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Abstract

k-Anonymity and l-Diversity have laid the fundamental techniques for preserving privacy in microdata, and many
research works have been inspired by them, proposing better and stronger levels of privacy. A common technique
for achieving higher privacy in microdata tables is to diversify the records in such a way that sensitive information
stored in the data is less likely to be disclosed. While most of the approaches succeed in protecting the original
sensitive information to a high degree, issues arise when sensitive values are generalised along a hierarchical tax-
onomy, causing an increase in probability of privacy disclosure already after the first level of generalisation. This
paper introduces n-Dependency, a novel technique that considers the hierarchical nature of sensitive information
and their generalisations when diversifying the microdata. We propose a formal model and algorithms, and verify
our technique by conducting extensive experiments.
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1 Introduction

Privacy preservation in microdata is an important issue when making the data available to
the public, for research and general interest purposes. Many privacy preserving properties
and methods have been proposed to prevent an adversary from re-identifying a person in a
microdata table. An approach called ‘anatomy’ has introduced a protective method in which
quasi-identifying attributes and the sensitive value are separated, producing a k-anonymous
and l-diverse quasi-identifier table (QIT). This is achieved without generalising the data,
as sensitive values with their respective frequencies are stored in the sensitive table (ST).
The advantage of anatomy is that it satisfies the existing properties of k-anonymity and
l-diversity without sacrificing loss of precision when aggregating the data in queries.
Example 1: An adversary knows Bob, 23, who lives in a suburb with postcode 11000.
The adversary now wants to find out what disease Bob has by looking up the microdata
in Table 1. Note that the ‘name’ attribute (in Tables 1 and 2) are not published and the
adversary can not view them. However, having precise information about Bob’s profile, the
adversary is able to uniquely identify which data record must be Bob’s. The adversary can
now see that Bob has got pneumonia because he is the only person in that postcode.
Example 2: Again, the adversary has got the same information as in the previous example,
but is now restricted to the QIT and the ST tables as shown in Tables 2 and 3. Although the
adversary finds Bob’s record in QI group 1, they must choose between 4 different possible

E-mail: ahlandberg@gmail.com (Anders H. Landberg), w.rahayu@latrobe.edu.au (Wenny Rahayu),
e.pardede@latrobe.edu.au (Eric Pardede)

Vol. 19 No. 5, © The Author 2010. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
doi:10.1093 /jigpal /jzq015 Advance Access published 10 May 2010

$T0Z ‘02 3NBNY U0 A1SIBAILN 8qoJL B I /Blo'sfeulnolpioxo edbil//:dny wouy papeoumoq


http://jigpal.oxfordjournals.org/

680 n-Dependency: dependency diversity in anatomised microdata tables

TaABLE 1. The microdata

sensitive values for this group. These are pneumonia, dyspepsia, gastritis, and bronchitis.
This means that Bob could have either one of these diseases, with the even likelihood of
25%. Note that QIT is 4-anonymous (i.e. it contains 2 groups a 4 records), 4-diverse, and

4-invariant (i.e. all records in each group have distinct sensitive values).

The values in the “ICD-10"" - column in Table 1 represent real disease codes as found in

the ICD-10 taxonomy .

1.1 Microdata tables

In the literature, un-aggregated statistical person data is commonly referred to as microdata.
For example, the bureau of statistics publishes sets of census (micro)data that can be publicly

QI# | Name | Age | Gender | ZIP Disease ICD-10
1 Bob 23 M 11000 Pneumonia J12-J18
1 Tom 27 M 13000 Dyspepsia K30
1 Andy | 35 M 59000 Gastritis K29.[0-7]
1 David | 59 M 12000 Bronchitis J20
2 Alice 61 F 54000 | Chronic viral hepatitis B18
2 Helen | 65 F 25000 Mitral stenosis 105.0
2 Jane 65 F 25000 | Multiple valve diseases 108
2 Lisa 70 F 30000 Acute hepatitis A B15

TABLE 2. The quasi-identifier table (QIT)

QI# | Name | Age | Gender | ZIP
1 Bob 23 M 11000
1 Tom 27 M 13000
1 Andy | 35 M 59000
1 David | 59 M 12000
2 Alice 61 F 54000
2 Helen | 65 F 25000
2 Jane 65 F 25000
2 Lisa 70 F 30000
TaBLE 3. The sensitive table (ST)

QI# | Disease Count ICD-10
1 Pneumonia 1 J12-J18
1 Dyspepsia 1 K30
1 Gastritis 1 K29.0-K29.7
1 Bronchitis 1 J20
2 Chronic viral hepatitis 1 B18
2 Mitral stenosis 1 105.0
2 Multiple valve diseases 1 108
2 Acute hepatitis A 1 B15

thttp://www.who.int/classifications/icd /en/
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downloaded and used for analysis and research. By analysing definitions for microdata in
the literature, we identify the following attributes that are common to microdata sets that
store information about persons.

e Each person in the data has a unique identifier (e.g. SSN) which is removed when the
data is published

e Each data record has a set of quasi-identifying (QI) attributes that can be used to
re-identify the person (e.g. dob, gender, zipcode)

e Each data record has a set of sensitive attributes that must not be linked with a par-
ticular person (e.g. health condition)

Unique identifiers are keys such as social security number, driver’s licence number, bank
account number. Using such a key will lead to successful identification of individuals in the
microdata, and thus disclose the sensitive attributes of these individuals. An adversary can
use the unique identifier to link several datasets on which it exists, and in this way filtering
out a list of individuals that are common on all datasets. This type of privacy attack is
referred to as linking attack and will be discussed in more detail later in the paper. To
overcome this obvious privacy flaw, unique identifiers are removed from the data before it
is published.

After removing unique identifiers, an individual cannot be re-identified by a single
attribute in the data. However, by combining other attributes that are much easier to obtain
than unique keys, the sets of individuals that share common attributes can be narrowed down
and be used in linking attacks. In the case where only one individual remains in a set, this
individual is successfully re-identified. For this reason, any attributes that are not unique
keys are referred to as QI-attributes. Also sensitive attributes can be used as QI-attributes.

Sensitive attributes store information about individuals that should not be disclosed.
Consider the following example. Alice is an HR manager and Bob is applying for a job in
her company. From Bob’s CV Alice obtains a set of QI-attributes such as date of birth and
zip code. Also knowing that Bob is male, she accesses a publicly available health database
published by the state government and queries it with Bob’s attributes. Ten records are
returned by the query that have common QI-attributes. Alice uses her background knowledge
to narrow down her search. From Bob’s CV she also knows that he has a tertiary degree.
Using this information combined with the other QI-attributes on a census dataset, she finds
that there is only one Bob with these attributes who has a tertiary degree. Thus, it must
be Bob’s record. From this dataset, Alice learns about two other QI-attributes related to
Bob, which she can use to query the health database again. After a new query against the
health database with five QI-attributes, the search results in one record being returned. Alice
has successfully re-identified Bob’s record in the health database and disclosed his sensitive
attribute (health condition). Seeing that Bob suffers from a heart problem, she decides not
to hire him.

This section has given an introduction to the fundamentals of privacy preserving models,
and mentioned some existing issues. Next, we focus on some of the outstanding defects of
current approaches and explain our motivation on how to overcome the problems.

1.2 Defects of I-diverse and m-invariant tables

Although anatomy presents an ideal concept of preventing disclosure of sensitive information,
yet maintaining accuracy in aggregate analysis, it does not consider the fact that the sensitive
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TaBLE 4. The 2-dependent quasi-identifier table (QIT)

QI# | Name | Age | Gender | ZIP
1 Bob 23 M 11000
1 Tom 27 M 13000
1 Alice 61 F 54000
1 Helen | 65 F 25000
2 Andy | 35 M 59000
2 David | 59 M 12000
2 Jane 65 F 25000
2 Lisa 70 F 30000

values may be related, or dependent on the same parent, and as such, reveal more information
about possible sensitive values. This issue can not be avoided by k-anonymous, 1-diverse,
m-invariant, t-close, nor anatomised tables, as it is subject to extended knowledge about the
sensitive values. In the case of inpatient health data, this extended knowledge is represented
by ICD-10 codes available at the International Statistical Classification of Diseases and
Related Health Problems 2, which is publicly available information.

The following example shall explain this issue in detail. From looking at tables 2 and 3,
and consulting the ICD-10 codes, the adversary finds that pneumonia and bronchitis are
diseases of the respiratory system. Further, it is known that dyspepsia and gastritis are
diseases of the digestive system. Although this knowledge about the sensitive values in QI-
group 1 do not help to specify which exact disease Bob has got, it helps to deduct the
following information.

Bob has either got a disease with his digestive system, or with his respiratory system,
with the even likelihood of 50%. This could pose a problem, because often it is sufficient to
know ‘roughly’ what disease a person has, i.e. the next approximate category, in order to
make further conclusions or decisions in response to the newly attained knowledge.

Health information is a good example for this issue, because very closely related diseases
can have different names, and as such are not identified as non-diverse. An example of this
could be ‘blighted ovum’ and ‘missed abortion’, which lexically look completely different,
however, both belong to the disease group ‘pregnancy with abortive outcome’.

1.8 Motivation

To overcome the defects of l-diverse and m-invariant anatomised tables, we introduce a
novel technique n-dependency, which produce QIT and ST tables that captures dependency
amongst sensitive values and achieves a higher level of diversification.

In Tables 4 and 5, data records 3,4 have been swapped with data records 5,6, hence
further diversifying the sensitive values in both QI-groups. From Table 5, we can see that
each QI group contains sensitive values that belong to different disease groups. For the sake
of illustration, we have included the ICD-10 codes in the ST tables. If the adversary was
to make a choice of Bob’s disease now, they would have to choose between pneumonia,
dyspepsia, chronic viral hepatitis, and mitral stenosis.

After generalising the sensitive disease values one step higher, the choice would be between
respiratory disease, digestive disease, viral hepatitis, and chronic rheumatic heart diseases.

http://www.who.int /classifications/icd
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TaBLE 5. The 2-dependent sensitive table (ST)

QI# | Disease Count ICD-10
1 Pneumonia 1 J12-J18
1 Dyspepsia 1 K30
1 Chronic viral hepatitis 1 B18
1 Mitral stenosis 1 105.0
2 Gastritis 1 K29.0-K29.7
2 Bronchitis 1 J20
2 Multiple valve diseases 1 108
2 Acute hepatitis A 1 B15
Ql-group 1 Ql-group 2
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Fic. 1. 4-diverse, 1-dependent QI-groups

These disease categories are clearly more diverse, and all other privacy preserving properties
are still fulfilled. In fact, the nearest common disease group of these four values would be
‘disease’, which comprises all other subgroups.

This means that for QI-group 1, the sensitive values can not be diversified any further, as
all dependencies have been removed. The resulting QIT table is said to be 2-dependent, as
the distance from each sensitive value to any other sensitive value in that group is at least
two levels (i.e. two disease groups) away. For this reason, an additional level of generalisation
of the sensitive values does not change their diversity.

1.4 Rationale of n-dependency

The goal of n-dependency in a microdata table is to remove parent-child dependencies and
subsequently ancestor-descendant dependencies of sensitive values. To achieve this, let us
look at Figures 1 and 2, where the process of removing dependencies is illustrated.
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Ql-group 1 Ql-group 2

General General

disease disease
_______________ I N
: Certain  Diseases of Certain Diseases of ]
H infectious and  the infectious and the 1
! General parasitic circulatory parasitic circulatory General ,I
! o Giseases  system Sseases system e i
1 (3) [ADO- 89‘9] [100-199) [A00-B99) [100-199) }
|
P AT, T [ [ A [ RSN, T 1
SR \\( .......... ﬂ‘ _______________ j ______ foo / - \ ______
112:2;:;::; Diseases of the Viral ‘ Diseases of A "
| system eamicaio Virel Chronic hepatitis Chronic the digestive Diseases of the,

(K00-K93] e hepattis  rheumatic (B15-B1g)  fheumatic system respiratory |

: 2 system [B15-B19] heart diseases heart diseases [K0O-K93] system |
| ) [J00-J99) [105-109) [105-109) [J00-J99] :
. sttt et Dt vt Tttt sttt Tttt SE—
| .
 Dyspepsia » !
i Acute hepatitis A C';I’O"'c_‘_'"a' N ‘I
1 = i i
i Bronchitis Mitral stenosis epatiis Multiple valve Gt !
t : Pneumonia
(1) diseases |

Fic. 2. 4-diverse, 2-dependent QI-groups

In Figure 1, the sensitive values as stored in the microdata are represented by leaf
nodes (1), the respective parents of each disease is represented in (2), and the grandpar-
ent in (3). As clearly can be seen, both QI-groups are 4-diverse, in fact they are 4-invariant,
as all sensitive values are distinct. However, when looking at the next higher level of gen-
eralisation (2), then each QI-group is only 2-diverse, because two sensitive values have a
common parent in each group. This means that an adversary will be able to narrow down
the possible next common disease groups by 2, and hence have a 50% chance to determine
the next common disease group for a patient.

To overcome this shortcoming, we can start to remove dependencies in QI-group 1. First,
we identify a leaf node in QI-group 2, which does not have the same parent as dyspepsia
and gastritis (from (1)). Then, we swap these nodes together with their ancestors (i.e. we
swap branches) to increase the diversity of the second level of generalisation in QI-group 1.
By following these steps, we finally end up with Figure 2.

In Figure 2, all parent-child dependencies have been removed in respect to the leaf nodes,
such that in each QI-group, none of the leaf nodes have the common parent. As a result of
this, the first level of generalisation (2) is now 4-diverse, and it takes 2 levels of generalisation
(3) to find a common parent for any of the leaf nodes in (1).

A further attempt to diversify the second level of generalisation (3) proves to be impos-
sible, as dyspepsia and gastritis have a common ancestor in (3), and therefore this level of
generalisation is only 3-diverse. We can therefore deduct that a QI-group is n-dependent,
if it’s (n-1)th level of generalisation is n-diverse, or, in other words, if the closest common
ancestor for any of its leaf nodes is at least on the n-th level of generalisation.
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1.5 Contributions

This paper presents a systematic study of the n-dependency technique. First, we formalise
our model based on the l-diversity and anatomy techniques. We show that each pair of QIT
and ST in an n-dependent table remains distinct in its QI-group, when the sensitive values
in that QI-group are at least n levels of generalisation distant from each other.

Second, we develop an algorithm based on the anatomy algorithm that constructs
anatomised tables QIT and ST and maximises n-dependency amongst the QI-groups.

Finally, we conduct extensive experiments to measure the effectiveness and efficiency on
real data sets. The rest of the paper is organised as follows. We first highlight the issue with
a motivating example and then give an overview over related work. Section 3 proposes the
formal model, Section 4 explains the theoretical foundation of our approach, and Section 5
presents our experiments. Finally, Section 6 concludes the paper and gives foresight for
future work.

2 Background
2.1 Related Work

k-anonymity. By definition, a set of data is said to be k-anonymous when each QI-group
contains at least k tuples [24]. QI stands for Quasi Identifier, and a QI-group is the set of
attributes that can be used to identify a sensitive value within the tuple. With increasing k,
the ambiguity of the data will increase, but the detail of the data will decrease, as specific
values are generalised into ranges. The procedure commonly used to achieve k-anonymity
is generalisation, which specifies ranges of values for attributes in such a way, that in each
QI-group there are at least k tuples, and hence, the data set is k-anonymous.

k-anonymity [5] [3) (7] [34] [8] [28] [17] [27] [9] [15] [4] [20] [1] [19] [36][22] [21] [14] (3] [11]
[12] [26] [25] [2] [32] [30] is a popular approach to data privacy and many works have been
proposed in this area. It uses generalisation (and suppression) to de-identify the data. In
this process, the values of the QI attributes are generalised into ranges that individual QI
combinations cannot be associated with one particular sensitive value. k-anonymity ensures
that in each QI-group there are at least k tuples that share the common ranges of quasi
identifier values.

l-diversity. l-diversity [18] [6] [35] [20] [16] was proposed to overcome the shortcomings
of k-anonymity. By definition, a set of data is said to be l-diverse if in each QI-group, at
most 1/1 of the tuples possess the most frequent sensitive value. As a consequence, there are
at least 1 distinct sensitive values in each QI-group in an l-diverse data set. This property
ensures that a set of quasi-identifiers cannot be deterministic for a particular sensitive value,
which would be the case if for a QI-group, 1=1. It ensures the diversity of sensitive values
within each QI-group, which is not previously addressed by k-anonymity.

I-diversity uses the diversity of sensitive values within QI-groups to strengthen the degree
of privacy protection. It ensures that in each QI-group the most frequent sensitive value
appears in at most 1/1 of the tuples. This also implies that each QI-group must have at least
1 distinct sensitive values.

Anatomy. Xiao et al. propose to separate the QIl-groups from the sensitive values, by
linking them together with group-ids [29]. In this way, the data values in the QI-groups
don’t need to be generalised, hence data detail is preserved, and k-anonymity and I-diversity
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are still ensured. This approach utilises two external lookup-tables that hold (i) the quasi-
identifier group tuples and a group-id, and (ii) the sensitive values, a count for the frequency
of each sensitive value, and a group-id. While anatomy does not directly improve the degree
of privacy for the data, it ensures higher detail (granularity) of the data in conjunction with
existing privacy properties.

Anatomy uses external lookup tables to separate the data from the sensitive values. This
technique is applied for k-anonymous and l-diverse data sets.

t-closeness. Li et al. propose further improvements to the existing privacy properties k-
anonymity and l-diversity [13] [23]. The approach is based on the distribution of each sensi-
tive value in the QI-groups versus their global distribution in the data set. By definition, a
QI-group is said to have t-closeness if the distance of the distribution of each sensitive value
in this group and the global distribution of the sensitive value is no more than threshold
t. Further, a data set is said to have t-closeness if all its QI-groups have t-closeness. The
distance of distributions is calculated using the Earth-Mover’s distance (EMD), which is a
Monge-Kantorovich transportation distance [5] in disguise, and calculates the difference in
work that is necessary to transform one distribution to another. For example, t-closeness
ensures that a particular sensitive value cannot occur in only one QI-group (when the data
set has got, say 10 QI-groups), because the distributions of the sensitive value in the entire
data set and the QI-group where it is contained, are too distant, given a reasonable distance
threshold t.

t-closeness uses the Earth Mover’s distance to measure whether sensitive values in the
entire data set and each QI-group are within a threshold t. This approach can be used to
measure the degree of privacy protection after k-anonymity and I-diversity.

m-invariance. Xiao et al. propose a method that ensures privacy in dynamic aggregated
microdata, after insert and delete operations on the data have been performed [31]. This
approach overcomes the re-publication issues that occur with k-anonymous and l-diverse
data sets. A re-publication issue appears when differences in two published data sets
(both being k-anonymous and l-diverse) lead to identifying information for a particular
tuple.

For example, a Ql-group contains two tuples with sensitive values ‘heart disease’ and
‘lung cancer’, respectively. In a later release of the data, the second tuple has been deleted,
and another tuple has taken its place in the same QI-group. Now, the sensitive values
are ‘heart disease’ (first tuple) and ‘bronchitis’. If an adversary knows in advance that
a person in this QIl-group has got either heart disease or liver disease, then the infor-
mation that is gained from comparing data publications before and after, is identifying
for the first tuple. m-invariance addresses this issue by introducing counterfeit values,
which act as dummy-values to substitute deleted tuples, in the case of critical absence of
tuples.

By definition, a data set is said to be m-invariant, if throughout multiple republications,
each QI-group contains at least m tuples, and in each tuple there are m distinct sensitive
values. Therefore, m-invariance implies m-diversity, but not vice versa.

m-invariance is a modification of l-diversity in the sense that it ensures all sensitive values
in each QI-group to be distinct. This property is enforced using counterfeit tuples after
insertions and deletions of tuples in the data set.

This section has given an overview over related work in the area of privacy preservation
in microdata. Next, we will discuss families of the most common privacy attacks and how
existing methods approach them.
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2.2 Privacy Attacks

Linking attack. Initial attempts to protect published microdata against disclosure of individ-
uals’ sensitive values were to remove explicit identifiers such as social names, phone numbers
and addresses. However, the remaining attributes such as age, gender and zip code can be
combined, and in a majority of cases again lead to privacy disclosure where a unique com-
bination of these values is correlated with a particular sensitive value. Using these quasi
identifying values and linking them to external datasets such as voting lists, individual’s
identities (found on the voting list) can be uniquely matched against the sensitive value
(found in the microdata). In response to this problem, k-anonymity was proposed which
aims at removing the threats of linking attacks.

Homogeneity attack. This is also known as similarity attack. A homogeneity attack
exploits poor diversity of sensitive values within a QI group, i.e. when a high percentage
of records in a QI group share the same sensitive value. Consider the often used exam-
ple where Alice wants to find out Bob’s medical condition. Alice and Bob are neighbours,
so Alice knows Bob’s age, gender and zip code. Querying the microdata and using her
knowledge of Bob’s quasi identifiers as query filters, she finds the QI group in which Bob’s
record is contained. Because all records in this QI group have the same sensitive value, Alice
can determine with 100% certainty, which medical condition. This example shows us that
anonymisation alone is not sufficient to enforce strong data privacy.

Background knowledge attack. An adversary may have background knowledge that can
help to link a tuple’s QI values to a sensitive value. This could be specific information
about an individual which will help to guess the right one among several sensitive values, or
general information about a group of individuals, such as the fact that women cannot have
prostate cancer. Among all the various kinds of attack, this is probably the most difficult
one to predict, since background knowledge of potential adversaries is often limited or even
unknown. Therefore, it becomes increasingly difficult to model this background knowledge
and to use it as weighting factor in privacy models.

Skewness attack. While diversification of sensitive attribute values improves the pri-
vacy protection significantly by reducing the possibility of a homogeneity attack, an issue
arises when the sensitive values in equivalence classes are distinct, but semantically similar.
An adversary can learn important information from semantic similarities of values within
QI-groups, because some sensitive values may have stronger semantic relationships than
others, and so they can be clustered and invalidate the initial diversity privacy preserv-
ing property. Also, an ill-formed distribution of similar sensitive values across QI-groups
and their overall distribution in the microdata may cause serious leaks for attacks by
skewness.

3 Formal Model

A microdata table T contains d quasi-identifier (QI) attributes A, A3, ..., A% and a sensitive
value A®. For any tuple te T,t[i]=A! (QI values) for 1<i<d and ¢[d+1]=A® (sensitive
value). Sensitive values are mapped into a taxonomy tree Tx with a mapping function
fx(A*)= TN}, that assigns every sensitive value to a tree node TN with parent node index
p and index idz. The root node of Ty is denoted as TNofl. Index -1 specifies no further
parents, and index = 0 specifies the root level. Further, we use L( TN, ) to denote the tree
level of a node. Thus, L( TNO_I) =0, with incremental levels for child nodes.
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TaBLE 6. Example QI-groups produced by Anatomy

QI# | A® G(A?%) divg divffml 2-dep

Mul. Valve Dis. Circulatory Disease

1 Gastritis Digestive Disease 4 3 X
Viral Hepatitis Infectious Parasitic
Dyspepsia Digestive Disease
Mul. Valve Dis. Circulatory Disease

2 Gastritis Digestive Disease 4 3 X
Bronchitis Respiratory Disease
Pneumonia Respiratory Disease
Viral Hepatitis Infectious Parasitic

3 Chr. Viral Hepat. Infectious Parasitic 4 3 X
Mul. Valve Dis. Circulatory Disease
Dyspepsia Digestive Disease
Flu Respiratory Disease

4 Gastritis Digestive Disease 4 2 X
Bronchitis Respiratory Disease
Pneumonia Respiratory Disease
Chr. Rh. Heart Dis. | Circulatory Disease

5 Viral Hepatitis Infectious Parasitic 4 2 X
Chr. Viral Hepat. Infectious Parasitic
Mul. Valve Dis. Circulatory Disease

DEFINITION 1. (Generalisation) A generalisation Gy

of n sensitive values Aj,..., 4] is
defined as their k-th predecessor in Ty such that G(A)=...= G,(A?) given that L(fx(A4}))

. =L(fx(43))-

Example: Given that fy(A*)= TN’  we obtain the Ist generalisation of A* as Tsz’f,
where idz is the tree level of A® and p1 is the tree level of G(A®) and p2 is the tree level
of the generalisation’s parent. Therefore, a sensitive value A* can have at most L(fx(A?%))
generalisations.

DEFINITION 2. (QI-group) A QI-group QI is defined as a subset of 7', such that
UL, QL=T where Q[;NQL;=0 and j, ke {0..m}.

A QI-group is a subset of T'. The union of all QI-groups equals 7. The intersection of any
two Ql-groups is the empty set. Each QI-group has at least k tuples, where k specifies the
level of anonymity.

DEFINITION 3. (I-diverse QI-group) A QlI-group is defined as I-diverse, if at most %
of the tuples in the QI-group contains the most frequent sensitive value. In an optimal
l-diverse Ql-group, all sensitive values are distinct. This property is also referred to as
m-invariant [31].

Example: Tables 6 and 7 show how Anatomy and n-Dependency techniques have arranged
tuples into five QI-groups. In all groups that are generated by both techniques, the A*
values are distinct. As each group contains exactly 4 tuples, they all satisfy the property of
4-diversity. Hence, the table is said to be 4-diverse because all its QI-groups are 4-diverse.
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TaBLE 7. Example QI-groups produced by 2-Dependency

QI# | A® G(4%) divy | divf | 2-dep

Dyspepsia Digestive Disease

1 Bronchitis Respiratory Disease 4 4 NG
Viral Hepatitis Infectious Parasitic
Chr. Rh. Heart Dis. | Circulatory Disease
Dyspepsia Digestive Disease

2 Bronchitis Respiratory Disease 4 4 Vi
Viral Hepatitis Infectious Parasitic
Mul. Valve Dis. Circulatory Disease
Gastritis Digestive Disease

3 Pneumonia Respiratory Disease 4 4 Vv
Viral Hepatitis Infectious Parasitic
Mul. Valve Dis. Circulatory Disease
Gastritis Digestive Disease

4 Pneumonia Respiratory Disease 4 4 Vi
Chr. Viral Hepat. Infectious Parasitic
Mul. Valve Dis. Circulatory Disease
Gastritis Digestive Disease

5 Flu Respiratory Disease | 4 4 Vv
Chr. Viral Hepat. Infectious Parasitic
Mul. Valve Dis. Circulatory Disease

DEFINITION 4. (Sensitive values diversity) The sensitive values diversity div; of a QI-
group ¢ for the k-th generalisation of the sensitive attribute is defined as the number of
distinct sensitive values div{ = distinct | Gy(A4%)| in g.

Example: Referring again to Tables 6 and 7, we observe that all QI-groups generated
by both techniques have divi =4. After one level of generalization of A*, all generalized
values of A° in the n-Dependency generated table remain distinct in each QI-group, while
the Anatomy generated table suffers from diversity loss in all QI-groups. In fact, QI-groups
4 and 5 are now merely 2-diverse.

DEFINITION 5. (n-dependent QI-group) A QI-group is defined as n-dependent, if the
closest common generalisation of all sensitive values in the QI-group is found not closer
than on generalisation G,, thus ensuring that A° and its n-1 generalisations have equal
sensitive values diversity div.

Example: In Table 6 all QI-groups are 1-dependent because they do not have the same
sensitive values diversity div for A* and G;(A*®), whereas the n-Dependency generated table
(Table 7) is arranged in such a way that A®= G,(A*®) for all sensitive values. As such, all
QI-groups in Table 7 satisfy 2-dependency.

We would like to note that n-dependency can be achieved on both I-diverse tables, as
well as m-invariant tables. n-dependency implies that the further levels of generalisation of
sensitive values maintain the same level of 1-diversity or m-invariance as the original sensitive
value, or the previous generalisation thereof.
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n-dependency increases the privacy protection of generalisation of sensitive values, not of
the original sensitive values themselves.

4 Theory of n-Dependency

Dependency diversity is the key idea behind n-Dependency. The goal is to rearrange tuples
into QI-groups in such a way that after the tuples’ sensitive values are generalised n—1 times,
the generalised values remain distinct. This section explains the required methodology for
generating n-Dependent tables.

4.1 Pre-processing of taxonomy tree

To achieve distinct generalized values of sensitive attributes, three steps are necessary. First,
all sensitive values in the microdata must be mapped into an (existing) taxonomy tree T'x
and their frequencies must be counted and attached to their respective tree node TN in T
(Mapping step). Also, each node that relates to a value in the microdata (has a frequency
greater than 0) must be marked. After this step Tx contains three types of nodes: (i) nodes
that have been marked as existent in the microdata and having a frequency greater than 0,
(ii) nodes that have not been marked but that have children that exist in the microdata,
and (iii) nodes that have not been marked and do not have any children that exist in the
microdata.

DEFINITION 6. (Initial diversification level) The initial diversifica-
tion level Appiw is defined as the tree level L(TN;) in Ty where
VTN;: fx(A4%) # Gi(TN;)(ancestor/generalization does not exist in microdata) and
3TN;: fx(A%)= TN;, where i is the number of nodes on A,

Second, the frequencies of all nodes are recursively propagated to their parents, thus
aggregating the frequencies along the descendant-ancestor axis in the tree (Pruning step,
Figure 3, Algorithms 1, 2). After this step all nodes have been marked with their respective
tree level and those that have values existing in the microdata and their ancestor nodes
have been pruned with aggregated frequencies. All other nodes remain irrelevant for further
steps.

Algorithms 1 and 2 recursively perform a depth-first traversal on Ty and aggregate the
node frequencies. All nodes whose values are in the microdata are marked. This is an impor-
tant indicator because it will be required to find the initial diversification level and later the
highest degree of n-dependency.

Third, the set of nodes on which to apply the initial dependency- diversification must be
determined (Finding initial diversification level, Definition 6, Algorithm 3).

Algorithm 3 iteratively performs a breadth-first traversal on Tx and finds the lowest tree
level on which the sensitive values can initially be diversified. The initial diversification level
is the first tree level on the breadth-first traversal that contains a node whose value is in
the microdata.

The tree level A;,;, for initial diversification will determine which sensitive values must
be generalised. Also, it can now be determined whether or not a diversification on Ajpitia
can be achieved, which depends on the frequencies of all TN on Ay If the frequencies of
nodes on Ajitia allow the tuples to be rearranged in such a way that the QI-groups satisfy
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General Disease
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4 \ / \
10¢)1 10() ) — Ao
@ @ @ @ @ . — ../ @ \ — 4 nital
Chronic Acute Multiple

Viral Hepatitis Valve Mitral

Hepalitis A Disease Steosis
/! 5. ¥ 4 A
10() 1 10())
\-_‘/ \-»._;/

Fic. 3. Pruned Ty for sensitive attribute ‘disease’

Algorithm 1: pruneNodesRec

Result: Aggregated TN frequency
begin
currentTreeLevel <— currentTreeLevel + 1
TN <« Pop stack
Mark TN as currentTreeLevel
if TN.frequency > 0 then
| Mark TN as existing in microdata
if TN is leaf then
currentTreeLevel <— currentTreeLevel + 1
L return frequency
foreach TN children do
Push child on stack
L TN.frequency <« TN.frequency + pruneNodesRec()
currentTreeLevel < currentTreeLevel + 1
return TN.frequency
end

l-diversity, then this implies that n-Dependency can possibly be achieved for n > 1, otherwise
the Anatomy algorithm will perform equally well as n-Dependency.

After these three steps, the taxonomy tree is ready to be used in the n-Dependency
diversification process. Next, we find the maximum value for n, which will correspond to a
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Algorithm 2: pruneNodes

Data: T'x : Taxonomy tree
Result: Pruned Ty
begin
currentTreeLevel < -1
Empty the stack
Push Ty root node on stack

while stack not empty do
| pruneNodesRec()

end

Algorithm 3: findLevel
Data: T'x : Taxonomy tree
Result: Initial diversification level A
begin
A<« -1
TN <« Ty root node
Push TN into queue
while queue not empty do
TN <« Remove first from queue
if TN in microdata then
L return treeLevel of TN

if /TN.isLeaf then
| Push all TN children into queue

return A
end

Afinal = Minitial- Next, all sensitive values that are on nodes below Agy,, must be generalised to
their respective ancestors on Agy,q. In practice we create an additional column in the micro-
data table and update it with the generalised values. Finally, we apply the diversification
algorithm to the microdata.

Algorithm 4 finds the maximum level of n-Dependency that can be achieved in the micro-
data given the taxonomy tree Tx and a parameter [ that specifies the QI-group size and
also the diversity level of the resulting table. According to the algorithm, n-Dependency can
be achieved under the condition that the n-1-th generalisations of sensitive values on Ajnq
satisfy the [-diversity property (Proposition 1).

4.2 Propositions

PROPOSITION 1. (Achieving n-Dependency) Given a microdata table T, a taxonomy tree
Tx, and a QI-group size [, a dependency level n=2Ainitisi—Ajina can always be achieved if
)"initial > )‘ﬂnah
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Algorithm 4: findMaxN

Data: Ty : Taxonomy tree

A : Initial diversification level

1 : QI-group size/diversity level

Result: n,,,,

begin

Nmae <— 1

sumFreq < Sum of all node’s frequencies on A
while A > 0 do

foreach TN in Tx on A do

TN.frequency

ratio <
sumFreq
if ratio > % then

L return npq;

n”LlLIL‘ <~ n"LH,_’L’ + 1
L A< A-1
return 7.,
end

PROOF. Both diversification levels Apiyio and Ay, ensure that generated QI-groups have
equal sensitive values diversity (Definitions 4,6). Therefore, n generalizations of the values
on e are necessary to obtain the values on A,y (Definitions 5,6). Thus, the values on
Ainitiar satisfy the conditions to generate n-dependent QI-groups and for the table T to satisfy
the n-dependency property [ |

PROPOSITION 2. (Random assignment) n-Dependency will always generate a number
of n-dependent QI-groups larger than or equal to the number of n-dependent QI-groups
generated by approaches that are based on diversification, such as l-diversity and anatomy.
The maximum achievable level of dependency in table T be ng,, so that p, == 100%
using n-Dependency, then the percentage of Ql-groups generated by an alternative approach
satisfying ny,q...n-dependency are g, ..q, where g, +..+ ¢, = 100% and p,, > gn,..-

PROOF. n-Dependency diversifies the data records based on their maximal generalized
values, thus maximizing the semantic distance between the records in each QI-group. Diver-
sification based approaches like l-diversity and anatomy diversify data records based on the
initial sensitive value, thus generating QI-groups with random semantic distance. In the best
case, this random assignment yields the same effectiveness as n-dependency ||

4.8 Example

An n-dependent QI-group ¢ maintains its level [ of diversity throughout n-1 levels of gener-
alisation of the sensitive value, such that [ is constant for A7, where 1<j<n.

Under the generalisation error e that is inflicted by the generalisation, the probability p to
identify a particular sensitive value generalisation A is equal to the probability of identifying
a particular sensitive value of any previous generalisation, or the original sensitive value
itself.
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TABLE 8. No n-dependency

Gy (A%) Respiratory disease Digestive disease
A? Pneumonia | Dyspepsia | Gastritis | Bronchitis
Query 1 25% 25% 25% 25%
Query 2 50% 50%
TaBLE 9. 2-dependency

Gas(A%) | Respiratory dis. | Digestive dis. | Viral hepatitis | Heart disease
A* Pneumonia Dyspepsia Hepatitis A Valve disease
Query 1 25% 25% 25% 25%
Query 2 25% 25% 25% 25%

Let us assume that Table 3 stores generalisations of the sensitive attribute ‘Disease’. We
then join Tables 2 and 3 by the group id, and perform the following queries:

// select the sensitive value
(1) SELECT A°® FROM T WHERE pred(A{) AND ... AND pred(A)

// select the first generalisation
(2) SELECT G;(A®) FROM T WHERE pred(A}) AND ... AND pred(A])

The query results can be displayed on a two dimensional matrix:

From Table 8, we notice a loss of privacy correlation, as the query result values have
diminished to 2 from previously 4. Thus, generalising A by one level reduces the diversity of
the sensitive attribute by 50% and therefore increases the probability to disclose the sensitive
attribute from 25% to 50%. In comparison, we perform both queries on the resulting join
between Tables 4 and 5, and again display the results in a matrix.

In this scenario (Table 9), privacy correlation is maintained, as the probability of re-
identifying the disease of any patient is still 25%. In addition to that, data correlation is not
diminished, as there are 4 possible diseases for the patient, and hence the precision remains
the same as in the first query.

We define the loss of diversity between the diversity of the original sensitive value and a
generalised value on the n-th level in Ql-group QI; as the

. . X ‘di’UDQ i —di’u,? i
relative diversity error erry, =—————
divy™"

where 1 <7< number of QI-groups.

If err},,=0 can be achieved for all QI-groups for a dependency level n, then the table is
said to be optimal n-dependent.

5 Experiments

In our experiments we use a dataset CENSUS? that holds US census data from the year
2000 with the attributes shown in Table 10. The dataset has a cardinality of 100k records,
containing personal information about 100k American adults. Parameters and tested values
can be found in Table 11.

3Downloadable at https://international.ipums.org/international /
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TABLE 10. Summary of attributes

Attribute Distinct values Type ‘

Age 91 quasi-identifier

Gender 2 quasi-identifier

Maritial 6 quasi-identifier

Birthplace 100 quasi-identifier

Employment status 6 quasi-identifier

Class of worker 9 quasi-identifier
Education 15 sensitive
Total income 50 sensitive

TaABLE 11. Parameters and tested values

Parameter Values
dependency n 2,3,4
1 4,5,6,7,8,9
cardinality 100k
number of QI attributes d 6
query dimensionality qd 2,3,4,5,6
expected selectivity s 5%
EDUCUS
) /N
000 100 023

/\/T\\/\ /\‘\

200 300 400 500 600 701 702 822 824 825 826

Fic. 4. Taxonomy tree for sensitive atribute ‘educus’ in EDU-6

From CENSUS, we create two sets of microdata tables, named EDU-6 and INC-6 respec-
tively, where 6 denotes the number of QI attributes. These tables have Education (Income)
as their sensitive attribute, whose values are mapped into taxonomy trees (taxonomy for
EDU shown in Figure 4). INC-6 sensitive values have been divided into even intervals and
then grouped by 2. Both tables are equal in cardinality (100k) and QI-attributes. The num-
ber codes in the taxonomy trees correspond to the category codes as found in the original
IPUMIS dataset.

We compare n-dependency against anatomy, which is an approach that dissects diversified
tables into quasi-identifier and sensitive tables. We believe that anatomy is among the most
convincing approaches to privacy preservation. The performance graphs that follow denote
our approach as n-dependency, and the anatomy approach as l-diversity. The reason for this
is because anatomy is in effect a version of I-diversity (as is n-dependency).

The first goal of the experiment is to show that existing diversification models do not
output tables that are diverse enough when their sensitive attributes can be mapped into
hierarchical relationships. The graphs in Figure 5 show the percentage of formed n-dependent
QI-groups as a function of diversity level 1. We observe that EDU-6 (d) is not diverse enough
to satisfy complete 2-dependency for [ >4, but achieves a maximum of possible 2-dependent
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2-gependent Qf groups (%) 3-dependent QI groups (%) 4-dependent QI groups (%)
—o—anatormy
100 100 100 —o— 4-dependency
80 4 80 - 80
—o— anatorny
60 60 —o— 3-dependency &0
40 4 40 4 40
20 { —o— anatomy 20 4 20
—o— 2-dependency
0 —_— —— T 0 : - . ; 0 . ;
4 5 8 7 8 8 10 4 5 6 7 8 9 10 4 5 6 7 8 8 10
| | |
(a) INC-B (b) INC-E (c) INC-8
2-dependent QI groups (%)
—o— anatormy
100 -

—o— Z-dependency

40 4

20 4

(d) EDU-6
F1c. 5. Dependence Diversity vs. 1-Diversity

QI-groups. This measure also determines on how many QI-groups in the table the sensitive
value can be inferred with less than 25%, which is 100 - % n-dependent QI-groups. A function
value of 0 at [ indicates that there are less than [ distinct tuples with distinct values on the
first generalisation. In INC-6 all tuples have 3 levels of distinct generalisations for [ <10 (a,b)
and [ <6 (c), which means that generalizing three levels will not increase the probability of
inferring the sensitive value.

In the following experiments, the parameter [ (applying to both anatomy and
n-dependency) is set to 4, implying that the sensitive value of an individual can be cor-
rectly inferred with at most 25% probability. For n-dependency, an increasing n will cause
this probability to remain stable (in the ideal case constant), thus providing the same pro-
tection even after the sensitive values are generalized.

Table 12 lists the code values that correspond to the distinct sensitive values of attribute
‘educus’ in table EDU-6. Column ‘CENSUS’ indicates whether the values are actually exis-
tent in the CENSUS data table. The values with a ‘X’ are groupings/generalizations of the
data values and are used to build an artificial taxonomy structure as illustrated in Figure 4.

5.1 Aggregate Reasoning
We auto-generate query workloads in bulks of 1000 that have the form:

SELECT COUNT (*) FROM Microdata
WHERE pred(A{) AND ... AND pred(A};) AND pred(A®)
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TaBLE 12. Code-table for EDU-6 taxonomy (educus)

Code | Description CENSUS
000 | NIU (not in universe)

100 None or preschool

200 Grades 1 to 4

300 Grades 5 to 8

400 Grade 9

500 Grade 10

600 Grade 11

701 Grade 12, no diploma

702 High school graduate or equivalency degree
821 Some college, no degree

822 Associate degree, occupational

824 Bachelors degree

825 Masters degree

826 Professional degree

827 Doctorate degree

023 Secondary Junior
046 Secondary Senior
077 Secondary Grade 12
088 Tertiary Degree

001 No School

027 Secondary

888 Tertiary

SEalal iRl S N N NG S-S N S SE S S

Aj, ..., A}, are gd random QlI-attributes, and pred(A®) is the sensitive attribute, where ¢d
is the query dimensionality. For any attribute A, the predicate pred(A) has the form

(A=21 OR A=z OR ... OR A=u)

where z; is a random value in the domain of A (all attributes are discrete). The value of
b depends on the expected query selectivity s:

b = [|A|.51/(4d+1>]
where |A| is the domain size of A. In our experiments we use s = 5%.

Given the CENSUS microdata relation, we compute two sets of anatomized tables that
satisfy the anatomy property, and the n-dependency property for n=2 (EDU-6) 2<n <4
(INC-6). Then, we execute a workload of 1000 queries for each value of 2<¢d <6 and each
table and measure the effectiveness of anatomy vs. n-dependency by recording the average
relative query error and our own proposed metric average relative diversity error. The relative
query error equals W where act is the actual query result from the microdata, and est
the estimated result from the anatomized tables. The relative diversity error equals W”‘iij"”"‘
where divyy is the number of distinct original sensitive values in the QI-group of a result tuple,
and div, the number of distinct sensitive values in the same QI-group after n generalisations.

The first set of experiments shown in Figure 6 measures the query accuracy as a function
of ¢d for both EDU-6 (a) and INC-6 (c). As previously mentioned, we have computed
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average relative query error (%)

|, Bverage relative diversity error (%)
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25 1 040 1 —o— 2-dependency
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() INC-& (d) INC-6

F1c. 6. Query Accuracy/Diversity Accuracy vs. Query Dimensionality

anatomized and (2,3,4)-dependent versions of table INC-6, and executed query workloads
on all of them. The graphs in (b) and (d) show that there is almost no difference in average
relative query error, thus proving that our technique does not affect the accuracy of aggregate
analysis.

Next, we analyse the degree of diversity in query results for both anatomy and
n-dependency. For example, a query returns 10 tuples whose A values are distinct (divy=
10), its A} values have 5 distinct values (div; =5), and its A5 values are all equal (diny=1),

then the diversity error errf. for the first generalisation is calculated as errj, = '1%"‘ =0.5,

and for the second generalisation err?, = ‘1%” =0.9.

|Tesq,~y|7l
|7'63m/| ’
the query result set. Further, a high diversity error errj, directly indicates the probability
of disclosure of the sensitive value after n generalisations. In the above example two gen-

eralisations are required to determine the generalization of the sensitive value. Because all

The highest possible diversity error is calculated by where \Tesq,vyi is the size of
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generalised sensitive values are equal, they are being disclosed with 100% probability, and
thus the privacy attack succeeds.

Returning to the graphs (b) and (d) in Figure 6, we observe that n-dependent tables
completely protect against this attack. The maximum levels of n-dependency are 2 (EDU-6)
and 4 (INC-6), hence preserving a constant breach probability throughout 1 (3) levels of
generalisation for the sensitive values. The anatomy technique performs particularly weak for
low ¢d, and with increasing levels of generalisation. This phenomenon is caused by decreasing
diversity among sensitive values after increasing number of generalisations, and a random
diversification strategy of generalised values by the anatomy technique, which leads to an
increase in breach probability.

5.2 Protection against privacy attacks

As our approach is based on the principle of l-diversity, n-dependent tables satisfy the same
degree of protection against privacy attacks as described in Section 2.2. However, l-diverse
tables (anatomised and/or m-invariant) still do not guarantee that the same level of pro-
tection against privacy disclosure is maintained throughout generalised sensitive attributes,
and can cause a serious threat.

Especially in deep taxonomies where the information loss between a sensitive value and
its next generalisation/s is very small, privacy information can easily leak when QI-groups
do not satisfy the n-dependency property. Thus, by separating diversity dependencies we
minimise the probability of disclosing sensitive information after generalisation of sensitive
attributes. As a result thereof, n-dependency performs particularly well in protecting against
homogeneity attacks, background knowledge attacks, and skewness attacks.

Linking attack. Our proposed solution includes removing all unique identifiers from the
microdata, thus making it resistant to direct linkage with external datasets. Therefore, by
removing unique identifiers we protect the data against linking attacks while preserving the
informational value (attributes) of the data.

Homogeneity attack. Poor diversity of sensitive values inflicts risk of successful homogene-
ity attacks. This also yields for poor diversity of generalised sensitive values. As opposed
to l-diversity, anatomy and similar approaches, applying our methodologies guarantees
resilience against homogeneity attacks over multiple generalisations of sensitive values. This
is so because our methodologies diversify the microdata on the most general possible level,
thus minimising the risk of successful homogeneity attacks.

Skewness attack. By separating tuples with semantically similar sensitive values in accor-
dance with the taxonomy tree, we protect the data against skewness attacks. Effectively,
this means that all sensitive values in each QI-group will have a maximum distance from
one another. As a consequence of this, queries that match these QI-groups will never return

result sets with more similar sensitive values than %x retrieved QI-groups (Experiments 6 b

and d).

6 Conclusion and Future Work

We have shown that diversity based approaches like I-diversity and anatomy have limitations
with respect to the diversity of sensitive values in QI-groups when generalisations are used
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to infer data disclosure. Our proposed solution approaches this problem by considering the
hierarchical order of sensitive values and their frequency distribution in the microdata when
diversifying the tuples and finally anatomising them into quasi-identifier and sensitive tables.

This paper has introduced a formal model to express the concepts and a set of theorems
and algorithms to prove our methodologies. Further, several sets of experiments on real US
Census data show the effectiveness of our approach and point out limitations of related
works algorithms.

Future work includes further exploration of the n-Dependency technique, particularly how
to deal with tables that only satisfy a very low level of n-Dependency. In such cases, different
partitions of the table may satisfy different levels of dependency. Also, we will investigate
on different types of taxonomies that apply to the table data, and how varying taxonomy
structures influence our technique.
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