
Caching Mechanism in Peer-to-Peer Networks
through Active XML

Abdullah Alrefae, Eric Pardede, Binh Viet Phan

Department of Computer Science and Computer Engineering
La Trobe University, Melbourne VIC 3083, Australia

{afalrefae@students, e.pardede@, vbphan@students,}latrobe.edu.au

Abstract—Active XML (AXML) is a new markup language
framework that provides the ability to exchange intensional
data. The intensional data is defined in the AXML
documents as calls to local or remote Web services. AXML
aims to improve the task partition and distribution in P2P
networks. However, if one peer joins more than one P2P
network and its services are invoked frequently by a large
number of peers, this peer can become a bottleneck and
requires large computational resource.

In this paper we show that a caching mechanism in P2P
networks based on the AXML technology can be a
promising solution because AXML properties will simplify
the caching procedures in these networks. We propose three
layers of caches that will be located in: the bottleneck
service provider, nominated peer(s) in the P2P network and
the service requester.

Index Terms—Active XML, Web Service, Peer-to-Peer

I. INTRODUCTION

Active XML (AXML) [13, 9] is a new declarative
framework that aims to improve the performance of data
and service integration over the web. AXML project is
based on AXML document, which is syntactically a valid
XML document with some parts of the data that are
defined intensionally as embedded calls to Web services
beside other parts of the data that are defined
extensionally as in normal XML documents [9]. The
embedded service calls give AXML documents the
flexibility to become tools for distributed systems to
cooperate with each other.

AXML documents can make calls to the external
services that defined in other peers, and provide the
capability to control the activation of these calls by
appending some parameters to manage the validity of the
results and to schedule the invocation of the service [12].
Therefore, AXML can be a powerful tool to integrate
data and services over the web.

AXML is put to work in P2P architecture [2], which is
a decentralized-based approach that employs the huge
process and storage abilities available in the distributed
resources over the Internet by directly exchanging
services among them. Consequently, in P2P networks
each peer can act as a server by providing some Web
services and as a client by invoking other peer services
[9].

However, in case one of the peers involves in more

than one P2P network and its services are invoked
frequently by a huge number of peers, the peer will be a
bottleneck and its response can become inefficient and
slow. In addition, the large number of requests to the
same service can defect the network conditions by
increasing the network traffic.

In this paper, we will address these issues by using a
data caching technique, which is based on storing the
XML/AXML documents that are resulted from
materializing the embedded calls in different peers that
requested the data. We adopt the idea in [4] that is based
on nominating one peer in each group of peers that are
interested in similar service. The nominated peer will take
the responsibility to connect to the actual service provider
and provide the service results for other peers. The
caching peer will be selected based on different
considerations like, better computing and storing abilities.
We will extend this idea to any interest or location based
P2P networks by nominating one peer in each network to
be the caching peer. In addition, in order to guarantee the
coherence of the cached data with the service updates, we
will propose three caching layers located in the service
provider, the nominated peer(s) in the P2P network and
the service requester.

This caching mechanism will reduce the bottlenecks
on service providers and will improve the network
conditions by reducing the number of transactions over
the Web. Furthermore, the data caching technique will
improve the nested calls materialization by materializing
the calls in the nominated peer and provide the final form
of data to the other network peers. Moreover, this caching
mechanism will lead to other positive impacts on the
service invocation, such as accelerating the call response,
reducing the connection cost, and facilitating the local
queries over AXML documents.

We will show that caching mechanism can be a
promising solution in the AXML system (networks that
used AXML technology) because AXML technology
simplifies the caching procedures over the P2P networks
by providing the capability to guide the requester peers to
one of the peers that cached the service results, by
sending the path of these caching peers as a service call to
the requester to connect them directly. Furthermore,
AXML technology enables the network peers to have
scheduled transactions to guarantee the coherence of the
cached data by using the service call attributes that
control the activation of the service call and the validity

508 JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.3.508-515

of the results.
This paper is structured as follows. Section 2 gives an

overview of the AXML project. In this section, we will
briefly describe AXML documents and services, as well
as some properties that simplify the process of managing
the cached data in the AXML peer. In section 3, we will
discuss the bottleneck problem that may be caused by
frequent service invocation, and how it may affect the
network conditions. We will describe the proposed three
layers of caching in section 4, and we will explain what
data will be cached in each layer and the motivation.
Section 5 will give a possible scenario for the transaction
of the cached data between the three layers and the
qualitative analysis for the proposed caching mechanism
by highlighting the areas that will be improved by this
solution. Finally, we will conclude our work in section 6.

II. AXML PROJECT: AN OVERVIEW

According to [9], the bases of the AXML project are
XML document and Web service. The AXML project
gives the XML document the ability to have intensional
calls to invoke the external Web services. Therefore, any
AXML system that based on exchanging AXML
documents has the following characteristics that
differentiate it from normal XML system and makes it a
powerful project for data integration [9]:

• The possibility to manage calls activation and the

lifespan of the resulted data by appending some
parameters to determine when the service call should
be activated and for how long the results must be
considered valid.

• Support the services with intensional data by
providing AXML services that accept data with
intensional input/output data.

• Allow continues services by supporting the use and
the creation of Web services that may return a stream
of answers, when such action is required.

A. AXML Documents
The basic content of the AXML system is the AXML

document which is an extension of the traditional XML
document with embedded calls to Web services to get
some required data, beside other parts of the data that are
defined explicitly in the document as in normal XML
document. AXML documents are syntactically valid
XML documents; therefore, standard XML tools can be
used to exchange AXML documents [14]. For instance,
SOAP and WSDL specifications are used to implement
intensional service calls, whereas XPath and XQuery
Languages are applied to query AXML documents.

The intensional data in the AXML documents are
defined in a service call (<sc>) element that consists of
the name of the server that provides the Web service and
the name of the service that will be invoked. In addition,
the service call element may handle, in specific mark-up,
some parameters that are required to call the Web service
[9]. Following is a sample of a service call element:

<weather>
 <sc service=”forecast@weather.com”>
 <city>
 melbourne
 </city>
 </sc>
</weather>

The process of activating the embedded service call to
invoke the Web service and returning the result in the
document is called materialization [9]. In this process,
SOAP protocol is used to invoke the service by sending a
request with a SOAP message that contains parameters
values and the server will reply to this call by sending a
SOAP message that contains the result to enrich the
document [13]. Following is a possible result for the
previous service call:

<weather>
 <temperature>22</temperature>
</weather>

AXML documents provide the following advantages
for P2P environment. First is the dynamicity because the
provided information in AXML document will change
when the content of the Web service is changing and the
user refresh the embedded call. Second, obtaining
information directly by the users from anywhere is
improving the independency and the knowledge of the
users by giving them the ability to generalize the use of
the service [14].

B. AXML Services
AXML services are Web services capable of

exchanging AXML documents. In other words, they
accept AXML documents as input parameters, and return
AXML documents as results [8].

AXML provides a mechanism to integrate, store and
query data through AXML services distributed over
different peers. Each of these peers use WSDL to
describe its services and has the ability to call its local
services and also services in other peers by using SOAP
protocol. Since AXML documents are syntactically valid
XML documents, any Web service that invoke and
describe functions with XML input/output can be called
through AXML documents. Therefore, any of the various
existed online services (such as, services in Amazon, E-
bay, etc.) can be included [9]. The standard way to define
an AXML service is by using XQuery, as described in the
following sample [9]:

let service Forecast($x) be
for $a in document(“weather-news.axml”)
 /weather-apps/weather-news,
 $b in $a//weather/tenday
where $a@name=$x

return <f> {$b/city-name} {$b/weather-
forecast} </f>

The query will use the weather-news.axml document
from AXML documents repository. When any peer
invoke this service, the value of $x will be determined in
the service call parameters.

JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012 509

© 2012 ACADEMY PUBLISHER

C. Service Call Activation in AXML
The activation of the service call can be determined by

two attributes, mode and frequency, attached to the
service call element. The frequency is mostly defined as
time interval (for example, every week), moment in time
(for example, 1st of January), or triggered by modifying
the included document [9]. A sample of the frequency
attribute can be:

<sc frequency=”weekly”> ...</sc>

Whereas, the mode can be immediate, to activate the
service call whenever it is expired, or lazy to activate the
service call only when its result needed, such as when the
service call result is needed to evaluate a query over an
AXML document [9].

In addition, the service call can be activated from the
client side (pull mode) or from the server side (push
mode). The pull mode is used for normal service
operation upon client request, and has two types, implicit
pull (in the lazy mode) or explicit pull (based on time
frequency) [12]. In the push mode, the server determines
when to push the data to the client. Mostly, this mode is
used in the subscription to the continuous services when
the server sends a stream of information synchronously to
the subscribers. However, the continuous service can also
invoke declaratively, by specifying query parameters for
service activation, such as, time frequency of the
responses, the limitation of the message size, and the
clarification of the changes either by sending sequential
versions, by sending script of the changes only, or by
publishing the changes and sending a notification [12].

We use the push mode to exchange service results,
particularly where the caching peer can push the cached
data to the peers that interested in the service, whenever
the caching peer obtained new service results. In addition,
the caching peer can publish a notification whenever it
obtained updated result, to give the other network peers
the choice to pull this updates by activating the
corresponding service call.

D. AXML Result Lifespan
The lifespan control of the resulted data can be

managed by attaching a validity attribute to the data node
in AXML documents. When the validity period expired,
the resulted node will be removed from the document.
The resulted node may come with expiresOn attribute to
notify the user with the validity of the information [6].

Moreover, the caller can overwrite the validity of the
result by attaching the attribute valid to the service call
element. The valid attribute can contain values such as 10
days, 1 month, etc. It can have value of zero, to consider
the result valid at the invocation time only. It can also
have values of unbounded, to consider the result valid
forever or until it is deleted [12].

III. PROBLEM DESCRIPTION

In this section, we will describe some limitations of
current AXML system in terms of the potential of high
network traffic. Initially, we list the type of service calls
that can be embedded in AXML documents [11] and the
steps to activate them:

1. Calls to bring data only once (when invoked).
2. Calls to continuous service that will send a stream of

answers (for example, subscription to an RSS feed
service).

3. Calls to update an existing part of the document
(refreshing previously fetched data).

In this paper, we improve the performance of the 2nd

and the 3rd types of embedded calls. Both of them
involve frequently requested data.

 WSP (P0)d0 service call

AXML Peer (P1)

s0 response

s0 stream response

Figure 1 Service Call Activation Steps

In Fig.1, we show the steps of service call activation,

where the Web service provider (P0) provides the service
s0 (i.e. s0@P0). AXML peer (P1) has an AXML document
d0 (shown in Fig. 2) that has an embedded service call
(sc) to the service s0@P0. When the sc is activated, the
following steps will occur [8]:

1. P1 sends a copy of AXML subtree (see Fig. 2a) that

holds the sc node and its children (arguments), to P0,
to evaluate s0 on these arguments.

2. P0 evaluates s0 on the requesting inputs, and responses
to this call by sending an XML subtree containing the
result.

3. P1 receives the XML subtree and encodes it in d0, as a
sibling of the sc node (see Fig. 2b).

4. In case s0@P0 is a continuous service, step 1 will
occur once only, while the steps 2 and 3 will occur
repeatedly, Consequently, P1 will receive a stream of
answers synchronously as a response and will encode
them all in d0 as siblings of the sc node. A special
indication “end-of- stream” (or eos) [7] will be
returned to notify the end of the service.

This simple illustration shows that an AXML system

can be a powerful tool for integrating data and services
over the web by using the embedded calls to invoke other
services in different AXML peers or any online services,
thus, support the distributed computation.

510 JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER

AXML subtree
d0

Extensional

data

Intensional
data (sc)

Arguments

Extensional
data

d0

Extensional

data

Extensional
data

Intensional
data (sc)

Arguments

Resulted
XML subtree

a. AXML document before materialization b. AXML document after materialization

Figure 2 AXML Document Before and After Materialization

However, the AXML system that is based on

importing some of the AXML document’s contents from
other local or remote repositories or by invoking some
local services or services in other peers can lead to
negative impacts on the network conditions. Invoking a
Web service that provided in an AXML peer or any Web
server, by a large number of AXML peers, can lead to the
bottleneck issue and the delay in data transmission by
increasing the traffic. For example, in case the service
s0@P0 is a common service that is required frequently by
a large number of AXML peers, the activation steps will
take place each time any of the requester peer activates
the AXML document that hold a call to this service (for
example, the document d0).

Furthermore, some of the service invocations are only
resulted from applying some applications on the AXML
document, where in such cases the service call results are
only secondarily required in order to get a fully
materialized document. For instance, applying a query on
an AXML document requires triggering some of the
embedded service calls that related to the query. In
addition, in the desire of changing the AXML document
type to any other type, such as XML or HTML, all the
embedded service calls need to be materialized first.

Moreover, some continues services (service with a
subscription), where the service provider keeps sending
the information to the subscriber peers, can lead to a
costly propagation, especially when the subscribers are in
remote locations, and can cause bottleneck and traffic
issues as well.

In addition, in some cases, the server that provides the
service is not responding, or the requester peer lacks the
access to the service provider (for example, due to
expiration of the subscription). Hence, the requester peer
will not be able to import the intensional parts of the
document from the other peer. In another word, they
cannot materialize the service call to invoke the service.

In order to address these problems, we propose three
layers of data caching mechanism, described in next
section. However, the following issues may also arise
because of using the data caching mechanism:

• Where to locate the caches (the copies of the

documents)?
• How to guarantee the coherence of the caches in

distributed environment such as the Internet?
• How to inform and specify to other peers to use the

“appropriate” AXML repositories?

IV. CACHING LAYERS

We are proposing data caching mechanism on three
layers that can optimize the AXML workflow by
addressing some of the network problems identified in
the previous section. Our proposal also solves some other
issues and questions that are related to applying the data
caching mechanism in the AXML system. The three
proposed layers of the caching mechanism based on their
locations are: (i) caching data in the Web service provider
(WSP); (ii) caching data in a nominated peer at the P2P
network, and (iii) caching data in the AXML peer (see
Fig. 3).

A. Data Caching Selection
In the first level, we can cache the data in the WSP,

especially for common web servers that are frequently
called by a large number of AXML peers, for example
weather.com. The typical data cached in this level is as
follows

• The result of the local services that usually called by

the AXML peers and the result of the continuous
services that have a large number of subscribers.
Some validity attributes that are provided by the
AXML system can be attached to the cached results to
guarantee the coherence of the caches. In
consequence, instead of activation of a particular
service every time it is invoked by an AXML peer,
the service provider will use the cached results to
reply for these calls to reduce the computation tasks
and save the processing capabilities for other tasks.

• The result of the intensional data in the AXML
documents that the service provider sends as a
response for continuous services callings based on an
agreed schema between the sender and receiver. Thus,
the subscribers in the service will receive a fully
materialized document (in other words, document
without nested calls). Therefore, the AXML system
performance will be improved by reducing the

JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012 511

© 2012 ACADEMY PUBLISHER

number of peers that materialize the nested call. The
nested calls invocation will be done by WSP instead
of by each AXML peer that receive the nested call as
a part of the service result.

• In addition, the WSP will store the paths of the peers
that have been nominated to cache the results of the
intensional data in each P2P network. Afterwards, the
WSP can redirect the new requests to one of the
nominated peers or send a list of these peers as a
result for the service call to give the requester the
choice to call one of them.

The second level is caching data in one of the network

peers (nominating a peer is based on the better computing
abilities and faster internet connection [4]). Because the
scale of the P2P networks grows, the centralized server
(WSP), who is involved in large number of these
networks, will become a bottleneck. Therefore,
distributing the service results (copies of XML/AXML
documents) on different peers, who are already interested
in the provided data, can solve the bottleneck issue and
reduce the network traffic. As described in the previous
level, the WSP will store a list of the peers that have been
chosen to store the service calls results and provide it for
other peers who are also interested in this service. Hence,
when a peer wants to subscribe in a service or request a
service frequently, it sends an AXML subtree with the
intensional data and its arguments to the WSP server and
waits for the server to reply with the search results
including a list of supplying peers (based on location,
interest, security, less jam, and other considerations).
Subsequently, the connection will be performed directly

between the requesting peer and the supplying peer
(nominated peer).

This caching level can improve the network connection
as the data will be easily available for the peers. In
addition, this will also improve the implementation of the
nested calls, as the nominated peer will implement the
nested calls in the service result to use them locally, and
then send the fully materialized document if the requester
peer ask for that.

The third level is caching data in each AXML peer, for
instance, a personal computer. Obviously, we must take
into account the storage capability for the peers.
Therefore, the data that needs to be cached here is the
result of the intensional data in the important AXML
documents, by giving the user the ability to define
important documents or services.

However, the materialization of the intensional data
needs an Internet connection, at least if the requested
service defined in another peer. Consequently, the results
of the intensional data that have been defined as
important will be updated automatically whenever the
peer connects to the Internet and the result is expired and
the latest copies of the data will be cached locally.

Accordingly, the local query implementation can be
improved (speed up) because implementing any query on
AXML document requires materialization of the related
service calls in the document. Furthermore, in order to
change an AXML document to any other format (other
types of documentation), all service calls must be
activated. Therefore, the cached data can be used to query
or change the AXML document even if the peer is not
connected to the Internet.

P0-WSP Weather.com

P2P Network in
Saudi Arabia

P2P Network in
the USA

P2P Network
in Australia

P1-1
(nominated peer)

P1-2

P1-3 P1-4

P1-5

P2-1
(nominated peer)

P2-2

P2-3 P2-4

P2-5

P3-1
(nominated peer)

P3-2

P3-3 P3-4

P3-5

Figure. 3. Three Level of Caching Layers in AXML System

512 JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER

B. AXML Peers Components
In this section, we will explain the components of the

AXML peer and how they cooperate with each other, in
order to invoke a service or answer a call.

As we can see in Fig 4, the AXML peer is able to
invoke services in other AXML peer and any service uses
SOAP protocol for the description and invocation.
Whereas, any SOAP client can invoke the AXML peer
services [10]. The components of the AXML peer are
(extended from [3]):

• SOAP Wrapper: gives the peer the ability to connect

with any SOAP peer by encoding the request and the
response to SOAP messages.

• AXML Service Definitions: define the AXML services
provided on the peer.

• AXML Document Storage: stores AXML documents.
This component will store the resulted data the peer
desired to cache.

• Evaluator: activates the service calls embedded in the
AXML documents by seeking the desired service
locally in the AXML Service Definitions or invoke a
remote Web service. The evaluator will also enrich
the documents by the returned answer. In addition, it
receives and executes the requests for any of the
services provided by the AXML peer by sending a
query to the XQuery Processor.

• XQuery Processor: implements evaluator query and
reads the updates in AXML documents.

• Cache Manager: checks the validity of service calls
result that cached by the peer in the AXML Document
Storage and activates the corresponding service call to
get the latest copy of the data. The Cache Manager
will use a timer to schedule the update of the cached
information. In addition, if the AXML peer is a
nominated peer that provides the results of remote
services to other peers, the XQuery Processor will ask
the Cache Manager to get the required cached
documents. This last component guarantees the

coherence of the cached copies of information, by
reactivating the corresponding service call whenever
the result is expired even if the information is not
required locally at that point of time.

VI. CASE STUDY AND ANALYSIS

In this section, we show a possible scenario for
caching a popular Web service and how to invoke the
cached copies from the nominated peer. Afterwards, we
will analysis the performance of the proposed framework.

A. Case Study
Fig. 5 shows a WSP weather.com, which provides

weather forecast for any location worldwide. This WSP
will be involved in a large number of P2P networks
around the world. For example, networks A, B, and C are
P2P networks, and these three networks are location-
based (in other words, each network connecting peers in
particular country, for instance, Australia, Saudi Arabia,
and United states respectively). In addition, the network
peers are newspapers websites, all of them showing
weather forecasts for the large cities in the newspaper’s
home country. For example, in Australian network, the
peers are Herald Sun, Daily Telegraph, The Advertiser,
The Age, etc.

Instead of having separate connections between
weather.com and each of these newspaper websites and
having to send continuous calls to get weather forecast
for Australian cities (for example, Adelaide, Brisbame,
Melbourne, and Sydney), one of the peers (for example,
Herald Sun) will be nominated to connect the WSP
directly and cache the resulted data in a data store. This
path will be stored in the WSP to redirect other peers to
call Herald Sun website to request weather information
about the mentioned Australian cities. Therefore, if Daily
Telegraph website, for example, wants to invoke the
forecast service, the following service call will be sent to
the weather.com:

Figure 3 AXML Peer Components

JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012 513

© 2012 ACADEMY PUBLISHER

<weather>
 <axml:call service=”forecast@weather.com”>
 <country>Australia</country>
 <city>Adelaide</city>
 <city>Brisbane</city>
 <city>Melbourne</city>
 <city>Sydney</city>
 </axml:call>
</weather>

However, as the Herald Sun website is a subscriber in
the service and it is the nominated peer in the network to
cache this service, the weather.com will reply to this call
by sending an intensional data that has a call to the
cached information in the Herald Sun. For instance:

<weather>
 <sc>
heraldsun.com/getCached(forecast(Adelaide,
Brisbane, Melbourne, Sydney)) </sc>
</weather>

P0 weather.com

P2P Network in
Saudi Arabia

P2P Network in
the USA

P2P Network in Australia

Herald Sun

The Age

The Daily
Telegraph

The
Advertiser

Figure 4. Case Study Illustration

Afterwards, Daily Telegraph server will use this
service call to get the forecast information for the
mentioned cities from the Herald Sun website. Moreover,
the weather server may send to the super node (Herald
Sun) some intensional data. In other words, requesters
can make other calls to invoke some services defined in
other different peers, such as a call to map@bing.com to
bring the map for the required city. Subsequently, the
super node will materialize the resulted nested calls to use
it locally. Furthermore, the results for the nested calls will
also be cached to provide them to other non-AXML
peers, who cannot accept the intensional data, and also
the AXML peers in the network to reduce the pressure on
the actual service providers.

B. Analysis
This section will highlight the strengths of the

proposed levels of caches and the functionalities that will
be improved by applying such mechanism.

Request Latency. As some of the data in AXML

documents is defined intensionally as embedded calls,
these calls will be fired to request the corresponding
service and replace the intensional data with resulted
information. This request can be affected by the network
traffic that can lead to response delay of the service
provider. However, caching some copies of the frequently
requested data in different peers that are interested in the
service will improve the performance of the service
requests.

Computational Tasks. When a number of AXML peers

invoke a Web service, the service provider needs to
activate this service and send its result to the requesters in
each time the service is being requested. Caching the
service results in the Web service provider and
scheduling frequent activations to update the cached
results can reduce the computation tasks of this service by
using the cached documents to response to service calls.
In addition, the WSP can redirect the service request to
one of the peers that cache the corresponding service
result.

Source Capability. The results of the Web service

invocations can have other intensional service calls to
other local or remote services. However, non-AXML
peers cannot deal with the intensional data. In other
words, they cannot fire the embedded service call to
invoke the required service. Hence, if a non-AXML peer
wants to receive data from a WSP, the data sent has to be
fully materialized for the requester. Materializing the
nested calls that can be embedded in the service result by
the WSP and cache the results for of these nested calls
can improve the performance of serving the non-AXML
peers.

Query Over AXML Documents. In order to query over

AXML documents, the intensional data that related to this
query needs to be materialized. This is also required if we
need change the type of the document from AXML
document to any other type, like XML or HTML because
for any reason the requesters do not accept intensional
data. If the peer that has the AXML document cannot
invoke the particular service, either because the peer is
missing the right to access the service at that time or the
service provider is not responding, the query services and
the changing of type will be disabled for this document.
Therefore, caching the latest copy of the important
service result in the AXML peer or extract these results
from the super peer (nominated peer) will solve the issue
of the inability to invoke the actual service.

VII. CONCLUSION

The AXML system can be a powerful tool for
integration data and services over the web. However, this
system has the potential to negatively affect the network
conditions. The proposed caching mechanism that is
based on distributing the service information to various
servers can be an appropriate solution to minimize these

514 JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012

© 2012 ACADEMY PUBLISHER

impacts. In this paper we propose caching mechanism
that uses three caching layers.

The caching mechanism will be an applicable
technique in P2P networks that use the AXML system
because AXML system provides appropriate
characteristics to facilitate guidelines for the requesters of
the services to the appropriate cache by embedding the
path to this cache intensionally and exchange them
between the network peers.

REFERENCES

[1] A. Ghitescu and E. Taroza, "Active XML documentation",
http://www.activexml.net/axmlv2/resources/axmldoc.pdf.
Jul. 2008.

[2] D. S. Milojicic, V. Kalogeraki, R. Lukose, Nagaraja, K.,
Pruyne, J., B. Richard, S. Rollins, and Z. Xu, “Peer-to-Peer
Computing” Tech. Report Hewlett- Packard HPL-2002-57,
Jul. 2003

[3] L. Helouet and A. Benveniste, “Distributed Active XML
and Service Interfaces”, Tech. Report INRIA 00429433,
Oct. 2009.

[4] M. Marczewski and T. Pankowski, “Data caching in data
integration systems based on AXML Technology”, Proc.
Database and Expert Syst,. Workshop, pp. 794-798, 2007.

[5] T. Milo, "Peer-to-peer Data Integration with Active XML"
Proc. Asian Computing Science Conf. (ASIAN), pp. 11-18,
2005.

[6] M. Xiong, K. Ramamrithan, A.A. Stankovic, D. Towsley,
and R. Sivasankaran, “Scheduling Transactions with
Temporal Constraints: Exploiting Data Semantics”. IEEE
Trans. Knowl. Data Eng. 14 (5), pp.1155-1166, Sep. 2002.

[7] S. Abiteboul, I. Manolescu, and S. Zoupanos, "OptimAX:
optimizing distributed continuous queries", Proc. Intl.
Conf. Data Eng. (ICDE), pp. 1564-1567, 2008.

[8] S. Abiteboul, I. Manolescu, and E. Taropa, "A Framework
for Distributed XML Data Management", Proc. Intl. Conf.
Extending Database Tech. (EDBT), pp.1049-1058, 2006

[9] S. Abiteboul, O. Benjelloun, and T. Milo, (2008). "The
Active XML project: an overview", Very Large Database
Journal 17(5), pp 1019-1040, Aug. 2008.

[10] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and R.
Weber, “Active XML: Peer-to-peer Data and Web Services
Integration”, Proc. Intl. Conf. Very Large Databases
(VLDB), pp.1087-1090, 2002

[11] Active XML home page, http://www.activexml.net, Nov.
2010

[12] The Active XML Team, "Active XML Primer", Tech.
Report. GemoReport 307, Jul. 2002

[13] T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, and F. D.
Ngoc, "Exchanging Intensional XML Data." ACM Trans.
Database Syst. 30(1), pp.1-40, Mar. 2005.

[14] Y. Zhu, “Containment and Equivalence of Active XML
documents” Proc. Intl. Coll. on Computing,
Communication, Control and Management, pp. 590-594,
2008.

JOURNAL OF SOFTWARE, VOL. 7, NO. 3, MARCH 2012 515

© 2012 ACADEMY PUBLISHER

	jsw100821-126_final.pdf
	JSW110306-188 _V2.pdf
	jsw110327-203_paper.pdf
	jsw110510-218 new ed.pdf
	jsw110705-241 a4.pdf
	jsw110727_final revision-251_changed a little in affiliation_-2.pdf
	jsw110727-253.pdf
	jsw110802-257 n.pdf
	jsw110803-258.pdf
	jsw110818-263.pdf
	JSW_CSEE11_251.pdf
	JSW_CSEE11_274 5519-12601-1-SP.pdf
	JSW_CSEE11_282.pdf
	JSW_ICICTA11_88.pdf
	JSW_ICICTA11_97.pdf
	JSW_ICICTA11_102.pdf
	JSW_ICICTA11_111.pdf
	JSW_ICICTA11_114.pdf
	JSW_ICICTA11_117 from JCP.pdf
	JSW_ICICTA11_118 from JCP.pdf
	JSW_ICICTA11_120 ed.pdf
	JSW_ICICTA11_123 ed.pdf
	JSW_ICICTA11_130.pdf
	JSW_ICICTA11_138.pdf
	JSW_ICICTA11_139.pdf
	JSW_ICICTA11_143.pdf
	JSW_ICICTA11_146.pdf
	JSW_ICICTA11_148 ed.pdf
	JSW_ICICTA11_149.pdf

