphasis on the usage of Skill or “knowledge” available at the beginning

of the software project for project planning. It also argues that the skills needed to realize

the tasks in the project and the “knowledge” requirements should be the driving factor

behind the project plan rather than a generalized “Software Process”.

The current Software Development Scenario has seen an alarming rise in delays in the

schedules and project over-runs. We shall investigate through this paper if these actually

are project failures or Estimation mistakes in which case a concept of “Knowledge

Loading’ shall be introduced to elaborate the competency deficit in the human resource.

 7

This paper shall investigate the pervasiveness of KABASPP in Software Engineering.

KABASPP as a process and KABASPP as Knowledge Domains need to be studied in

order to achieve the final aim of correct knowledge acquisition and to fill up the deficit.

We shall thus be looking for implicit or explicit presence of KABASPP artifacts in the

current practices. This shall encompass the entire Software Engineering domain including

Testing, Component Based Development and Lifecycle models.

To ensure that the findings get a stronger foundation, we shall cross reference these with

the common practices in the Traditional Engineering Domains such as the Construction

Engineering.

Finally, we shall deal with the specific topic of Manpower Buildup and Team formation

and ways to ensure that a knowledge based approach is used right from the inception of

the project/

We shall look at some of the most common, current methods and strategies used for

project planning and manpower buildup and study the possibility of the usage of

KABASPP for solving some of the problems faced. We shall also introduce the

“knowledge factor” and investigate its impact on the overall planning process.

 8

Literature Review

Software project planning and estimation has been one of the most researched issues in

software engineering. After all the research that has been done, we can claim that no

process is perfect or the “right” way of developing a project. But there is no doubt that

there will always be some room for improvement.

It is important to analyze the source for major budget spending for businesses dependent

on IT. It is evident nowadays that software costs have overridden the underlying system

hardware costs. It is thus important to study various techniques which will help us in

improving the current software development approaches and reduce the development cost

for software applications.

 With the help of KABASPP as an underlying theory we shall strive to achieve such a

result. We have made some changes to the Literature Survey since the initial Literature

Survey. As we went along, we had to revise our plan for research as some topics showed

much more promise than the others. The fundamental objective of investigating the

Pervasiveness of KABASPP and showing the impact of Knowledge Acquisition on

Software Project Planning still remains.

Some major changes have been made to the Literature review from the last time

considering some new venues of interest. The focus of this paper has now been adjusted

over the application of KABASPP over one Software Engineering activity and to suggest

some new approaches for the same. A basic study of some project planning models has

also been included to understand the logic behind such planning decisions. These help us

in justifying the suggestions made about the change in approach required.

 9

Chapter 1

KABASPP [Knowledge an acquisition based approach to
software Project planning]

A 5 layer model named KABASPP [Knowledge an acquisition based approach to

software project planning] was introduced in 1991 by Assoc. Prof Karl Reed.

This paper argues that relative levels of skills or "knowledge" available at the beginning

of a software project, and the skills needed to perform the tasks constituting the project

rather than some pre-ordained "software process" model should be used to generate a

Project Plan. The paper identifies and describes a series of Knowledge or Skill Domains

which can be used to develop a Software Project Plan.

The task of creating an artifact can be divided into two sub tasks.

1- To acquire knowledge and skill required to create that artifact.

2- To actually create the artifact. [REE 2]

Thus it is implied that we need to posses the necessary skill and knowledge at the point of

creating the software. This is a knowledge or skill acquisition process of a more general

kind, involving training or problem analysis as necessary.

An examination of the steps taken during, and of the techniques and tools used, in a

software project, suggests that there are a small number of relatively distinct knowledge

domains.

The KABASPP Domains have been based on classification of knowledge required to

complete a project.

 10

The five domains are

a) Application Domain: the physical laws, organizational structures, procedures etc which

govern the software artifact to be produced.

b) Application Solution Domain: the collection of machine executable descriptions

(algorithms) which make it possible to realize the application as software.

c) Development Environment Domain: the complete set of tools, techniques and methods

used to both develop elements of the application domain and Application solution

domain, and to realize them as software.

d) Run Time Environment Domain: the set of characteristics, relating to the particular

machine environment under which the software must run.

e) Managerial Domain: the techniques necessary to plan estimate and manage the

project.

 [REE 2]

KABASPP Domains and Components are not equivalence classes. However, they

provide a clear indication of the categories of skill in the use of or knowledge about

subsystems, techniques or tools required in each case. Following are the examples of

each kind of knowledge domain. It also exemplifies the disciplines responsible for

learning or mastering a particular knowledge domain.

1.1 Applications Domain

Examples

� Acceleration characteristic of a train

� Organizational structure of business

� Rules for issuing air-line tickets or degrees

� Procedures for organizing work flow

� Procedures for design of pressure vessel etc.

 11

� Discipline Responsible

� Commercial systems analysis

� Engineering

� Engineering Design Analysis

� "Knowledge" Engineering

1.2 Application Solution Domain

Examples

� Algorithms for searching lists

� Approximate method for calculating acceleration of train

� Procedure for allocating seats on a vehicle given multiple access

� Path optimization's procedure for routing of information

� Algorithm for rotating graphic images

� Procedure for recovering disc-space

� Sort procedures

Discipline Responsible

� Computer Science

� Graphics

� Artificial Intelligence Software Engineering etc.

[REE 2]

1.3 Development Environment Domain

Examples

� Programming languages

� Methodologies {JSD, SD, Modular Design}

� Tools - CASE, other development aids, Test tools

� O.S. and control language - shell, MCP, DOS, JCL etc

� Utilities - loaders, file manipulation, editors, and configuration managers.

� File structure, Database management systems.

Disciplines Responsible

� Computer Science

 12

� Software Engineering.

1.4 Run-Time Domain

Examples

� Operating Systems interfaces

� Database management systems calls

� Instruction set, external interfaces

� Resource constraints (i.e. profile of available cpu time, input/output,

� Memory for the system).

� Response time

� Device peculiarities

� Hardware Reliability vs. Design goal

Disciplines Responsible

� Computer Science

� Computer Engineering

� Software Engineering.

 [REE 2]

1.5 Project Management Domain

Examples

� Estimating

� Project Planning

� Project Organization

� Resource acquisition

� Selection of people and development and run-time domains!

Disciplines Responsible

� Commercial EDP and Software Engineering and KABA.

 13

A brief guideline has been provided to use such a framework.

a – To asses the requirements in terms of the KABASPP domains i.e. to find the

 requirement of respective knowledge and skill.

b - Now we have to asses the schedule or the deadlines and identify the times at which

 we would be requiring these components.

c - Look at the current status and asses where we stand in terms of knowledge and skills.

d - Devise a project plan to acquire the needed knowledge and skill by the time it is

 needed which will ensure timely completion of the project.

 [REE 2]

Chapter 2

Traditional Software Project Planning

The objective of this chapter is to understand the thinking behind current Software

Project Planning techniques. We shall also see how this approach led to the introduction

of a theory like KABASPP and other non-rigid processes.

Before looking at some of the ongoing research in the non-rigid process engineering

domain, let us look at some basic fundamentals of software project planning and

estimation. Project planning has been around for ages in various Engineering and non-

Engineering disciplines. Introduction to project planning has not seen many years pass by

and thus we can summarize some of the popular techniques here.

Software process is one such entity which needs to be studied in detail to understand the

procedure of converting the raw material (read knowledge) into the final software

product. It also enlightens the various management control procedures and outlines the

workflow.

There are many such process frameworks and process models which are existent in the

industry. One such process model is the waterfall model. Originally introduced by

Winston Royce, the waterfall model included a provision for “feedback loops”. These

were although ignored in the common usage and this model is now followed as a strictly

 14

linear model. It followed the process of sequential flow of project activities like

requirement gathering, design, coding and testing. The model can be seen in figure 14.

[ROY 4]

Many process models followed including the Incremental Model which followed the

steps in the waterfall model in an incremental fashion. The product was developed in

smaller increments and each increment development followed a sequential model.

Another model which gained popularity was the Spiral model which was proposed by

Boehm was an evolutionary model. Other models like the RAD and Prototyping were

also followed. A detailed study of these models will expose some inherent fundamental

principles on the basis of which the tasks in these models are organized.

Figure 1: Royce’s Waterfall Model

These tasks have a high level of dependency on knowledge acquisition and availability of

the required skills. Let us study the Waterfall Model and see if we can identify some

knowledge domains in the tasks as laid down in KABASPP.

 15

2.1 Feasibility Study

 Application domain (Domain analysis) must be done in detail to understand the

implications of the s/w and its criticality.

 Application solution domain for studying the possible Algorithms and methods

for performing graphical/ path optimization calculations.

 Dev-Environment domain to see the availability of the tools/techniques/platforms

required.

 Run-Time Environment domain to study the possible OS interfaces, h/w

constraints, response times

 Management domain considerations like staffing/costing/scheduling bottlenecks.

2.2 Requirement gathering

 Requirements are said to be “good” only if they have been done by a person with

enough application domain experience.

 The 2 domains Development environment/Runtime domain are would mainly deal

with the h/w, s/w requirements

 Management domain would focus on the other resource, staff.

 Management domain is also essential for scheduling, cost and effort requirements.

2.3 Planning-Design-Implementation

 Goes without saying that the following domains need to be worked upon

 Application solution for algorithms and possible processes

 Development environment domain to ensure the timely availability of tools and

techniques to carry out the development

 Run time environment to ensure that the s/w runs well in the environment it is to

be used.

2.4 Testing

 Application domain knowledge is necessary for designing the test cases and

deciding the testing strategy

 Application solution domain needs to be studied to see what algorithms were

followed and the possible flaws.

 Development environment for testing tools.

 16

 Run time environment to mimic the user’s workspace

 Management domain to analyze the errors and perform quality management.

2.5 Maintenance

 Run time environment domain to understand the actual run environment

This study has lead to some major findings and also lead on to the initiation for

KABASPP. During the late 80s a large amount of sequencing problems was uncovered in

models such as the ones described above. A popular belief that if Phase Pj follows Phase

Pi in the development lifecycle then it was quite possible to move from Pi to Pj. The

question was how it will react to a situation where we tried to traverse backwards from Pj

to Pi. Thus D (Pi) = D (Pj), but D (Pj) ≠D (Pi) [REE 3]

Figure 2: Unidirectional Flow of Project Development

This means in a waterfall model, it is possible to traverse forwards but not so backwards.

There were a lot of implications to this which further lead to models such as Spiral and

Prototypes.

 17

Let us now have a look at some of the current software project planning concepts.

Shari Lawrence Pfleeger in her textbook on Software Engineering has mentioned some

interesting workflows for Software Project Planning. The sequence of activities for a

project plan according to her are as follows,

- Understand the requirements.

- List all the deliverables (Including documents like online help tools)

- Analysis of the above mentioned list and to designate the key milestones.

Key milestones are generally % completion of the deliverables.

- Analyze the milestones and designate detailed activities.

- A phase wise schedule using the Work Breakdown Structure (WBS).

Figure 3: Work Break-Down Structure for a Software Project

- Assign Time and Effort for each task

- Assign Project Roles

- Estimation for the project costs

- Estimation for effort and phase wise effort calculations

- Finally Project Plan [FLE 5]

 18

It is interesting to know that most of the estimations mentioned here, in reality, are not

based on the capability and knowledge available but on instincts and previous project

experiences. Such estimation, although helpful, will not analyze the current situation and

will take the skill of the developers for granted. What we will be looking at is not to

introduce another method of estimation or planning but a serious consideration to the

knowledge and skill factors.

Ian Sommerville on the other hand has a similar approach, but somewhat conservative,

towards Software Project Planning. He has outlined the following guidelines for project

planning.

- Establish Project constraints.

- Initial assessment of Project Parameters. (Structure, Size and Distribution

of functions)

- Define Milestones and Deliverables.

- LOOP TILL END

a- Draw up a project schedule

b- Commence initial activities and tasks

c- Review the progress

d- Revise Estimates and Schedules

e- Update Project parameters

f- Re-negotiate project constraints and deliverables

g- END IF [SOM 6]

This can be looked at as a more reserved and a low-risk approach towards project

planning. The important point to note here would be the revision of project constraints

and re-negotiation of the deliverables and the schedule. This emphasizes the fact that

project planning needs to be done promptly on the basis of available knowledge and

skills. It also needs to be dynamic and flexible for changes.

It is quite conspicuous that most of the activities in this planning program are dependant

on knowledge acquisition and availability of skills. The loop follows a spiral model and

 19

keeps on updating the status of the deliverables. This helps in staying close to the target

schedule and achieving the deadlines.

We also need to look at some pointers provided by Pressman for Project planning.

- Understand the scope (Max, Min) for the project. This will ensure that

unwanted requirements are not fulfilled

- Involve the customer in planning activities to have a better understanding

of the requirements and giving the customer some confidence

- Recognize that planning itself is an iterative process. It cannot be a static

process

- Use the experience of employees you would know best about the product.

Choose those employees who would have a great deal of application

domain knowledge.

- Consider risk as a factor in planning

- Estimate based on what you know. This is very important for creating a

realistic schedule

- Be realistic with the feasibility

- Adjust granularity as you proceed. Do not plan for details too early. They

may have to be changed

- Define clear plans for ensuring quality

- Define clear procedures for SCM (Software Configuration management)

- Keep monitoring and revise plans.

It is quite clear by now that most of the emphasis in project planning principles is laid on

keeping the procedure dynamic. This allows a room for revising the plans and also

ensures that the project runs on track. We will look at this issue later in the paper when

we deal with concepts like Extreme Programming
i
 which deal with this issue with forced

knowledge acquisition.

There has been immense research done in the field of non-rigid process engineering.

i
 Please refer to http:\\www.extremeprogramming.org\

 20

A major shift from rigid process can be seen to using frameworks which help in project

planning. Since most of the scenarios and developing techniques have changed over the

period, we can see a level of incompatibility introduced in the process followed and

process on paper [PRE 7].

Chapter 3

Use of Knowledge acquisition Traditional Engineering Domains

Project planning has been existent since centuries. Disciplines like Construction

Engineering, Mechanical Engineering and Chemical Engineering have caught the interest

of mankind since ages. Over the years of development of marvelous architectures and

machines, these disciplines have matured to a stage where the craft and art of developing

the final product is quite rigid. Compared to such immense history of success and

failures, Software Engineering seems like a newborn. It has not been more than thirty

years that the concept of engineering software has caught up. We intend to study many

such cross domain examples and see how they relate to the software project planning. We

shall go through some examples of successful project planning activities and some

problems faced by this industry. We shall thus look at various issues relating to the

knowledge factor.

Some of the basic fundamentals followed during any construction project as laid down by

Richard Clough and Glenn Sears are as follows.

1- Design-then-Construct – Actual construction work should not be started unless

the Chief Architect approves the design. Many big projects see a team of

designers work on the blueprint of the building and then the Chief Architect needs

to approve only after checking all the dependencies. This requires a large amount

of domain knowledge and foresight. It can be gained with experience on live

construction projects.

 21

2- Planning activity along with the maintenance includes the “Useful Life” of the

system. This factor will be dependant on the durability of the materials used and

the overall structure.

3- There are three basic competencies/qualities that a construction site manager

should posses. A) Technical Expertise & Experience. B) Availability of expertise

in terms of people in specific management techniques, (Plan, Schedule, Computer

Support). C) Personality Issues, (should be able to handle workers with lesser

expertise or training)

4- Project planning must be done by people with experience and who are thorough

with the field work

5- Success of a plan is dependant on the involvement of people who will implement

the plan.

6- The plan should include personnel from each department of the organization to

ensure that each and every restraint is satisfied. Estimators, Project Managers, Site

Superintendents, and Field Engineers are some of the people who are a must

while devising the plan.

7- Plan represents the best thinking available when it was conceived. Thus with

changing conditions, plan should be dynamic.

One of the major techniques used for project planning is the Job Logic. A series of job

activities are identified and these activities are prioritized. A table is generally used for

sorting out dependencies and resource smoothing. Techniques such as Precedence

diagram or Critical Path Method is used for the same.

Categorization of Job Activities

- by area of responsibility (Contracts)

- by work as distinguished by craft or crew

- by equipment required and usage

- by raw materials used

- by structural elements

- by location

- by payment methods

 22

The following table will clearly define all the dependencies between various operations

based on the requirement of human resource. Such tables have been used for ages to

ensure that the manpower is available at the right time and ready for deployment on the

job.

Competency\

Operation

Excavation Pour

Footing

Rub

Concrete

Guard

Rails

Saw Joint Paint

Carpenters √ √

Laborers √ √ √ √

Equipment

operators

√ √

Oilers √ √

Cement

Masons

 √ √

Truck

Drivers

√ √

Table 1: Availability Matrix

Such tables help in managing People, Material and Money. [RIC 8]

 Another example that can be quoted for understanding the defining role of knowledge

for Project Planning is the Automation of the Irrigation Water Delivery System project.

This project was undertaken by the Irrigation and Drainage division of the American

Society of Civil Engineers. The basic aim of the project was to devise an automation

system which can be configured for various characteristics of water flow. The need and

value of dependable and flexible water supply was the driving force for such an irrigation

project.

 23

We shall have a look at an algorithm which considers the duration and rate of water

supply. These two factors are the decision points in the following algorithm.

Figure 4: Algorithm for Calculating Weather Metrics

 24

It is important to not that at each decision juncture; some action is being taken in the

background on a daily basis like an increase or decrease in the water pressure levels or

rate at which the water is discharged. [ZIM 9]

This shows the dynamicity in the simplest of the algorithms in the Traditional

Engineering domain. It is high time that we also deduce some techniques from these

domains.

 25

Research

Chapter 4

Pervasiveness of KABASPP Domains

Let us look at some major research works which have acknowledged the importance of

knowledge and are related to the acquisition process. We shall follow a disciplined

approach of looking at various issues in order to find implicit or explicit implications

towards the importance of knowledge acquisition and usage of the Knowledge domains

as defined in KABASPP. As stated earlier, a positive outcome for the presence of

KABASPP will reinforce the importance of recognition of knowledge acquisition as a

important factor in Software Project Planning.

The major target in this section is also to investigate the presence of various domains

defined in KABASPP which have been implicitly or explicitly used in various researches.

This will help us in understanding the importance of classification of knowledge and its

importance while planning any software project.

There are immense numbers of projects which we can grade as medium sized or “small”

projects. Such projects have little or no documentation supporting their development and

the process followed. These projects are generally in the range of 100 to 500 function

points. E.g. a plug-in developed for major software companies.

So the only way to test such programs (without any specifications),where code itself is

the complete documentation, is to study the patterns in which the programmers are more

prone to making errors and to study the domain information to find modules which are

more error prone. This clearly emphasizes the importance of knowing the application

domain before any testing starts.

 26

Let us take an example where we have to find the misuses of data types in a particular

application which solves algebraic equation. Thus it is imperative to know how these

equations work. This shows the need for application domain knowledge. If we were to

insert some type checking using a small algorithm which solves the equation then we are

in need to the Application Solution domain knowledge and skill before starting it.

Absence of such skills or knowledge at the time of development will result in a delay and

the schedule would be disturbed. [HOW 10]

A large amount of research has been dedicated towards identifying the number of factors

influencing how processes were tailored. There are factors which affect the decision of

managers in which they choose a particular instantiation technique on the following

factors. Let us see how they map to the requirement for various domain skills.

Thus before using any kind of process model, it was imperative to tailor it according to

our needs as each project is unique in its own way. Thus we should consider the

following before tailoring

- Culture

- geography

- Customer population

- Politics

- Size of system

- Safety issues

- Requirement analysis

[NAZ 11]

Most of the above mentioned issues have been included in the Management Domain in

KABASPP. To have information on Culture, geography, Customer population, politics

will be considered to be managerial issues wherein the prior knowledge of these issues

will greatly facilitate the smooth progress of the project. So it is understood that acquiring

such knowledge before starting the project is imperative.

Another survey was conducted by the Datamation group on the similar lines.

 27

57 software projects were studied and a survey was carried out with the project managers.

Most of these projects ranged from 20 staff members in size to a large of 3250 members.

An average standing was a project with around “392” project members.

Most of the questions focused on the amount of rework required during the complete

development cycle.

It was found out that 26% of specification rewrite was required on an average. The

reasons that were listed were,

a- Errors, ambiguities (38%)

b- Changes in the requirements (38%)

c- Better understanding of the Application Domain (22%).[LEH 12]

 This is an explicit proof that had the application domain knowledge was absolutely

necessary for writing the specifications to avoid re-writing the specs.

Another question that can be raised is about the changes in the requirements. Changes

generally occur in the requirements from the client side and late in the project. One of the

major reasons cited for this is that the customer or client is himself unsure of what his

requirements are and only after the realization of some percentage of the system would he

start making up his mind. This situation can be avoided if the manager with some

previous experience understands the real requirements of the user apart from what he has

stated and tries to establish them early in the lifecycle.

 28

We can find many such cases where lack of experience of the manager alone has resulted

in poor outcomes. Inexperienced software managers (in terms of knowledge and skills to

handle application domain data and management domain principles) often fail to

recognize and expose early software problems.

They fail to recognize the hardware or specification instability and the impact of

inexperienced personnel and mistakenly think that they can resolve them over time. But

the Cleanroom Process forces early problem into the open by studying them and the

reasons behind them. This gives the management an opportunity to solve such problems.

[MIL 13]

Cleanroom Process has been specially devised to tackle projects which have very low

margin for errors and follow a very strict quality control procedure.

It is noticed that they have reiterated the importance of knowledge acquisition in the

application and management domains before even starting the process. This calls for an

interesting discussion which can lead to serious implications. Is it possible to re-arrange

the phases in software development in such a manner that project management activities

can be started before their scheduled time? We have seen time and again that activities

like software testing need a lot of groundwork before actually starting them. But the

question lies that can testing be done even before the designing or coding is done. We can

actually study projects where test cases can be devised even before the design or

development has materialized. Many system level test cases can be devised on the basis

of requirements and specifications alone. This could open various options for different

approaches towards Software Project Planning. We would like to emphasize on the fact

that a lot of work can be done in making possible the performance of two or more

activities in parallel which are dependant on the same knowledge base.

This issue is further discussed in the proposal section.

 29

If the project management is weak and relies heavily on the technical team to evaluate all

the technical outputs, it must rely on the same unit which is introducing the errors.

If this unit itself is technically weak then so will be its judgment. Assigning these to

different teams would mean a learning curve introduction in the team. Thus if we are to

improve the quality of the reviews conducted by the same unit then we have to enable

them to review impartially by and introducing professionalism in the process. They

should thus be equipped with enough Development domain and application solution

domain expertise. One common fault is to produce too much detail at the initial planning

stage. You should be stop when you have a sufficient description of the activity to

provide a clear instruction for the person who will actually do the work, and to have a

reasonable estimate for the total time/effort involved. You need the former to allocate (or

delegate) the task; you need the latter to finish the planning. [FRE 14]

Knowledge is the raw material of software design teams. For complex projects,

knowledge from multiple technical and functional domains is a necessity. Ideally, a

software design team is staffed so that both the levels and the distribution of knowledge

within the team match those required for the successful completion of the project.

Because of knowledge shortfalls such as the thin spread of application domain knowledge

in most organizations, however, this is seldom the case. In general, individual team

members do not have all of the knowledge required for the project and must acquire

additional information before accomplishing productive work. The sources of this

information can be relevant documentation, formal training sessions, the results of trial-

and-error behavior and other team members.

 30

Group meetings are an important environment for learning, since they allow team

members to share information and learn about other domains relevant to their work.

Productive design activities need to revolve around the integration of the various

knowledge domains. This integration leads to shared models of the problem under

consideration and potential solutions [DIA 15].

We should analyze various ways suggested to handle the shortfall of domain knowledge

by Diane B. Walz. It is duly noted that actions such as documentation, training, and

group meetings should be taken well in advance to ensure the smooth running of the

project.

According to a project conducted by Diane Walz, a project was closely watched to

understand the way it was managed and in one of the meetings the following points were

noted. Few of the designers were familiar with Prolog as the implementation language

and were reluctant to commit to implementing the object server in Prolog. Thus, the issue

of whether the object server should be written in Prolog or some other language remained

unresolved. A great deal of technical information on Ingres as the implementation

language was shared so that the group could evaluate its potential as a tool for building

the object server.

Technical knowledge was introduced, exchanged, and evaluated according to its ability to

meet requirements in the context of one or more specific design approaches. New

information about requirements was evaluated in the context of design approaches

framed in terms of technical and application knowledge. Presentations about new

technology were discussed in light of various design approaches and whether or not such

approaches met requirements. Thus, new information was sought, filtered, and integrated

in context. [DIA 15]

This supports the theory mentioned above which claimed that managers should be well

aware of all the domains of knowledge and have special expertise in the management

domain. If some decision needs to be taken for a technical problem, right kind of

information and data should be demanded by the management.

An interesting discussion by A.T. Berztins can be mentioned from the 6
th
 international

Software Process Workshop at Virginia. Commenting on Component based development,

 31

it has been noted that while components are brought in an institution during the

development phase, a large amount of knowledge and skill is also brought in. It is also

emphasized that we are equipped with some amount of skill to develop our product

further due to acquisition of such components and thus highlights the importance of

having knowledge and skill at the right moment to develop any artifact. [BER 16]

It is important to note that the introduction of any component can be perceived as

introduction of new capabilities to the team as well as the reduction in the capability to

develop the component. But on the other hand, it has already enabled us to take a step

further and concentrate on the issues lying ahead. Some reverse engineering can be done

on the components in case the code is also available.

We can see that a lot of emphasis has been laid on gaining enough application solution

domain expertise and knowledge before starting with the project.

Consider the design of editor software. If the analyst knows that the editor will have to be

ported to a different operating system within a given period of time, provision can be

made for that in the analysis model. This kind of flexibility need not be included if the

platform is not going to change. This means that the effort required in incorporating the

factors leading to a flexible design can be avoided if the system does not need that

quality. [REQ 17]

Looking at these findings we can confidently say that there is a definite existence of the

KABASPP domains throughout the ongoing research and practices in the Current

Software Project Planning Scene. It is still conspicuous that although the domain

knowledge plays an important role in defining the success of the project, it still is not

considered as an independent factor while undertaking planning activities. A lot of

people will still recognize the importance of presence the right knowledge and skill at the

right time; we still fall short of categorizing such knowledge and defining an organized

way of looking at this knowledge shortfall. This factor is further defined as the

“Knowledge Gap”.

 32

Chapter 5

Pervasiveness of the KABASPP Process

A lot of emphasis has been laid on the pervasive nature of a process in human life. We

shall now specifically look for the pervasiveness of the KABASPP process throughout

the Planning scene. Please refer to Pg. 7, Para. 1.

Leon Osterweil has studied such instances and also noted a key difference between a

process and process description. A manual how to drive a car would qualify as

description of the process while driving the car actually would be a process. Thus we end

up creating generalized solutions and archive them as process descriptions. Instantiation

of these process descriptions is done every time a new process model is introduced. Is

there anything particular that we should be taking note of in such a scenario?

Process Descriptions are said to be static while processes are dynamic as explained by

Dijkstra in his insistence to the minimum usage of the GOTO statement. So when we

generalize, we may include some examples which did not suit well and when out of

context would give absolutely variant results. This calls for a framework to be defined

which can be utilized in defining the project plan which not only understands the

changing nature of the development process but also encapsulates the necessary

ingredients. [LEO 18]

What then forms the base for such project plans? As seen earlier, knowledge and skill are

the most important inputs for a software development process. We will be looking at

various other engineering domains to see how the availability of the raw materials and

mechanism plays a vital role in project planning. We can translate the same need here and

claim that much of software development planning should rotate around the required

knowledge and skill acquisition.

 33

Based on the belief that superior product is a result of a superior design whereas a

superior design is a result of superior design process, we shall look at some interesting

process issues which will re-iterate the importance of knowledge acquisition. Software

Design is one such activity. Much work done by Leon Osterweil shows that design has

been used as both a verb and a noun in the software industry. This means that the

variation in the final design, noun, are due to the variations during design (verb). The

reactions and feedbacks of users to variations in the design process seem to be potentially

useful tools in determining what aids human designers want and need. In particular,

resistance to certain forms of assistance and more ready acceptance of others is noted.

That, in turn, seems to promise to provide insights into the nature of design, and the ways

in which humans perform designing. [LEE 19]

Apart from the successful and timely completion of a software design, what really

matters is the quality of the outcome. It is imperative to hold high standards of design and

development plans in order to march ahead in a competitive market.

“Estimating quality of software systems has always been a good practice in software

engineering. Presently, quality evaluation techniques are applied only as an afterthought

to software design process. However, quality of a software system should be stated based

on the end-user’s requirement for quality. Based on this observation, a paper was

proposed in 2005 for an estimation model called ReQuEst (Requirements-driven Quality

Estimator). ReQuEst is an attempt to quantitatively estimate the quality of a system being

designed from its analysis model. The quality is estimated in terms of adaptability and

extendibility which are also important parameters in system design. During requirements

analysis, evolving requirements are also analyzed to capture a few quality indicators from

them. These indicators are used to compute the requirements for the above parameters

from the analysis model. This is an extension to the thought discussed earlier where we

suggest some tweaks in terms of rearrangement of development phases. Thus, the analyst

can quantitatively specify the quality demands of the system to be designed along with

the functional requirements. These quality specifications enable the system designer to

precisely design systems meeting the values specified. Further, the model can be used to

estimate the maintainability of the system in terms of the above parameters.” [JAN 20]

 34

This gives us a much clearer idea about the impact of knowledge acquisition in every

aspect of software project development. What needs to be studied in m much detail is the

impact of such factors on the project plan. The managerial domain is the most involved in

such issues and a lot of work has been done in order to categorize employees in such a

manner that their competencies can be put to optimum use.

NASA faced quite a bit of failures lately in their space shuttle development plans and

thus this triggered a re-look at their process by GAO [Government Accountability

Office].

At NASA major Review is done before moving from design to Implementation phase to

ensure the knowledge maturity level. NASA has defined certain knowledge points to

review knowledge and to check future feasibility of every project.

This review provides them with certain sound information for investment decisions. It

has to be noted that an investment up to the scale that NASA deals have a large stakes

and dependencies.

Figure 5: Knowledge Points [GAO]

But for developing their Flight control and most of the Ground projects, they do not look

at the technology and “Skill” maturity levels. This caused some initial jitters in the

projects and so it was suggested that they use Technology Readiness levels at each of

 35

these points. [TRL] was defined by NASA itself and now should be used as a

contributing factor to prove the future feasibility. [GAO 21]

TRL as defined by NASA was mostly used to gauge the readiness of the technology

levels. This helped in minimizing the risk factors as higher TRL levels indicated lower

risks. One of the major factors for critical projects such as the Flight control is the

minimization of risk. This was easily achieved using the TRL.

Figure 6: TRL by NASA [GAO]

Another contribution towards the non-rigid process model research was done by Leon

Osterweil and Aaron G. Cass in the following discussion. A possibility was discussed of

having a collection of models which collectively are consistent with the requirements.

This requires a series of activities to complete the models. Thus the planning would be

changed according to the latest context and status. This would be an excellent example of

an opportunistic approach. It also is mentioned that it becomes rather difficult when it

comes to formalizing such a model. As part of this ongoing effort, they have developed a

process-programming language called Little-JIL and an interpreter for it called

Juliette and have used both to encode and execute various complex processes, in software

engineering as well as in such other domains as medicine and government.

The method followed here is as explained above and a large amount of TWBS [Task

Work break down Structure] has been used and every task has been considered as a

 36

model and completed. A stress has been laid on acquisition of knowledge for the

development of the artifacts. [AAR 22]

This can be seen as a major shift from traditional thinking of rigid and static processes. A

large amount of dynamicity has to be introduced in order to incorporate the changing

conditions and project delays.

The idea behind looking at various software process cases was to study the explicit or

implicit pervasiveness and presence of knowledge acquisition in the software

development process. We can clearly state that although the timely acquisition of

knowledge and skill has proved to be critical, not much effort or formalization has gone

into recognizing this situation.

KABASPP was introduced with a similar motive and intends to fill this gap by

introducing the 5 domains of knowledge. We shall see later on in the proposal how these

can be utilized to make full use of knowledge based planning.

Chapter 6

Presence of KABASPP in Traditional Software Engineering
Issues

We shall now look at the presence and implication of knowledge acquisition in

Traditional Software Engineering practices such as Testing, Component Based Design,

and Planning.

A reliable way of achieve a desired output of the available resource is to control the

conduct of those executing the process throughout the complete process.

This clarifies the need for Management domain knowledge for a successful project

completion when there is a constraint on the resources.

 Although this control could be negative, various techniques and plans can be introduced

to sugarcoat the discipline. [DEW 23]

 37

In such a situation, it becomes mandatory to focus on providing knowledge and skills.

Thus in terms of a process we should provide them with some instrumentation. Thus it is

again important to have the right information about the right tools at the right time. It can

thus be clearly seen that it has been emphasized time and again to ensure the presence of

knowledge and skill required as claimed in KABASPP [HUM 24]

A lot has been written on context switching for programmers and it is interesting to study

the excerpts. Context Switching is difficult and thus it is tough for a person to easily

adapt to the new phase. Thus if a person needs to switch from the requirement phase to

the design/coding phase then we can conclude that he also needs to switch from the

Application domain to the Development Environment domain. Thus such a context

switch would be successful if that person is equipped with the knowledge and skill to

handle the new environment. [OST 25]

Some disagree to this and claims that since we do so many things concurrently we can do

it easily. Thus it is claimed that we have a % of knowledge of both the domains and thus

makes it even more important to know about these domains and study the shortfalls so

that we can handle both the processes simultaneously. [KAP 26]

Thus we should provide the people with sufficient support doing it so that they can

switch easily thus, implicitly, making the people ready for the Application solution

domain.

 38

Chapter 7

Use of Knowledge acquisition in Traditional Engineering
Domains

Project planning has been existent since centuries. Disciplines like Construction

Engineering, Mechanical Engineering and Chemical Engineering have caught the interest

of mankind since ages. Over the years of development of marvelous architectures and

machines, these disciplines have matured to a stage where the craft and art of developing

the final product is quite rigid. Compared to such immense history of success and

failures, Software Engineering seems like a newborn. It has not been more than thirty

years that the concept of engineering software has caught up. We intend to study many

such cross domain examples and see how they relate to the software project planning. We

shall go through some examples of successful project planning activities and some

problems faced by this industry.

As discussed earlier, Construction Project Management is not seen as much as an internal

affair but is largely accomplished through management of personnel of different domains

and employers working together.

Could this be so in the Software Development Team? In the coming years, with highly

outsourced and component based development, this could very well be the case.

Mostly planning activities are carried out using a simple approach of Task Work

Breakdown Structure. This also calls for prioritizing these activities by using techniques

such as Precedence diagram Critical Path Method.

Activities in a Construction Project are highly dependant on the completion of previous

activity. An example of this can be seen in the construction of a pile supported footing.

This activity includes the following sub-activities. Excavation, Building of footing forms,

Procurement of Piles.

All these activities can be said to be independent in terms of their raw material and

craftsmen required. But in a process of constructing a pile supported footing, all these

 39

activities are interdependent. Each activity is followed by some activity except the last

activity.

This puts every activity in an important position. This is the reason why not even a single

activity is put on hold for more than a threshold amount of time on Construction

Engineering. Although contrary to the dependency, the raw materials required for the

remaining activities can be procured in advance or on schedule to avoid any further

delay.

 Can this be said for the Software Engineering Activities? Can we procure the raw

material required for building software? The answer is yes. This can be achieved by

careful planning and recognition of the fact that delays can be caused most of the times

due to lack of knowledge or expertise and not due to the lack of facilities.

We should also study some of the major constraints faced during project planning and try

to map them to the software engineering domain. Planning for a Construction project is

mostly restraint based. This means that the shortcomings in the requirements are used as

the basis for design and development decisions. This may help us in exploring new

approaches towards software project planning.

Construction Project Software Project

Raw Material Constraint Knowledge Constraint

Equipment Constraint Skills/Tools Constraint

Functional Constraint Requirement Deadlines Constraint

Safety Constraints Quality Issues

Table 2: Restraint Matching

This clearly signifies that restraints as shown above play a major role in any project

planning. These should then be shown as activities on the job logic or plan. The process

of satisfying these constraints in a software development project can be viewed as the

process of knowledge acquisition or skill development, i.e. KABASPP.

 40

Another example where project restraints play a vital role is when restraints act as

dependency between two activities. Let us take an example of a Carpentry Job where the

Drill is been required by two Carpenters for two different jobs at a time.

Similar example can be seen in the parallel development of software where tool like

ClearCase prove to be handy. When two or more teams are working on the same artifact

then managing the skeleton of the system could prove to be a real tough job.

Figure 7: Parallel Development

This would need a lot of expertise in managing the integrity of the basic skeleton when

more than one team is working on it. In Fig. 9, a sequential approached is accepted but

there could be artifacts which are used in common. Thus it is really important to

understand the dependencies and the integration tricks for a parallel development.

[RIC 8]

 41

Let us now look at some of the major problems faced in Construction Projects and how

they can be translated for similar situations in Software Projects.

a- We cannot expedite physically beyond a certain level. Is this so in Software

Development? Can the process of coding be expedited by adding personnel?

 It is a known fact that adding people late in the project will force the team into the

learning phase and further delay the project. What if we anticipate such crunch

situations and start preparing the personnel for late introduction?

b- If we do expedite some of the critical paths, other dependant less critical path may

now become critical. If we finish the design early, what effect will this have on

training time for developers?

c- Long Range and Short Range (30 days) planning is done separately. For short

range plans, necessary workers and technicians can be interchanged. Can this be a

case for Software Teams?

d- Construction Projects need different manpower throughout the project. Thus the

Hiring, Training, Firing technique will not work or else you will loose your best

craftsmen. Similar can be said about the software development teams. Can this be

overcome by proper training and knowledge maintenance?

Let us consider a project for 10 people. We would be requiring the following skills

throughout the project. UML modelling for Design, C++ coding for development, MS

Project for Documentation, Jtest for Automated Testing.

The project is to be completed in 3 phases. Each phase requires a different combination

of skills and the task is to manage the 10 people for the development. What could be the

easy way out for such situations?

Requirements Phase 1 Phase 2 Phase 3

1 7 UML 6 C++ 7 Jtest

2 3 MS Word 3 MS Word 3 MS Word

Total 10 10 10

Table 3: Competency Requirements

 42

 A simple example where each phase requires strength of 10 people is explained. Such

situations are generally tackled in the software domain by finding ways to acquire those

skills in the following ways.

1- Internal Transfers

2- Sub Contracting

3- Training Schedules.

This process is known as Resource Smoothing. [RIC 8] It can be thus claimed that

managers should adapt to a Knowledge based project planning such as KABASPP which

will ensure timely availability of the required skill and knowledge.

Lastly we can look at some interesting research which will come very close to

recognizing the need for special attention for knowledge acquisition. Working on similar

lines, we can deduct from a report published by the European Foundation for the

Improvement of Living and Working Conditions that an ergonomic approach needs to be

adapted to improve the working conditions and productivity.

It is important to bring together all specific areas of knowledge relating to human

workers, design, tools, Machinery and safety. This is called as an ergonomic approach.

Today most of the trades are multi-disciplinary and worker is at crossroads of a number

of constraints such as noise, heat, workload, achievement.

The actual work may not match the design and participatory goals unless every

stakeholder is involved in the evaluation process. Thus an issue like safety needs to be

handled at all levels of knowledge and position such as the designers shall take care of

design faults and will be the top brass. The managers will ensure that the rules and

precautions are followed strictly to avoid any deviance from the safety guidelines and the

design. Workers follow the procedures individually and take care of their own safety.

Finally the owner takes care of the budget issues regarding safety.

[DRA 27]

Thus it is highly imperative to ensure the presence of knowledge from every sector and

domain as defined in KABASPP. We have now seen clearly that without using

 43

KABASPP or any knowledge base for the planning activity proves disadvantageous for

any project.

On a similar note, we shall now look at Team formation issues which can be solved using

the KABASPP approach.

Chapter 8

Manpower Buildup and Team Formation

Having had a pretty good look at the pervasiveness of KABASPP and knowledge

acquisition in the Software Engineering field, let us now concentrate on the application of

these factors for activities such as Team formation and Manpower buildup throughout the

development process.

Cognitive Psychology deals with many such issues related with the logic behind

performing the development tasks. It is the study of the mechanism by which mental

processes are carried out and the study of type of knowledge required for each process.

[HOC 28]

We wish to use such approaches to tackle the ongoing problem for the lack of

acknowledgement of knowledge as an input in the software development process.

An interesting categorization has been done by Silvia et al, for grouping employees

according to personality factors and competencies. This forms a managerial point of view

about employees and a lot of emphasis has been laid upon selecting the right people for

the right places. These 16 Personality factors have been grouped into 4 major competency

brackets and are as follows.

A) Intrapersonal

1- Analysis

2- Decision-Making

3- Independence

4- Innovation and Creativity

 44

5- Judgment

6- Tenacity

7- Stress Tolerance

B) Organizational

1- Self Organization

2- Risk Management

3- Environmental Knowledge

4- Discipline

5- Environmental Orientation

C) Interpersonal

1- Customer Service

2- Negotiation Skills

3- Empathy

4- Sociability

5- Teamwork and Co-operation

D) Management

1- Co-Worker Evaluation

2- Group Leadership

3- Planning and Organization

Following table has been used from the referenced paper to exemplify the exact nature of

categorization of employees. This is a suitability table used for matching the

competencies and personality factors to that required for a particular role.

 45

Table 4: Competency Matching for Managers [SIL 29]

The basic idea behind using such techniques is to identify the requirements for each task

and satisfying it. It can be clearly seen that the 16 factors mentioned here act as input for

the final product. The process followed for achieving this is simple.

a- Categorize people according to the 16PF.

b- Define the Roles

c- Match the Individuals. [SIL 29]

KABASPP is on similar lines although with a major difference in the strategy for

competency matching. What is important to note here is that such solutions can be

applied to situations where new members are not to be recruited. But when a new team is

to be formed, it is imperative to define the task and subtasks first. The requirements for

these tasks are to be clearly identified based on the 5 domain structure defined in

KABASPP. Thereafter the possible recruits are matched to the requirements and those

who fall short are deployed on a respective training session. We shall see more of this in

the proposal.

 46

A large amount of research has thus been pointed towards competency development. One

such paper has been proposed by Judy Hallstrom. She has organized the skills and

competencies of the mangers into 3 different compartments. Each of these competencies

is interdependent and the weakness and strength of each depends on others.

The Three Competencies -Business, Technical and

Management

Paper identifies three knowledge/skill domains that were common to most successful

PMO groups. These are

Business Acumen - what you need to be able to effectively manage projects at an

Enterprise.

Technical Acumen - the knowledge and skills that are specific to Project Management.

Management Acumen -the knowledge and skills needed by anyone supervising others but

specific to the project management arena where one may be managing people on a

project that are not direct reports.

The process followed in this is as follows

- to create a plan based on the shortfalls of knowledge

- to asses the skills shortfall

- adjusting the plan accordingly

[JUD 30]

This is a very conservative approach and can be very helpful in guaranteeing the

completion of the project.

Carrying on the discussion over manpower classification, Niederman in his paper has

clearly mention three categories of competencies for E-Commerce Project teams.

 [NED 35]

 47

Knowledge- Area High-Level Skill

Web Programming

Web Networking

Web Databases

Web security

Web Management

Technical

Web Site Design

Interpersonal Communication

Problem Solving

Conflict Resolution

Collaboration

Human

Dealing with change

Organizational Goals and Objectives

Organizational Policies and Procedures

Organizational functions and processes

Organizational culture

Organizational

Organizational Constraints

Table 5: Manpower Classification

It is thus quite evident that all these solutions have been proposed with a clear idea of

knowledge and skill as sole inputs for the final product. Other factors such as facilities

and funds are taken for granted.

Now that we have recognized that training is absolutely necessary to hire and retain good

professionals, we shall look at a training model proposed by Blanton et al. This proposal

justifies the use of Requirements as the basis for planning the training programs. They

propose that training efficiency can be measured by the amount of time spent in training

whereas the training effectiveness can be measured by examining three different training

outcomes: learning, task performance and organizational results.

Following methodology is used for this model.

 48

- Task Analysis for each project

- Personal Analysis of the potential recruits

- Analysis of total Competency Deficiency

- Training the deficiencies

- Measuring Training Effectiveness

- Measuring Training Efficiency.

The research model in Figure is based on Blanchard and Thacker's five phases of the

training process.

Figure 8: Task Deficiencies

It is thus very important to note that such a framework can be utilized in applying

KABASPP for planning. This is very similar to the process we wish to propose but needs

to be using more of KABASPP for tasks such as Personal Analysis and Task analysis.

Proposal will throw more light on how to actually find the Competency Deficiency and

some methods to gauge accurately the lack of knowledge. [BLA 31]

Finally before going to the proposal we shall look at some work done by the Software

Engineering Institute (SEI) on Team processes and P-CMM. TSP (Team Software

 49

Process) and P-CMM (Person Capability Maturity Model) can be viewed as models

introduced at the SEI to address the issue of optimum Human Resource Management.

The documentation can be downloaded from the SEI site.

 The People CMM describes an evolutionary improvement path from ad hoc,

inconsistently performed workforce practices, to a mature infrastructure of practices for

continuously elevating workforce capability. We shall not study the details of P-CMM or

TSP but it is important to understand the logic behind introduction of such frameworks.

Following principles have been quoted to be the basis for P-CMM.

1. In mature organizations, workforce capability is directly related to business

performance.

2. Workforce capability is a competitive issue and a source of strategic advantage.

3. Workforce capability must be defined in relation to the organization’s strategic

business objectives.

4. Knowledge-intense work shifts the focus from job elements to workforce

competencies.

5. Capability can be measured and improved at multiple levels, including individuals,

workgroups, workforce competencies, and the organization.

6. An organization should invest in improving the capability of those workforce

competencies that are critical to its core competency as a business.

7. The improvement of workforce capability can be pursued as a process composed from

proven practices and procedures.

8. Since technologies and organizational forms evolve rapidly, organizations must

continually evolve their workforce practices and develop new workforce competencies.

 50

Following table quoted from the documentation can be used as a basic guide.

Levels\ Highlights Process Improvement

Initial Inconsistent Management NA

Managed People Management Repeatable Practices

Defined Competency Management Competency based

Practices

Predictable Capability Management Measured practices

Optimizing Change Management Continuously improving

practices

Table 6: PCMM levels [PCM 32]

P-CMM clearly identifies the need for an agile workforce and emphasizes the subject of

the discussion here that the human resource needs to be trained adequately according the

project requirements. It thus has suggested a 5 level maturity framework for the entire

workforce starting from the initial to the optimized which are all based on the maturity of

Process areas defined for the individuals. It thus concentrates on the Process areas and

Process area goals independently. It accumulates the common practices and tries to

achieve the Process area Goals. Finally achieving the maturity levels is thought of.

 51

Chapter 9

Proposal

We have looked at various domains in Software Engineering and in other Engineering

Disciplines to understand the logic behind planning decisions and strategies. We are

enabled to conclude that KABASPP as a process and KABASPP as a Project Planning

Framework is the need of the hour. We have seen how KABSPP can be incorporated into

existing project planning models such as the Waterfall model and how can activities such

as Component based Design and Testing can be done more efficiently using KABASPP.

We have also looked at some of the major differences seen in traditional engineering

disciplines like Construction Engineering and that in Software Engineering. This study

has leaded us to some important questions which need answering.

As seen in the work by Putnam and Myers, some principles applied to resource

management in traditional disciplines can be reapplied in the software development

project. It is important to study the life-cycle manpower model [NOR 33] before

analyzing the work done by Putnam and Myers. Peter V. Norden developed a life-cycle

manpower model in 1963 at the IBM development laboratory, New York. This model

was specifically designed to look at the impact of investment done in human resource in a

hardware project. It was duly noted that considerable amount of the total expenditure was

spent on human resource. He then applied the Rayleigh Curves, well known after the

physicist Lord Rayleigh, to this manpower buildup. The Rayleigh equation also applied

to the manpower curve proposed by Peter V. Norden.

y = 2Kate
-at2

Here,

y = manpower rate at each point on curve

k = effort (area under the curve)

 52

t = development time

a = a constant governing the time to peak manpower

The graph can be seen in Fig. 10.

We can clearly see a pattern of growing strength in terms of people in the beginning of

the project and gradual settling down through the middle phases of design and

development and finally a drop towards the completion of the project. This is a fairly

acceptable pattern for staffing in most of the hardware projects.

Figure 9: Staffing pattern for a Hardware Project

There is a considerable amount of relation between the Rayleigh curves for hardware and

software. Implications for these now point towards the project planning process and the

sequence of activities taking place during the development life-cycle.

Despite the fact that there is disagreement about the practicality of actually applying the

Rayleigh Curve for software project planning, the follow up done by Putnam and Myers

and many other research institutes increase it’s credibility.

 53

We can see a widespread usage of the Rayleigh curves for project planning purposes

ranging from government organizations to private research institutes and educational

bodies. This life-cycle manpower model was further applied to the software engineering

projects in their work by Putnam and Myers.

A life-cycle manpower buildup graph was introduced for the software projects. This can

be seen in Fig. 11.

 [PUT 34]

Figure 10: Staffing pattern for a Software Project

Let us analyze this situation further by introducing the concept of instantiation here. Let

us say that at time t1, we need p1 number of people for the task that is currently ongoing

at time t1.

 54

Figure 11: Instantiation of the Staffing Curve

Now, most of the phases in traditional software development plans like the waterfall-

model are said to be dependant on the previous phase. Thus the completion of one phase

leads to the initiation of the next.

Every phase can be seen as a miniature repetition of the overall process. Thus each phase

can be represented in the Rayleigh curve fashion.

 55

Figure 12: Staffing pattern for each phase of Software Development

How will this situation unfold in case the project runs overtime or lagging behind?

A lot has been said and done on Software Project Planning and utilization of resources

like the staff and developers to achieve the deadlines. Many models have been introduced

to study the staff loading patterns and the amount of effort required during the process.

The underlying assumption in most of these studies has been that the developer or team

member is at the maximum knowledge or skill maturity level. General project

management wisdom contradicts this assumption and compels us to have a re-look at the

factors affecting delays in the planned schedule. The “Knowledge/Skill-factor” needs to

be considered while analyzing such situations.

 56

Thus considering the case in Fig. 12, when we expect p1 number of people to be

deployed on the project, we are actually implying for the deployment of 12 completely

trained and experienced individuals on the project. Is this actually possible in all

situations? As mentioned earlier, general project management wisdom shall contradict

this and lead us to completely new angle of looking at this staffing issue.

As we have mentioned earlier, Knowledge/Skill forms the foundational investment in any

software development project. Thus we can conclude that the raw material for any

software development is the knowledge and skill of the development team. It has been

thus highlighted throughout the paper that the satisfaction of these inputs at the required

junctures will ensure timely completion of the project.

In order to ensure this we should introduce some kind of a metric system which will

enable us to gauge the current status of Knowledge/Skill levels and the required

Knowledge/Skill levels.

Let us consider a Knowledge/Skill grading for the software developers on this project and

call it “Knowledge Points”.
ii

Consider p1 = 12.

If the developers are to be graded on a range of ten based on their knowledge and skill

levels, a few suggestions for which are mentioned later, then we should be looking

forward to deployment of 120 knowledge points at point t1. We shall call this as

“Knowledge Loading”.

“Knowledge Loading” can be defined as the amount of knowledge /skill required at a

particular time t to ensure the timely completion of the task adhering to the requirements

that is ongoing at point t.

ii
 This is not to be confused with knowledge points introduced by GAO, USA which is

actually a phase whereas the knowledge points mentioned here shall act as metrics for

measuring the knowledge and skill levels of the developers.

 57

This finally changes the complete outlook towards Figure 11. This now forms as the

Requirement Curve rather than the actual loading curve. If this is satisfied then we can

vouch for successful schedule estimation. In reality, we can see that the actual loading is

not as we desired.

 So finally when we compare the required amount of Knowledge/Skill required for the

completion of the task at point t1 to the knowledge/skill available in p1 team members,

we can conclude that both are not in conformance with each other.

Thus we shall look at another Rayleigh curve to explain the knowledge loading concept.

Figure 13: Knowledge Gap

 58

The answer to this problem lies in introduction of KABASPP as an underlying

framework for software project planning. We will be looking at various strategies in

dealing with this knowledge gap problem.

Let us consider the following hypothetical situation for solving this problem and looking

at the various options available for solving it.

Gyan Inc. is supposed to be a startup firm which develops location based solutions for

home users. It deals with external telecom providers and has just bagged a project for

developing a geospatial tracking and reporting.

Project managers at Gyan Inc. have studied previous projects and sketched a schedule

and development plan. They have also decided to deploy 12 members including 4 testers,

3 developers, 3 designers, an accountant and a project manager on the team based on the

function point estimation done by the managers.

During the development phase, Gyan Inc. faces a shortage of J2EE developers and

monitoring clearly mentions that the module cannot be developed in time.

Apart from the 3 developers, the 3 designers can be used as developers. It is a well

known fact that adding personnel late in the project shall further delay the process as the

complete development team goes into a learning phase.

There are methods in which such a situation can be handled but before we look at it let us

step back see if we could have avoided getting to this point all together.

It is proposed to use the KABASPP process for planning the project. This would lead us

to follow these steps.

1- Analysis of the skills\knowledge necessary and when.

2- Analysis of the skills \knowledge available.

3- Acquisition of the skills\knowledge necessary before the task is initiated.

4- Actual performance of the task.

 59

A primitive guidance is provided here to understand the application of KABASPP

concepts to projects. These can be changed or instantiated as per the specific

requirements of the project group.

Step 1 requires a study of previous projects by experienced managers and a

categorization of the technologies\skills required on the basis of KABASPP knowledge

domains. [REE 2]

A detailed analysis of the knowledge\skill requirements has to be done for each and every

phase of the development. They should be categorized into the KABASPP domains

namely Application domain, Application solution domain, Development environment

domain, Run time environment domain, and Managerial domain.

This is followed by scheduling and estimation of the project and a detailed workflow is

devised. To obtain the knowledge points, we can multiply the No. of people required (For

one particular skill) by 10. This shall give us the total knowledge points for that skill

required at time t1. Adding up the knowledge points for each skill required at time t1

shall deliver us the total number of knowledge points required at time t1.

Step2 is one of the most important stages of software planning. Skill\knowledge available

can be calculated by grading each individual who is assigned to the project or is a

probable.

Based on the 5 domains, these individuals are graded from 1 to 10 with an increasing

order of knowledge\skill.

To ensure that these calculations are not affected by bias, time or location, following

methodology is used.

 60

The current knowledge and skill of a person can be calculated in the following ways and

each answer has a different weight depending on the project. An informal survey

concluded the following methods and their weights. These are guidelines for grading an

individual for knowledge/skills.

No. Method of Grading Weight

1 Work Breakdown Structure (WBS checklist)

[To be filled by the individual who is graded]

20

2 Interview/Chat with the person conducted by the

project manager

20

3 Observation [Monitoring regular work done by the

person]

10

4 Meeting of the team members and discussion

groups

10

5 Previous Work experience on the technologies

required

30

6 Work inspections [Formal inspection done by peers

or testers]

10

Table 7: Method of Grading an Individual for Knowledge

Step3 as discussed earlier would comprise of various strategies to fill up the knowledge

requirements. This can thus be achieved by training the required personnel or hiring new

personnel with the required knowledge or acquiring components for that module.

Outsourcing the module can also be an option. How these options are mapped to the

knowledge acquisition has been explained earlier.

Step4 concludes with the actual performance of the task.

This marks the end of a procedure which can be used for gauging the knowledge levels

for an individual and the task to be performed using KABASPP.

 61

As mentioned earlier, we have looked at the possibility of rearranging the phases of

software development in such a manner that many activities can be performed in parallel

which use the same kind of knowledge base. Thus in case of the design and testing of a

search engine, we can match the design specification and test case requirements.

Let us consider a team working on a search engine which will search all the people and

their telephone numbers living in your vicinity having a car. This search engine can be

said to posses the following capabilities and this could form the major part of the design.

The search engine should be able to perform the following.

a- to be able to search on the basis of name of the car

b- to be able to search on the basis of nearness

c- to be able to search on the basis of brand of the car

The conformance of these design goals will also ensure the passing of test cases for

conformance of the requirements.

The test cases can be viewed as

a- Does the system search person x depending on the name of the car

b- Does the system search person x who lives nearest to the user

c- Does the system search person x who owns a similar brand of a car and lives in

the vicinity

Bothe these exercises can be completed with the help of the same knowledge base and

such kind of activities can be done in parallel.

We thus propose KABASPP as a solution to a variety of problems in the Current

Software Engineering Scenario. We are sure that with the right application of KABASPP

classification and process, Project planning would be carried out much more confidently

and would reduce the overall risk in the process.

 62

Conclusion & Future Work

The initial study of the current Software Project Planning techniques gives some pointers

towards the shortcomings or adjustments required in some basic assumptions. It is high

time that we recognize that the real concern is right knowledge and skill acquisition at the

right time. We have thus proposed KABASPP as a solution to this knowledge deficit and

suggested ways to apply this theory to the existing planning techniques. The

pervasiveness of KABASPP as a theory is now quite evident and reinforces its use.

Manpower buildup and Team formation were considered specifically to demonstrate the

Knowledge Gap and application of KABASPP approach. To conclude we can claim that

some major re-thinking needs to be done while approaching Project Plans and

Knowledge should be considered as in Input Factor while devising them.

Although this thesis has suggested a preliminary approach towards the application of

KABASPP some major areas where there is immense scope for research are as follows,

� The Skills and Knowledge Levels required for a successful completion of a

particular task needs to be accurately gauged and measured. This can be in terms

of “Knowledge Points” as suggested in the thesis.

� The skills and Knowledge levels of an individual who is a potential recruit for the

project needs to be gauged to understand where we stand. The difference between

this measurement and the previous one will clearly quantify the “Knowledge

Gap”.

� Apart from quantification, a major project could be to formalize the technique of

application of KABASPP process. This will also include the first two

enhancements.

 63

Chapter 10

Appendices

 Appendix A: Bibliography 62

Appendix B: Acronyms & Glossary 66

Appendix C: Unused References 67

Appendix A: Bibliography

1. P.F. Drucker, Management: Tasks, Responsibilities, Practices, Harper &Row,

New York, 1973[PETE 1]

2. K. Reed, “Knowledge an acquisition based approach to software project

planning”. Position Paper for CASE90, Amdahl Australia Intelligence Tool

Program and La Trobe University, Melbourne, 1991 [REE 2]

3. K. Reed, CSE41 SPM Lecture Notes Summary, Rev 2.0, Set 1, La Trobe

University, Melbourne, 2005 [REE 3]

4. W.W. Royce, “Managing development of Large Software Systems: Concepts and

Techniques”, Proceedings of WESTCON, San Francisco, August 1970 [ROY 4]

5. S.L. Pfleeger, Software Engineering: Theory and Practice, Prentice Hall, 1998.

[FLE 5]

6. Ian Sommerville, Software Engineering. Addison-Wesley, 7th edition, 2004

[SOM 6]

7. R. Pressman, Software Engineering a Practitioner's Approach, 6th Ed., New

York: McGraw Hill, 2005 [PRE 7]

 64

8. R.H. Clough, G.A. Sears, Construction Project Management, John Wiley & Sons

Publications, Third Ed., 1991, [RIC 8]

9. D.D. Zimbelman, Proceedings of a Symposium by Irrigation and Drainage

Division of the American Society of Civil Engineers, Portland, July 1987,

 [ZIM 9]

10. W.E. Howden, “Validating Programs without Specifications”, University of

California at San Diego, Proc. TAV-3, Key West, December, 1989, [HOW 10]

11. K. Sherdil, N. Madhavji, “Personal progress function” in software process, Ninth

International Software Process Workshop, 117-121, Airlie, Virginia, USA, 1994,

[NAZ 11]

12. J.H. Lehman, “How Software Projects are really managed”, Datamation, ACM

International Conference Proceeding, 1979 [LEH 12]

13. H.D. Mills, M. Dyer, and R.C. Linger “Cleanroom Software Engineering”, IEEE

Software, September 1987 [MIL 13]

14. G.M. Weinberg, D.P. Freedman, “Reviews, walkthroughs, and inspections”,

IEEE Transactions on Software Engineering, 1984 [FRE 14]

15. D. B. Walz, J.J. Elam, and Bill Curtis, “Inside software Design Team: Knowledge

Acquisition, sharing and integration”, Comm. of the ACM, 1993 [DIA 15]

16. A.T. Berztins, “Component based planning”, 6
th
 International Software Process

Workshop, Virginia, 1994 [BER 16]

17. D. Janakiram, M. S. Rajasree, “ReQuEst: Requirements-driven Quality

Estimator”, Distributed & Object Systems Lab, Department of Computer Science

and Engineering Indian Institute of Technology, Chennai, India, 2004 [REQ 17]

 65

18. L. Osterweil, “Software Processes are Softwares too”, Revisited, University of

Colorado Boulder, Colorado, 1997 [LEO 18]

19. Leon J. Osterweil, “Process Issues are Integral to the Science of Design”,

University of Massachusetts, Amherst, 1994 [LEE 19]

20. D. Janakiraman, M.S. Rajasree, “Requirement driven quality Estimator”, Jan

2005[JAN 20]

21. “Implementing a knowledge-Based Acquisition Framework could lead to better

Investment Decisions and Project Outcomes”. A Project Analysis Report by the

U.S. Government Accountability Office for NASA, 2005 [GAO 21]

22. Aaron G. Cass, L. J. Osterweil, “Process Support to help Novices Design

Software Faster and Better”, Proceedings of the 20th IEEE/ACM international

Conference on Automated software engineering, 2005, [AAR 22]

23. D.E. Perry, A. L. Wolf (1994), “People Processes and Practices”, 9
th
 international

Software Process Workshop at Virginia [DEW 23]

24. W.S. Humphrey, “Using a defined Measure and Measured Personal Software

Process”, IEEE Software, 1996 [HUM 24].

25. L. Osterweil (1994), Proceedings of the 9
th
 international Software Process

Workshop, [OST 25]

26. Kaplan, N. Madhavji, (1994), Proceedings of the 9
th
 international Software

Process Workshop, [KAP 26]

 66

27. From Drawing Board to Building Site, Working Conditions Quality Economic

Performance Report by the European Foundation for the Improvement of Living

and Working Conditions, London, 1991 [DRA 27]

28. J.M. Hoc, T.R. Green, R. Samurcay, D.J. Gilmore, “Psychology of

Programming”, A Publication of European Association of Cognitive Ergonomics.

[HOC 28]

29. S.T. Acuna, Natalia Juristo, A.M. Moreno, Emphasizing Human Capabilities in

Software Development, IEEE Computer Society, 2006. [SIL 29]

30. J. S. Hallstrom, “PM Knowledge - The Three Competencies”, Notes at Franklin

Templeton Investments, 2003 [JUD 30]

31. C. Gjestland, J.E. Blanton, R. Will, R. Collins, Assessing the Need for Training in

IT Professionals: A Research Model, University of South Florida, 2006. [BLA 31]

32. B. Curtis, W.E. Hefley, S.A. Miller, People Capability Maturity Model (P-CMM),

Version 2.0, Carnegie Mellon, Software Engineering Institute, July 2001, [PCM

32]

33. P.V. Norden, “Useful tools for Project Management”, in Operations Research in

Research Development, B.V. Dean, ed., John Wiley & Sons, New York,

1963,[NOR 33]

34. L.H. Putnam, “A general Empirical solution to the Marco Software Sizing and

Estimating Problem”, IEEE Trans. Software Engineering, Vol.SE-4, No. 4, July

1978 [PUT 34]

35. F. Niederman, Staffing and Management of E-Commerce Programs and Projects,

Saint Louis University, 2005. [NED 35]

 67

Appendix B: Acronyms & Glossary

Glossary

Non-Rigid Processes – A Software Development process which is highly dynamic in

terms of the sequencing of its subtasks. The job logic for the process is defined run time

according to the conditions prevalent at that stage.

“Knowledge Loading” can be defined as the amount of knowledge /skill required at a

particular time t to ensure the timely completion of the task adhering to the requirements

that is ongoing at point t.

“Knowledge Points” can be defined as the metric used for measuring the

Skill/Knowledge levels of an individual. These metrics are currently in primordial form

and need to be defined once enough data collection is done.

Acronyms

KABASPP – Knowledge an Acquisition Based Approach to Software Project Planning

TRL – Technology Readiness Levels

NASA – National Aeronautics & Space Administration

GAO – United States Government Accountability Office

RAD – Rapid Application Development

DOS – Disk Operating System

SD – Structured Design

CASE – Computer Aided Software Engineering

WBS – Work Break-Down Structure

TWBS – Task Work Break-Down Structure

SCM – Software Configuration Management

 68

Appendix C: Unused References for future Study

O. Bray, M. Prietula, “The Concept of Skill Management”, Honeywell Inc., August 1979.

P.J. Denning, “Educating a new Engineer”, Communications of the ACM, December

1992, Vol.35, No. 12.

H. Munoz, K. Gupta, D. Aha, D. Nau, “Knowledge-Based Project Planning”, IJCAI

Workshop on Knowledge Management and Organizational Memories, Seattle, August

2001.

P. Giorgini, S. Rizzi, M. Garzetti, “Goal-Oriented Requirement Analysis for Data

Warehouse Design”, University of Trento, Italy, 2005.

L. Morgenstern, “A First Order theory of Planning, Knowledge and Action”, New York

University, NYC, 1986.

A.B. Schwarzkopf, R.J. Mejias, J. Jasperson, C.S. Saunders, H. gruenwald, “Effective

Practices for IT Skill Staffing”, Communications of the ACM, January 2004, Vol. 47,

No. 1.

A.C. Nelson, K. Joshi, “Effectively Utilizing Systems Developers on Projects”, School of

Business Administration, University of Missouri, 1993.

S. Poltrock et al, “Information Seeking and Sharing in Design Teams”, Florida, USA,

2003.

G. Tidhar, A. Rao, M. Ljungberg, D. Kinny, E. Sonnenberg, “Skills and Capabilities in

Real-Time Team Formation”, Technical Note 27, Australian Artificial Intelligence

Institute, July 1992.

S. Henninger, “Developing Domain Knowledge Through the reuse of Project

Experiences”, University of Nebraska-Lincoln, 1995.

