
Article

Journal of Information Science

2015, Vol. 41(3) 383–398

� The Author(s) 2015

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0165551515576478

jis.sagepub.com

A data-driven dynamic ontology

Dhomas Hatta Fudholi
La Trobe University, Australia and Universitas Islam Indonesia, Indonesia

Wenny Rahayu
La Trobe University, Australia

Eric Pardede
La Trobe University, Australia

Abstract
Valuable knowledge in every community is changed frequently. It often remains closely inside a community, even though it has huge
potential to promote problem-solving in the wider community. Our research aims to increase the capability of communities in captur-
ing, sharing and maintaining knowledge from any domain. We utilize an ontology, a shareable form, to collect, consolidate and find
commonality inside knowledge. Most ontologies available these days were created by domain experts to fulfill certain domain require-
ments. However, in cases when domain experts are not obtainable or standard agreement within the domain is not available, such as
in natural or herbal therapy domain, we propose that an ontology can also be extracted from existing knowledge-bases residing within
the community. In order to achieve our aim, we design a data-driven dynamic ontology model. Our model consists of base knowledge
creation and knowledge propagation phases. In the base knowledge creation phase, we define a general concept of capturing commu-
nity knowledge from data into an ontology representation, rather than just transforming a specific data format into an ontology as
found in existing studies. In our knowledge propagation phase, the dynamic community knowledge sources become the trigger of pro-
pagation. This is different from some approaches in existing studies, where the triggering event is an individual change inside the ontol-
ogy and external data may not be the base source of the knowledge in the evolving ontology. We define the propagation feature with
a novel delta script. The script is minimum yet complete to simplify and save knowledge sharing transportation resources. The evalua-
tion result shows that the data-driven dynamic ontology with its propagation method not only delivers complete and correct semantics
but also shows good performance in terms of operation cost and processing time.

Keywords
data-driven; dynamic; ontology; propagation

1. Introduction

Every community in every nation has unique knowledge that is valuable to share. The dormant knowledge inside each

community drives a lack of global standards and common understanding. The need to share community knowledge can

be facilitated through the development of a systematic method of knowledge capture, development and maintenance.

This solution faces two challenges: (a) developing a shareable base knowledge from captured community knowledge

representation; and (b) maintaining dynamic knowledge that changes over time while ensuring information preservation

and a cost effective maintenance mechanism.

Ontologies are commonly used as good mechanisms to share rich knowledge and common understanding [1]. The

knowledge building in the form of an ontology corresponds to the first challenge in developing shareable base knowledge

from communities. Research has defined concepts in transforming data such as text [2–4], XML (eXtensible Markup

Corresponding author:

Dhomas Hatta Fudholi, Department of Computer Science and Information Technology, La Trobe University, Victoria 3086, Australia.

Email: dfudholi@students.latrobe.edu.au; hatta.fudholi@yahoo.co.id

 at La Trobe University on May 13, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

Language) [5–9] and relational databases [10–12] into ontologies. While this work stresses the transformation of a spe-

cific data format into an ontology, we define a general concept of capturing knowledge from community data representa-

tion to enable base knowledge creation in the form of an ontology from a multiformat data source.

The second challenge in maintaining dynamic knowledge cannot be separated from evolution methodology. Since we

use an ontology as knowledge representation, we need to follow an ontology evolution concept that keeps the ontology

up to date with respect to changes in the domain that it models [13]. Ontology evolution maintains the ontology in the

fresh state. Stojanofic et al. [14] started the ontology evolution process by capturing change, representing change, analys-

ing inconsistencies, implementing change, propagating change and finally validating change in the ontology. The source

of evolution may come from different things such as: an ontology version change log as in Sari et al. [15]; instances of

information inside the ontology as in Stojanofic et al. [14]; or external data which may not be a knowledge source of the

ontology as in Zablith et al. [16]. In our approach, the evolution source comes from the evolving data sources that build

the base knowledge. Moreover, our focus is in the process of propagating changes to maintain the newness of the share-

able knowledge in the form of an ontology. Propagation is useful to maintain the ontology when the data source is not

present in the same location as the ontology. It eliminates the need to send the original file, which can be costly, espe-

cially if the file size is very big. In order to do the propagation, we define the possible changes derived from the data and

use a change detection tool to create a list of occurred changes. The list of occurred changes is formed into a novel for-

mal delta script.

In order to address the two challenges, we designed a general model to develop community shareable knowledge that

evolves, called a data-driven dynamic ontology. The model incorporates an ontology as the shareable format and takes

data representation as the community knowledge. As the proof of concept, we take evolving XML data as the community

knowledge representation and analyse it in our system. We create a web-based application to evaluate our concept, espe-

cially in terms of the correctness and the effectiveness of dynamic ontology development and maintenance using propa-

gation features against pure ontology reproduction.

Following this section, the rest of this paper is organized as follows. Section 2 gives an overview of the data-driven

dynamic ontology concept. Section 3 explains the first part of the concept, which is base ontology development. Section

4 elaborates the second part of the concept, which is dynamic ontology propagation, including the design of the novel

delta script. Section 5 presents the analytical study of the concept. The evaluation of the completeness, the correctness

and the performance for the propagation method by means of operation cost and processing time is also delivered in this

section. Finally, the conclusion and future work is described in Section 6.

2. Concept and model

The proposed data-driven dynamic ontology concept takes community knowledge as the data source. We define the

minimum requirements of the knowledge data representation. We base the requirements on the way an ontology stores

semantic knowledge. An ontology comprises the ontology model and ontology individuals, which may refer to schema

and records in the structural data. Moreover, each ontology component, including the individual, has a unique identity.

Therefore, to be able to capture the knowledge inside a community, the schema should be extractable from its raw data

and the data instances should at least record a unique identity. A schema can be derived from semi-structured data (e.g.

XML) and structured data (e.g. relational database). Even though there are studies to extract knowledge from unstruc-

tured text [2–4], the mining result cannot be ascertained since different user interaction inputs may reflect different out-

comes of structure extraction in terms of depth, concept name and relations. In our proposed concept, we assume that

there exists a semi-structured or a structured data repository within the community, in order to build the ontology model.

However, instances in the ontology can be derived from unstructured data, such as unstructured data in NoSQL environ-

ments and text-based documents.

Recalling our research aims, we designed a data-driven dynamic ontology as a model of dynamic shareable knowledge

development from communities. There are two key points that underpin the nature of the extracted knowledge: shareable

and dynamic. The data-driven dynamic ontology model is subsequently divided into two main parts to respond to the two

key points: (a) base ontology creation; and (b) ontology propagation.

The creation of the base ontology addresses the need for a uniform mechanism to describe the extracted shareable

knowledge. In our model, the creation of the base ontology occurs only once. We extract knowledge of the data into the

base ontology model via its schema and populate the instance. This concept is detailed in Section 3. Schema extraction

from the data is preprocessed using existing tools, such as Trang1 for XML Schema (XSD) extraction, or SchemaSpy2

for database schema.

Once created, the ontology is continuously updated to reflect the dynamic nature of community knowledge. Ontology

propagation enables the dynamic feature in knowledge development. The propagation updates the base ontology when

Fudholi et al. 384

Journal of Information Science, 41(3) 2015, pp. 383–398 � The Author(s), DOI: 10.1177/0165551515576478

 at La Trobe University on May 13, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

changes in the data source occur. The old data source and the current data source are compared along with their extracted

schema using the differencing processor and result in a delta script. We create a novel delta script representation that con-

sists of the data instance and schema change lists. This list acts as a map of where the propagation should be applied and

the updated knowledge that needs to be propagated. The propagation process is repeated over time when a change occurs

in the data source. The detail of this part is explained in Section 4.

3. Base ontology creation

The creation of a base ontology is the first process in the data-driven dynamic ontology concept. In order to do so, we

extract knowledge from the community data into the base ontology. Since knowledge data has two components of infor-

mation, which are structure and instance, the base ontology creation phase has two parts: (a) structure extraction; and (b)

instance population. For structure extraction, we classify the extraction based on ontology model components. We cate-

gorize the structure extraction into class, property and constraint extraction. We define the knowledge extraction concept

in a general declarative representation to enable the future inclusion of any format of the knowledge source in our frame-

work. In addition, we define the formal model using our novel representation called iSchema. iSchema is a tag-based def-

inition for our data component knowledge representation. iSchema is very useful for identifying particular knowledge

information for our novel delta script definition in Section 4. A summary of the definition is given in Table 1 and is ela-

borated in the following subsection. In addition, we give an illustration in Figure 1 and we refer to the literature [5–12]

for examples of ontology transformation from a specific data format that comply with our knowledge extraction concept.

Each phase is described below.

3.1. Class extraction

An ontology class consists of individuals that have the same characteristics. Hence, a collection of objects that has com-

mon characteristics and a class in the data is formed into an ontology class. Let <iClass> be the iSchema representation

of the data class. In Figure 1, <iClass> refers to Food, Supplier, Meat and Cereal. We can find a collection of objects as

a complexType in XML or a table (relation) in a relational database.

An ontology may relate one class to another in a subclass relation. A subclass relation in the ontology model can be

derived from the inheritance relationship between classes. This inheritance relationship is defined as <iIRel> in

iSchema. The definition of <iIRel> is specified by (1).

< iIRel> IR : < iClass>C1 → < iClass>C2 ð1Þ

<iIRel> exist in the relationship of Meat and Cereal with Food in Figure 1. An extension in XML and a subtable in

the database are further examples of the inheritance relationship.

3.2. Property extraction

An ontology has two kinds of properties: ObjectProperty and DatatypeProperty. ObjectProperty relates two classes in an

association relationship. In data structure views, we could say that, if there exists an association relationship between

Table 1. General ontology extraction from data.

Data iSchema Ontology model

Structure
An abstraction of objects collection, with common characteristics (or class) <iClass> owl:Class
Association relationship between classes <iARel> owl:ObjectProperty
Object’s attributes, with literal data type <iAttrib> owl:DatatypeProperty
Inheritance relationship between classes <iIRel> rdfs:subClassOf
Object’s or attribute’s minimum occurrence <iMin> owl:minCardinality
Object’s or attribute’s maximum occurrence <iMax> owl:maxCardinality
Attribute’s data type <iType> rdf:datatype
Instance
Instance identity <iD>

Attribute’s value <iVal>

Fudholi et al. 385

Journal of Information Science, 41(3) 2015, pp. 383–398 � The Author(s), DOI: 10.1177/0165551515576478

 at La Trobe University on May 13, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

objects or classes, we form the relationship into ObjectProperty. Formally, let <iARel> be the iSchema representation

of the association relationship between classes and its definition is specified by eqn (2).

< iARel>AR : < iClass>C1 → < iClass>C2 ð2Þ

<iArel> may exist in the database table relationship and XML complexType. In Figure 1, the association relationship

is illustrated as the relationship between Food and Supplier. In addition, we need to consider the semantics of the

ObjectProperty relationship. The domain and the range of particular ObjectProperty should be logical. As for the illustra-

tion, if the property that is made between Food and Supplier is called isSuppliedBy, the logical domain and range of the

property will be Food and Supplier, respectively. On the other hand, if the property is called hasProduct/supplies, then

the domain and range will be the opposite. We could have both property definitions in the ontology representation,

where one property is the inverse property of the other.

DatatypeProperty links classes with their literal values. In data representation, it refers to the attribute that describes

an object. Let <iAttrib> be the iSchema representation for this relationship and <iType> be the data type of the literal

value. The definition of <iAttrib> is specified by eqn (3):

< iAttrib>A : < iClass>C → < iType> T ð3Þ

<iAttrib> can be seen as XML simpleType and the database column, since they generally contain literal values. As

illustrated in Figure 1, code, carbohydrate, fat, protein, condition and address describe a collection of objects and also

have literal values. Therefore, they are extracted into DatatypeProperty.

3.3. Constraint extraction

Semantic constraints exist in every ontology. We extract two ontology constraints from the data: occurrence and data

type constraints. Occurrence constraints in data reflect the minimum and maximum cardinality in an ontology. To repre-

sent the occurrence constraint in iSchema, we define <iMin> and <iMax> for minimum and maximum occurrences,

respectively. Both occurrence constraints adhere to <iAttrib> and <iARel>. The definitions of <iAttrib> and

<iARel> are then specified with occurrence constraints into eqns (4) and (5):

< iARel>AR < iMin> i, < iMax> j½ � : < iClass>C1 → < iClass>C2 ð4Þ

< iAttrib>A < iMin> i, < iMax> j½ � : < iClass>C → < iType> T ð5Þ

In Figure 1, the association relationship between Food and Supplier illustrates the occurrence constraint where one

kind of food may have more than one supplier. Moreover, code is an identity (ID) that naturally needs to have exactly

Figure 1. Knowledge extraction illustration.

Fudholi et al. 386

Journal of Information Science, 41(3) 2015, pp. 383–398 � The Author(s), DOI: 10.1177/0165551515576478

 at La Trobe University on May 13, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

one unique value. An occurrence constraint in XML is defined in minOccurs and maxOccurs attributes, while in a rela-

tional database the constraint may exist in the NOT NULL and primary key assertion.

A data type constraint adheres to data attributes in order to set the domain value. In iSchema, it reflects <iType>.

Columns in a relational database and XML elements have certain data types to restrain its literal type of value. This con-

straint refers to the attribute type illustrated in Figure 1, such as float and string.

3.4. Instance population

Instance population is executed after the base ontology model has been built from data source structure extraction.

Every instance in the data source is populated as an individual into the base ontology model. As an illustration from

Figure 1, rice instance in the Cereal class has carbohydrate attribute with a value of 1.0. rice is then populated as an

ontology individual, and all the knowledge that describes rice is extracted in the form of a triplet statement, e.g. rice-

hasCarbohydrate-1.0. In iSchema, the value of the attribute is stored as <iVal>. The unique ID record in the data source

becomes the individual’s ID in the ontology. In iSchema, the ID of the instance is stored as <iD>.

4. Dynamic ontology propagation

In this section, we elaborate the dynamic ontology propagation process. We start by presenting the nature of the changes

in the data as the cause of the propagation. We follow this by explaining the need for differencing between the current

data source and its previous versions. Finally, we describe the novel delta script forms.

4.1. Changes in data

The knowledge inside a community changes and is updated frequently. We focus on data source change, not in its

schema, since initially schema may not be available. Moreover, we see semantic changes in data rather than its syntacti-

cal representation change as in Guerrini et al. [17], which differs in the global and local declaration.

We identify the changes in data as the basic edit operations of insert, delete, update and move. The update operation

includes changes in the name, value, type and constraint. We use the Selkow’s tree model [18] interpretation for the

delete operation. Selkow’s model may be directly used in an XML-based data tree. However, we could take a general

definition where an object is deleted, and the entire definition (inherited object, attributes) rooted at the particular object

is also deleted.

4.2. Differencing

To identify evolving knowledge, we use a differencing process, which is an important process during propagation. While

differencing is used to show the part of knowledge that needs to be propagated, it also has additional features as in

Cobéna et al. [19]: version and querying past knowledge; learning about changes; monitoring changes; and indexing. An

ontology is formed from the model and individuals, which reflect the structure and instances. Hence, differencing should

be able to identify the knowledge changes (delete, insert, update and moved) inside the structure and also the instances.

Referring to our knowledge structure representation iSchema, differencing should detect all changes in <iClass>,

<iARel>, <iAttrib>, <iIRel>, <iMin>, <iMax> and <iType>.

X-Diff [20] and XANDY [21] are among the data instance differencing tools. Both are created to be high-performance

tools with the capability of comparing an unordered XML data tree. X-Diff uses an effective algorithm that integrates key

XML structure characteristics with standard tree-to-tree correction techniques [20]. On the other hand, XANDY uses a

relational database that converts XML documents into relational tuples and detects the changes in these tuples using SQL

queries. XANDY is claimed to hold better scalability compared with X-Diff and is capable of detecting inserted nodes,

deleted nodes and updated nodes [21]. For differencing in structure, the most recent work and the one that we will adopt

is XS-Diff [22]. XS-Diff stores XSD versions in a relational database. Thus, the change detection results and the delta

information are employed in relational tables [22]. XS-Diff is proven to be complete, semantically correct and an optimal

tool. XS-Diff can detect the deletion, insertion, update and migration/move of XSD elements and attributes. The update

detection of the elements or attributes includes the type and occurrence update. XANDY and XS-Diff use a relational data-

base as the mediation; therefore, their concept is applicable for detecting relational database data differences.

We take the ideas of XANDY and XS-Diff in the differencing concept for instance and structure changes, respectively.

Both tools deliver outstanding results in detecting changes. However, in the structure part, they cannot detect an update

in structure name (rename) by itself. To enable this feature, we combine the capability in both differencing concepts. A

Fudholi et al. 387

Journal of Information Science, 41(3) 2015, pp. 383–398 � The Author(s), DOI: 10.1177/0165551515576478

 at La Trobe University on May 13, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

renamed attribute might occur when the instance differencing part detects a massive attribute deletion and insertion in

the same path but holding the same value, and the structure differencing part detects a deletion and insertion of an attri-

bute in the same parent path where the information on the attribute name is the same as in the instance detection part.

4.3. Delta script

Changes of data are collected in a delta script. The delta script is used as a tool to maintain the knowledge representation

in an ontology. A delta script is very useful when the original file is located in another place or in the distributed environ-

ment, since sending the whole updated file will consume resources and result in a greater chance of information loss.

Cobéna et al. [23] listed several important features that tools should possess in order to generate a delta file. These are

completeness, minimality, performance and complexity, ‘move’ operation and semantics. We adopt these as indicators of

a good delta script. A good delta script should list sufficient information to transform the old version of knowledge to the

current one (complete), lists a concise sequence of information to save storage space and network bandwidth (minimal-

ity), delivers good scalable performance with low memory usage (performance and complexity), is capable of detecting

‘move’ operations to achieve better performance and minimality (‘move’ operation), and contains precise semantics

information based on the data structure (semantics).

In this paper, we propose a real-time propagation that updates the old ontology to the current version when there is a

change in the data source. We do not store the previous delta script, which could be used as a back-propagation tool.

This concept will be investigated in future work. By taking the aforementioned important features into consideration, we

create a definition of our own set of delta script representations. There are two groups of script in the delta script that

contain the differences in the instances and the differences in the structure.

As a case study to prove our proposed concept, we use part of the Food Display Table3 XML dataset from the USDA

(United States Department of Agriculture) and make updates to some of the data. Figure 2 shows the original part of the

dataset and the updated dataset. The bold characters indicate the changed part of the dataset. Figure 3 presents the origi-

nal XSD from the dataset against the updated XSD. Both XSD are produced by Trang engine in oXygen4 XML Editor.

The set of the delta script is defined as follows:

Original XML Dataset
<Food_Display_Table><Food_Display_Row>

 <Food_Code>13110100</Food_Code>

 <Display_Name>Ice cream, regular</Display_Name>

 <Portion_Display_Name>cup</Portion_Display_Name>

 <Grains>.00000</Grains><Whole_Grains>.00000</Whole_Grains>

 <Vegetables>.00000</Vegetables>

 <Orange_Vegetables>.00000</Orange_Vegetables>

 <Drkgreen_Vegetables>.00000</Drkgreen_Vegetables>

 <Starchy_vegetables>.00000</Starchy_vegetables>

 <Other_Vegetables>.00000</Other_Vegetables>

 <Oils>.00000</Oils>

 </Food_Display_Row><Food_Display_Row>

 <Food_Code>13110120</Food_Code>

 <Display_Name>Ice cream, rich</Display_Name>

 <Portion_Display_Name>cup</Portion_Display_Name>

 <Grains>.00000</Grains><Whole_Grains>.00000</Whole_Grains>

 <Vegetables>.00000</Vegetables>

 <Orange_Vegetables>.00000</Orange_Vegetables>

 <Drkgreen_Vegetables>.00000</Drkgreen_Vegetables>

 <Starchy_vegetables>.00000</Starchy_vegetables>

 <Other_Vegetables>.00000</Other_Vegetables>

<Oils>.00000</Oils></Food_Display_Row></Food_Display_Table>

Updated XML Dataset
<Food_Display_Table><Food_Display_Row>

 <Food_Code>13110100</Food_Code>

 <Display_Name lang="en">Ice cream, regular</Display_Name>

 <Portion_Display_Name>cup</Portion_Display_Name>

 <Whole_Grains>.00000</Whole_Grains>

 <Vegetables_Total>.00000</Vegetables_Total><Vegetable_Detail>

 <Orange_Vegetables>.00000</Orange_Vegetables>

 <Drkgreen_Vegetables>.00000</Drkgreen_Vegetables>

 <Starchy_vegetables>.00000</Starchy_vegetables>

 <Other_Vegetables>.00000</Other_Vegetables></Vegetable_Detail>

 <Oils>.00000</Oils></Food_Display_Row><Food_Display_Row>

 <Food_Code>13110120</Food_Code>

 <Display_Name lang="en">Ice cream, rich</Display_Name>

 <Portion_Display_Name>cup or scoop</Portion_Display_Name>

 <Whole_Grains>.00000</Whole_Grains>

 <Vegetables_Total>.00000</Vegetables_Total>

 <Vegetable_Detail>

 <Orange_Vegetables>.00000</Orange_Vegetables>

 <Drkgreen_Vegetables>.00000</Drkgreen_Vegetables>

 <Starchy_vegetables>.00000</Starchy_vegetables>

 <Other_Vegetables>.00000</Other_Vegetables>

 </Vegetable_Detail></Food_Display_Row></Food_Display_Table>

Figure 2. Case study: part of the USDA Food Display Table Database (original and updated).

Fudholi et al. 388

Journal of Information Science, 41(3) 2015, pp. 383–398 � The Author(s), DOI: 10.1177/0165551515576478

 at La Trobe University on May 13, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

Definition 1. � ≡ <D, I, U, M, ID>. Delta script � comprises four sets of lists, which are delete (D), insert (I), update (U) and

move (M), and an attribute path and/or name that holds the unique ID (ID). These lists are proposed to achieve completeness and

minimality yet hold solid semantics. The update list and move list have been designed to minimize the primitive operation of

delete and insert. In addition, each list is compiled from the minimum information tuple to proceed into a complete propagation.

The location of the ID is predefined. The ID value of the instance cannot be updated. If it is updated, then it will drive a delete

and insert process for the whole data instance block. This restriction is applied since the ID is used as the location information by

every changed instance member, and it needs to remain the same and unique.

The sequence of the listed differences in the delta script is (D!I!U!M). The first list is the delete list. The delete

process should come first to avoid possible name duplication of the new object or property. The second list is the insert

list. The third list is the update list. Finally, the fourth list is the move list. The move list should be the last list because

we need to state all of the inserted and updated components before we are able to identify the possible target of the

moved component. Since there is a possibility of having a difference list of both instance and structure, the structure list

goes before the instance in each list. The modification in structure should be applied before the instance.

Definition 2. Delete List D is defined as D ≡ <SDel, IDel>. D consists of a set of deleted structure item(s) (SDel) and deleted

instance item(s) (IDel). SDel is a collection of deleted <iClass> and/or <iAttrib>. IDel is a collection of deleted instances, which

is defined as a tuple of (<iD>, <iAttrib>, <iVal>). <iD> is the identity value of an instance. <iVal> is the value in

<iAttrib>. The property value in the deleted instance needs to be listed. This is done to overcome the conflict when there is more

than one element alike in the instances with different values.

There are three rules associated with Definition 2. (a) When deleting an <iAttrib> of an instance, the value inside it

will also be deleted. (b) The deletion of <iClass> will also remove its entire child nodes and any of its associated rela-

tionships. By keeping minimality in mind, the only listed child nodes in the delta script are <iClass> and <iAttrib>.

Any related associated relationship can be derived from deleted <iClass> and does not need to be listed. (c) When there

Original XSD
<xs:element name="Food_Display_Table">

 <xs:complexType><xs:sequence>

 <xs:element maxOccurs="unbounded" ref="Food_Display_Row"/>

 </xs:sequence></xs:complexType></xs:element>

 <xs:element name="Food_Display_Row">

 <xs:complexType><xs:sequence><xs:element ref="Food_Code"/>

 <xs:element ref="Display_Name"/>

 <xs:element ref="Portion_Display_Name"/>

 <xs:element ref="Grains"/><xs:element ref="Whole_Grains"/>

 <xs:element ref="Vegetables"/>

 <xs:element ref="Orange_Vegetables"/>

 <xs:element ref="Drkgreen_Vegetables"/>

 <xs:element ref="Starchy_vegetables"/>

 <xs:element ref="Other_Vegetables"/>

 <xs:element ref="Oils"/>

 </xs:sequence></xs:complexType></xs:element>

 <xs:element name="Food_Code" type="xs:integer"/>

 <xs:element name="Display_Name" type="xs:string"/>

 <xs:element name="Portion_Display_Name" type="xs:NCName"/>

 <xs:element name="Grains" type="xs:decimal"/>

 <xs:element name="Whole_Grains" type="xs:decimal"/>

 <xs:element name="Vegetables" type="xs:decimal"/>

>

>

/>

>

Updated XSD
<xs:element name="Food_Display_Table">

 <xs:complexType><xs:sequence>

 <xs:element maxOccurs="unbounded" ref="Food_Display_Row"/>

 </xs:sequence></xs:complexType></xs:element>

 <xs:element name="Food_Display_Row"><xs:complexType><xs:sequence>

 <xs:element ref="Food_Code"/><xs:element ref="Display_Name"/>

<xs:element ref="Portion_Display_Name"/><xs:element

ref="Whole_Grains"/>

<xs:element ref="Vegetables_Total"/><xs:element

ref="Vegetable_Detail"/>

<xs:element minOccurs="0" ref="Oils"/>

 </xs:sequence></xs:complexType></xs:element>

 <xs:element name="Food_Code" type="xs:integer"/>

 <xs:element name="Display_Name"><xs:complexType mixed="true">

<xs:attribute name="lang" use="required" type="xs:NCName"/>

 </xs:complexType></xs:element>

 <xs:element name="Portion_Display_Name" type="xs:string"/>

 <xs:element name="Whole_Grains" type="xs:decimal"/>

 <xs:element name="Vegetables_Total" type="xs:decimal"/>

 <xs:element name="Vegetable_Detail"><xs:complexType><xs:sequence>

 <xs:element ref="Orange_Vegetables"/>

 <xs:element ref="Drkgreen_Vegetables"/>

 <xs:element ref="Starchy_vegetables"/>

 <xs:element ref="Other_Vegetables"/>

 </xs:sequence></xs:complexType></xs:element>

Figure 3. Case study: part of the USDA Food Display Table Dataset’s XSD (original and updated).

Fudholi et al. 389

Journal of Information Science, 41(3) 2015, pp. 383–398 � The Author(s), DOI: 10.1177/0165551515576478

 at La Trobe University on May 13, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

is <iClass> and/or <iAttrib> structure deletion, all respective instance data will be deleted. Since the number of

instances may be very large, the respective deleted instances do not need to be listed in the delta script.

Three delete operations occur in the data in our case study: (a) the deletion of the ‘Oils’ element in the data instance;

(b) the deletion of the ‘Grains’ structure; and (c) the deletion of the ‘Display_Name’ structure. From Definition 2, we

can write the delta as follows:

#Delete Structure

<iAttrib>Grains

<iAttrib>Display_Name

#Delete Instance

<iD>13110120<iAttrib>Oils<iVal>.00000

Definition 3. Insert List I is defined as I ≡ <SIns, IIns>. I has a set of inserted structure item(s) (SIns) and inserted instance

item(s) (IIns). SIns is a collection of tuples (<iClass>,(<iARel> OR <iIRel>),<iMin>,<iMax>) for class and (<iAttrib>,

<iClass>, <iType>, <iMin>, <iMax>) for attribute. The value of <iArel> and <iIRel> in class insertion tuple is the other

classes related to the inserted class. <iClass> and <iType> in the attribute insertion tuple refer to the class that owns the attribute

and the data type of the attribute, respectively. IIns is a collection of tuples (<iD>, <iAttrib>, <iClass>, <iVal>). <iClass>

instance insertion tuple refers to the class that owns the attribute.

In the case study, there exist some insertion operations. A new element called ‘Vegetable_Detail’ is added in the struc-

ture. A new attribute ‘lang’ is added to ‘Display_Name’. In this case, the old attribute ‘Display_Name’ is deleted and a

new element and attribute ‘Display_Name’ is created. The new attributes ‘lang’ and ‘Display_Name’ have a value each

in each data instance. From Definition 3, we may write the delta script as follows:

#Insert Structure

<iClass>Vegetable_Detail<iARel>Food_Display_Row<iMin>1<iMax>1

<iClass>Display_Name<iARel>Food_Display_Row<iMin>1<iMax>1

<iAttrib>Display_Name<iClass>Display_Name<iType>ANY<iMin>1<iMax>1

<iAttrib>lang<iClass>Display_Name<iType>xs:NCName<iMin>1<iMax>1

#Insert Instance

<iD>13110100<iAttrib>Display_Name<iClass>Display_Name<iVal>"Icecream, regular"

<iD>13110120<iAttrib>Display_Name<iClass>Display_Name<iVal>"Ice cream, rich"

<iD>13110100<iAttrib>lang<iClass>Display_Name<iVal>"en"

<iD>13110120<iAttrib>lang<iClass>Display_Name<iVal>"en"

Definition 4. Update List U can be described as U ≡ <SUpd, IUpd>. U consists of a set of updated structure item(s) (SUpd)

and updated instance item(s) (IUpd). Updates in structure may include renaming, changing the data type and changing the

occurrence. On the other hand, instance updates include only changing the value of the attribute. SUpd is a collection of tuples

(old(<iClass>), new(<iClass>), (<iARel> OR <iIRel>), <iMin>, <iMax>) for class, and (old(<iAttrib>),

new(<iAttrib>), <iClass>, <iType>, <iMin>, <iMax>) for attribute. <iClass> in the attribute update tuple is the

described class of respective attributes and the <iType> is the new data type of the attribute. IUpd is collection of tuples

(<iD>, <iAttrib>, <iClass>, old<iVal>, new<iVal>). <iClass> in the instance update tuple is the described class of the

attribute.

In the case study, the element ‘Vegetables’ is renamed ‘Vegetables_Total’, the minimum occurrence of element ‘Oils’

is updated to 0 and the data type of ‘Portion_Display_Name’ is changed. From Definition 4, we can write the delta script

as follows:

#Update Structure

<iAttrib>Vegetables<iAttrib>Vegetables_Total<iClass>Food_

Display_Row<iType>xs:decimal<iMin>1<iMax>1

<iAttrib>Oils<iAttrib>Oils<iClass>Food_Display_Row<iType>xs:decimal <iMin>0<iMax>1

Fudholi et al. 390

Journal of Information Science, 41(3) 2015, pp. 383–398 � The Author(s), DOI: 10.1177/0165551515576478

 at La Trobe University on May 13, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

<iAttrib>Portion_Display_Name<iAttrib>Portion_Display_Name<iClass>

Food_Display_Row<iType>xs:string<iMin>1<iMax>1

#Update Instance

<iD>13110120<iAttrib>Portion_Display_Name<iClass>Food_Display_Row<iVal>"cup"<iVal>"c-

up or scoop"

Definition 5. Moved List M is defined as M ≡ SMov. M consists of a set of moved structure item(s) (SMov). SMov is a collec-

tion of tuples (<iClass>, old<iClass>, new<iClass>) for class, and (<iAttrib>, old<iClass>, new<iClass>) for attribute.

old<iClass> and new<iClass> refer to the old and the new superclasses for a class move operation. As for the attribute move

operation, it refers to the old and the new class that is described.

In the case study, there are four move operations, which are the movement of ‘Orange_Vegetables’,

‘Drkgreen_Vegetables’, ‘Starchy Vegetables’ and ‘Other_Vegetables’ attributes under the ‘Vegetable_Detail’ element.

From Definition 5, we can write the delta script as follows:

#Move Structure

<iAttrib>Orange_Vegetables<iClass>Food_Display_Row<iClass>Vegetable_Detail

<iAttrib>Drkgreen_Vegetables<iClass>Food_Display_Row<iClass>Vegetable_Detail

<iAttrib>Starchy_Vegetables<iClass>Food_Display_Row<iClass>Vegetable_Detail

<iAttrib>Other_Vegetables<iClass>Food_Display_Row<iClass>Vegetable_Detail

4.4. Propagation

Ontology propagation uses the delta script to identify knowledge changes. The changes may occur in the ontology model

as its structure and/or in ontology individuals as its instances.

In terms of propagating the ontology model, knowledge representation iSchema inside the delta script refers to a spe-

cific part of the ontology model component, as shown in Table 1. Accordingly, any operation for iSchema representation

will directly propagate the referring ontology model component. However, we do need to consider the semantics of the

propagated part. The definition of delta script has been shaped into a form that takes the semantic factor into consider-

ation. To clarify the propagation process, we elaborate four propagations processes from the delta script listed item by

showing their derived knowledge and changes in the OWL (Web Ontology Language) representation. In our framework

implementation, ObjectProperty and DatatypeProperty name are prefixed by ‘has’ and ‘dp’, respectively. Table 2 shows

a list of four changes in the case study, namely delete, insert, update and move operation. The OWL representation part

in Table 2 shows the implementation of the OWL ontology, where a strikethrough word means ‘deleted’ and ‘>>>’

symbol means ‘of’ or ‘which is connected to’.

The instance of a class in OWL is referred to as an individual, each of which is a resource. The set of individuals in a

class is considered as its class extension [24]. To undertake instance propagation in the OWL ontology, we have to man-

age it in the form of a triplet statement (subject, predicate and object). The subject of the statement is the individual itself.

The predicate of the statement is the property of the individual. Finally, the object is the literal value of the property in

the respective individual. As an example, we elaborate three changes, that is, delete, insert and update the delta script

listed items from a case study in Table 3, where a strikethrough words means ‘deleted’.

5. Evaluation and discussion

In this section, we evaluate the proposed mechanism for facilitating the dynamic notion of ontology. We aim to show

that the data-driven dynamic ontology with its propagation feature offers correct knowledge preservation and gives better

performance in term of resources. Our evaluation considers three factors, namely, completeness, correctness and perfor-

mance. As the proof of our concept, we create an application to evaluate the case study using Jena,5 a Java framework

for building Semantic Web applications.

Fudholi et al. 391

Journal of Information Science, 41(3) 2015, pp. 383–398 � The Author(s), DOI: 10.1177/0165551515576478

 at La Trobe University on May 13, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

5.1. Completeness and correctness

We design the delta script by taking minimality into consideration. While ensuring there are minimum non-redundant

delta list items, it is important that all the required changes are propagated in terms of (a) the completeness of the com-

ponents and (b) the correctness of the semantics.

Table 2. Ontology model propagation case study.

Delta script Derived knowledge OWL repesentation

Delete
<iAttrib>Grains An attribute ‘Grain’ is deleted.

Hence, ‘dpGrain’ ontology
DatatypeProperty is deleted.

owl:DatatypeProperty ‘dpGrain’

Constraint information of
‘dpGrain’ is deleted.

owl:Restriction >>> owl:onProperty >>>
owl:DatatypeProperty ‘dpGrain’,
owl:minCardinality, owl:maxCardinality 1

All ‘dpGrain’ knowledge and
value in all individual is deleted.

<dpGrain rdf:datatype=‘xs:decimal’> *
</dpGrain>

Insert
<iClass>Vegetable_Detail
<iARel>Food_Display_Row
<iMin>1<iMax>1

A new ontology Class
‘Vegetable_Detail’ is created.

owl:Class ‘Vegetable_Detail’

‘Vegetable_Detail’ Class has an
association relationship with
‘Food_Display_Row’ Class and
is related by
‘hasVegetable_Detail’ ontology
ObjectProperty. In triplet
statement, we could say
‘Food_Display_Row’
-’hasVegetableDetail’
-’Vegetable_Detail’.

owl:ObjectProperty ‘hasVegetable_Detail’
>>> rdfs:domain ‘Food_Display_Row’ >>>
rdfs:range ‘Vegetable_Detail’

One instance in
‘Food_Display_Row’ must have
exactly one individual of
‘Vegetable_Detail’.

owl:Class ‘Food_Display_Row’ >>>
owl:Restriction >>> owl:onProperty >>>
owl:ObjectProperty ‘hasVegetable_Detail’,
owl:minCardinality 1, owl:maxCardinality 1

Update
<iAttrib>Vegetables
<iAttrib>Vegetables_Total
<iClass>Food_Display_Row
<iType>xs:decimal
<iMin>1<iMax>1

Attribute ‘Vegetables’ is
renamed to ‘Vegetables_Total’.

owl:DatatypeProperty ‘dpVegetables’!
owl:DatatypeProperty ‘dpVegetables_Total’

‘dpVegetable_Total’ is the
ontology DatatypeProperty of
‘Food_Display_Row’ Class, with
decimal data type.

owl:DatatypeProperty ‘dpVegetables_Total’
>>> rdfs:domain ‘Food_Display_Row’ >>>
rdfs:range decimal

One instance in
‘Food_Display_Row’ must have
exactly one value of
‘Vegetable_Total’.

owl:Class ‘Food_Display_Row’ >>>
owl:Restriction >>> owl:onProperty >>>
owl:DatatypeProperty ‘dpVegetables_Total’,
owl:minCardinality 1, owl:maxCardinality 1

Move
<iAttrib>Orange_Vegetables
<iClass>Food_Display_Row
<iClass>Vegetable_Detail

Attribute ‘Orange_Vegetables’ is
no longer describe
‘Food_Display_Table’, but now
describe ‘Vegetable_Detail’.
Therefore
‘dpOrange_Vegetables’ is now
the DatatypeProperty of
‘Vegetable_Detail’ Class.

owl:DatatypeProperty ‘dpOrange_Vegetables’
>>> rdfs:domain ‘Food_Display_Row’,
owl:Class ‘Food_Display_Row’ >>>
owl:Restriction >>> owl:onProperty >>>
owl:DatatypeProperty
‘dpOrange_Vegetables’,
owl:DatatypeProperty ‘dpOrange_Vegetables’
>>> rdfs:domain ‘Vegetable_Detail’, owl:Class
‘Vegetable_Detail’ >>> owl:Restriction >>>
owl:onProperty >>>
owl:DatatypeProperty ‘dpOrange_Vegetables’

Fudholi et al. 392

Journal of Information Science, 41(3) 2015, pp. 383–398 � The Author(s), DOI: 10.1177/0165551515576478

 at La Trobe University on May 13, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

Component Completeness. We evaluate the completeness of the ontology model component by comparing the base

ontology with the propagated ontology. We observe the deleted, inserted and updated Class(es)/Concept(s) and/or

Property(s). The difference between both ontologies should correspond to the delta script, and the propagated ontology

model component should suit the updated data source schema. Figure 4(a) shows the base ontology of the case study in

the Protégé6 ontology editor environment in OWL. The ObjectProperty name is prefixed by ‘has’ and ‘dp’ prefixes the

DatatypeProperty name. The propagated ontology result from our application is depicted in Figure 4(b). Without men-

tioning the prefixes, in Figure 4(b), we can tell that there is no longer a ‘Grains’ property. In addition,

Table 4. SPARQL evaluation of the case study.

No. SPARQL query Query result

1 SELECT ?item ?oil WHERE {
?item :dpOils ?oil}

2
SELECT ?d ?aRel ?r
WHERE { ?aRel a owl:ObjectProperty.
?aRel rdfs:domain ?d.
?aRel rdfs:range ?r }

3 SELECT ?item ?pdn ?lang ?name WHERE {
?item :hasDisplay_Name ?dn.
?item :dpPortion_Display_Name ?
pdn FILTER
(datatype(?pdn) = xsd:string).
?dn :dplang ?lang.
?dn :dpDisplay_Name ?name }

4
SELECT ?item ?ov ?dv ?sv ?othv WHERE {
?item :dpVegetables_Total ?vt.
?item :hasVegetable_Detail ?vd.
?vd :dpOrange_Vegetables ?ov.
?vd :dpDrkgreen_Vegetables ?dv.
?vd :dpStarchy_Vegetables ?sv.
?vd :dpOther_Vegetables ?othv }

Table 3. Ontology individual propagation case study.

Delta script Derived knowledge OWL repesentation

Delete
<iD>13110120
<iAttrib>Oils<iVal>.00000

The attribute ‘Oils’ and its value
in an instance with ID 13110120
is deleted.

<Food_Display_Row
rdf:about=‘uri:Food_Display_Row_13110120’>
<dpOils rdf:datatype=‘xs:decimal’> .00000
</dpOils>

Insert
<iD>13110120<iAttrib>lang
<iClass>Display_Name
<iVal>‘en’

A new attribute ‘lang’ that
describe a ‘Display_Name’
instance with ID 13110120 is
inserted with a value of ‘en’,

<Display_Name
rdf:about=‘uri:Display_Name_13110120’><dplang
rdf:datatype=‘xs:NCName’>en</dplang>

Update
<iD>13110120<iAttrib>
Portion_Display_Name
<iClass>Food_Display_Row
<iVal>"cup"
<iVal>"cup or scoop"

The value of attribute
‘Portion_Display_Name’ that
describes a ‘Food_Display_Row’
instance with ID 13110120 is
updated from ‘cup’ into ‘cup or
scoop’.

<Food_Display_Row
rdf:about=‘uri:Food_Display_Row_13110120’>
<dpPortion_Display_Name
rdf:datatype=‘xs:NCName’>cup
</dpPortion_Display_Name>
<dpPortion_Display_Name
rdf:datatype=‘xs:NCName’>cup or scoop
</dpPortion_Display_Name>

Fudholi et al. 393

Journal of Information Science, 41(3) 2015, pp. 383–398 � The Author(s), DOI: 10.1177/0165551515576478

 at La Trobe University on May 13, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

‘Vegetable_Detail’, ‘Display_Name’ and ‘lang’ properties have been inserted. The ‘Vegetables’ name property has

become ‘Vegetables_Total’. All changes come under the delta script and suit the updated data structure in the case

study.

Semantic Correctness. We evaluate the correctness of ontology tuple, relation and constraint semantics in all opera-

tions (delete, insert, update and move). The propagated ontology should have the correct semantics in all of its tuple(s),

relation(s) and constraint(s). In our evaluation, four SPARQL [25] queries are executed against the case study. These

queries are detailed in Table 4. Query 1 results in there being only one instance having the ‘Oils’ value, since the ‘Oils’

attribute value from the instance with ID 13110120 has been deleted. Query 2 shows the association relationship between

concepts in the propagated ontology. The result depicts that the relationship between the inserted concepts has been set

in order, based on the delta and the updated data structure. Query 3 shows that all of the inserted attribute values of

‘lang’ and ‘Display_Name’ of all instances have been propagated. In addition, the list of results proves that the updated

data type for ‘Portion_Display_Name’ has changed to string. Query 4 demonstrates that the ‘Orange_Vegetables’,

‘Drkgreen_Vegetables’, ‘Starchy_Vegetables’ and ‘Other_Vegetables’ have been moved and have become the attribute

of ‘Vegetable_Detail’.

The combined results of the updated ontology in Figure 4(b) and the SPARQL query results in Table 4 demonstrate

that the delta script is complete and it contains accurate semantic information to update the base ontology. In other words,

there is no information loss during the propagation process.

5.2. Performance

This section evaluates the data-driven dynamic ontology performance, especially in the propagation process. We evaluate

two components of performance: (a) operation cost; and (b) processing time.

We use two data change scenarios to represent real world application trends. In this experiment, we make an assump-

tion about the data class and attribute. The structural figures are adopted from the original Food Display Table3 XML

data. Predefined variables in representing schema and instances are used. In the schema part, nc is the number of classes

and na is the number of attributes with exactly one occurrence. In the data instance part, ni is the total number of instance

blocks in the data. Therefore, from the original Food Data Table XML data, we get nc = 2 and na = 26.

For the operation cost, we compare the cost unit for propagating the ontology by means of Jena API against the cost

unit for rebuilding the ontology from the current data, with the availability of current and previous data, schema and delta

script. Especially for the operation cost evaluation, we define the unit of rebuild cost. We need two operations, scanning

and mapping, to translate a single class or attribute into ontology form. In addition, one operation is needed to map each

instance data into an ontology individual. The total operation cost for rebuilding the current ontology from current XML

data is equal to ni(nc + na) + 2nc + 2na! (ni + 2)(nc + na). The propagation operation cost is based on the number

of methods that we call using Jena API, as seen in Table 5.

For the processing time, we compare the time elapsed for our propagation method against rebuilding the current ontol-

ogy. In order to do so, we compare our web-based application using Jena API and XML2OWL [6] as a tool in rebuilding

the populated ontology. XML2OWL uses XSLT (XML Stylesheet Language Transformation) to extract XSD from XML

data, to create the OWL model from XSD and to translate XML data into ontology instances. For the processing time

evaluation, we use the following hardware and software: Apple MacBook Pro (2.4 GHz Intel Core 2 Duo processor, 4

GB, 1067 MHz, DDR3 RAM), PHP 5.3.2, Apache 2.0.63 and Tomcat 6.0.26.

5.2.1. Scenario 1. In the first scenario (Sc1), the data instance is always added over time while the data structure

remains the same. This normally occurs in cases such as our case study, or data relating to product or shop catalogues

and membership information.

First, we need to obtain the operation cost for the propagation in Sc1. In order to do the propagation for Sc1, we need

to recall all properties in the ontology and then insert each added individual value from the delta script. The cost of recal-

ling is equal to the total number of all classes and attributes, which is nc + na. The cost of inserting each individual value

is ni+ (nc + 3na), where ni+ is the number of added instance blocks in the data and (nc + 3na) is the total Jena API

methods participating in this propagation. The number of Jena API methods applied for each class in nc is only 1, which

creates an individual. On the other hand, every attribute in na needs three methods before it can be mapped into the ontol-

ogy. These are creating a literal, creating a statement and adding the statement into the ontology model. The total opera-

tion cost in Sc1 propagation is equal to nc + na + ni+ (nc + 3na).

We consider that each insert operation adds 10 new instance blocks in the data; therefore the number of added instance

blocks in the data ni+ = 10. The change occurs 10 times (from 10 to 100 total instances data). Figure 5(a) depicts a

Fudholi et al. 394

Journal of Information Science, 41(3) 2015, pp. 383–398 � The Author(s), DOI: 10.1177/0165551515576478

 at La Trobe University on May 13, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

comparison of the operation cost between the propagation and the rebuild method. Since we define nc = 2, na = 26 at the

beginning of Section 5.2 and the operation cost of rebuilding is equal to (ni + 2)(nc + na), the cost of rebuilding is

raised from 336 to 2856 operation cost units. The propagation method operation cost is steady at 828 operation cost units,

since the delta always holds only 10 additions over time. The propagation cost is slightly higher in the first 25–30% of

the whole changes. However, the propagation method gains efficiency in operation costs in most insertion cases of Sc1.

In addition, it gives more efficiency in operation costs over time.

XML2OWL requires a great deal of resources to rebuild the collective amount of instances over time. This potentially

creates a huge drawback in applications where the structural representation remains stable and yet data instances are reg-

ularly added or changed. In contrast, the propagation only needs to add 10 instances over time. A comparison of the total

processing time can be seen in Figure 5(b), showing how the propagation method in Sc1 gives results in an advantage in

all processes by saving resources against rebuilding the whole ontology.

The evaluation result in real application processing time does not result in any drawback in the first 25–30% of the

total changes. This happens because of the difference between the calculation and comparison methods. However, the

results show that the propagation method is still superior to the rebuild method.

Figure 4. (a) Food Display Table base ontology. (b) Updated Food Display Table ontology.

Table 5. Jena API method for propagation.

No. Operation Jena method component

1 deleteCardinality listRestrictions(), remove()
2 deleteStatement listStatements(), remove()
3 deleteClass getOntClass(), remove()
4 deleteAssosiationRelation getObjectProperty(), remove()
5 deleteAttribute getDatatypeProperty(), remove()
6 createCardinality createMinCardinalityRestriction() /

createMaxCardinalityRestriction(), addSuperClass()
7 createStatement createStatement() / createLiteralStatement(), add()
8 createClass createClass()
9 createAssosiationRelation createObjectProperty()
10 createAttribute createDatatypeProperty()
11 createIndividual createIndividual()
12 setDomain setDomain()
13 setRange setRange()
14 renameComponent renameResource()

Fudholi et al. 395

Journal of Information Science, 41(3) 2015, pp. 383–398 � The Author(s), DOI: 10.1177/0165551515576478

 at La Trobe University on May 13, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

5.2.2. Scenario 2. In the second scenario (Sc2), the data instance is always updated over time, with no addition of the

instance block, and the structure remains the same. This scenario might occur to application configuration data. For the

experiment, we assume that the amount of instance block data is 50, therefore ni = 50.

First, we need to obtain the operation cost for the propagation. In order to do the propagation for Sc2, we have to recall

all properties in the ontology and perform the individual updates. The cost of recalling the properties is equal to nc + na.

The cost of updating individual values is ni^(3na). ni^ is the number of updated instance block trees in the XML data and

3na is the total Jena API method participating in this propagation. These methods are for creating a literal, listing a state-

ment and updating the statement. The total cost is equal to nc + na + ni^(3na).

Figure 5(c) depicts the operation cost comparison between the propagation and the rebuild methods in regard to the

percentage of updated instances, where it increases from 10 to 100% by 10%. Since we define nc = 2, na = 26 at the

beginning of Section 5.2 and the operation cost of rebuilding is equal to (ni + 2)(nc + na), the rebuild method cost is

1456 operation units. The propagation cost increases from 43 to 178 operation units, since there are increasing changes

recorded in the delta script. However, the propagation method gives higher efficiency in operation costs.

The processing time evaluation in Sc2 uses the same assumption of data and changes as in the cost evaluation, where

the amount of updated instance blocks increases from 10 to 100% of total instances. Figure 5(d) shows the results of the

processing time calculation evaluation. Even though in 100% of instance changes the propagation method is close to the

rebuilding cost, the propagation method outperforms the rebuilding scenario in all cases.

6. Conclusion

Our research to develop a data-driven dynamic ontology model is motivated by the lack of a global standard and a com-

mon understanding of the community’s knowledge repository. Our model comprises ontology base creation and ontol-

ogy propagation. In the propagation process, we propose a novel delta script as a crucial tool in the propagation process.

It enables remote ontology updates by only sending the minimum but complete updates.

As the proof of concept, we took XML data format representation in the case study and created the mapping of edit

operations derived from the delta script list into a Jena API method. We evaluated the propagation captured by the delta

script through various measures including completeness, correctness and performance. SPARQL is used to prove that the

delta script created by our model holds minimum non-redundant data changes, yet it contains complete semantic infor-

mation. Finally, we compared the operation cost and processing time of rebuilding the ontology against the propagation

Figure 5. Performance evaluation, where the number of classes nc = 2 and the number of attributes na = 26. (a) Operation cost
comparison in Sc1. (b) Process time comparison in Sc1. (c) Operation cost comparison in Sc2. (d) Process time comparison in
Sc2.

Fudholi et al. 396

Journal of Information Science, 41(3) 2015, pp. 383–398 � The Author(s), DOI: 10.1177/0165551515576478

 at La Trobe University on May 13, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

method. The result indicates that the propagation model is lightweight in most cases. In future, we will apply this concept

to a multiple source of knowledge where ontology merging is required to evaluate the applicability of our propagation in

such an environment.

Funding

D.H. Fudholi (first author) is a recipient of La Trobe University Postgraduate Research Scholarship from La Trobe University,

Australia.

Notes

1. http://www.thaiopensource.com/relaxng/trang.html

2. http://schemaspy.sourceforge.net

3. http://www.cnpp.usda.gov/Innovations/DataSource/MyFoodapediaData.zip

4. http://oxygenxml.com

5. http://jena.apache.org

6. http://protege.stanford.edu

References

[1] Calegari S and Ciucci D. Integrating fuzzy logic in ontologies. In: Proceedings of the 8th international conference on enterprise

information systems: Databases and information systems integration (ICEIS Part 2), 2006, pp. 66–73.

[2] Fortuna B, Grobelnik M and Mladenic D. OntoGen: Semi-automatic ontology editor. Human Interface and the Management of

Information. Interacting in Information Environments. Lecture Notes in Computer Science, Vol. 4558. Berlin: Springer, 2007,

pp. 309–318.

[3] Lee C, Kao Y, Kuo Y and Wang M. Automated ontology construction for unstructured text documents. Data & Knowledge

Engineering 2007; 60: 547–566.

[4] Dahab MY, Hasan HA and Rafea A. TextOntoEx: Automatic ontology construction from natural English text. Expert Systems

with Applications 2008; 34: 1474–1480.

[5] Ferdinand M, Zirpins C and Trastour D. Lifting XML Schema to OWL. In: Proceedings of the 4th international conference on

web engineering (ICWE), Munich, 2004, pp. 354– 358.

[6] Bohring H and Auer S. Mapping XML to OWL ontologies. In: Proceedings of the 13th Leipziger Informatik-Tage, Leipzig,

2005, pp. 147–156.

[7] Garcı́a R. A Semantic Web approach to digital rights management. PhD thesis, Universitat Pompeu Fabra, Spain, 2006.

[8] Ghawi R and Cullot N. Building ontologies from XML data sources. In: Proceedings of the 1st international workshop on mod-

elling and visualization of XML and Semantic Web data (MoViX), Linz, 2009, pp. 480–484.

[9] Bedini I, Matheus CJ, Patel-Schneider PF, Boran A and Nguyen B. Transforming XML schema to OWL using patterns. In:

Proceedings of the 5th IEEE international conference on semantic computing (ICSC), Palo Alto, CA, 2011, pp. 102–109.

[10] Zhang L and Li J. Automatic generation of ontology based on database. Journal of Computational Information Systems 2011;

7(4): 1148–1154

[11] Zhou X, Xu G and Liu L. An approach for ontology construction based on relational database. International Journal of

Research and Reviews in Artificial Intelligence 2011; 1(1): 16–19.

[12] Li M, Du X and Wang S. Learning ontology from relational database. In: Proceedings of the fourth international conference on

machine learning and cybernetics, Guangzhou, 2005; Vol. 6: 3410–3415.

[13] Zablith F, Antoniou G, d’Aquin M et al. Ontology evolution: a process-centric survey. In: The knowledge engineering review.

Cambridge: Cambridge University Press, 2013.

[14] Stojanofic L. Methods and tools for ontology evolution. PhD thesis, FZI-Research Center for Information Technologies at the

University of Karslruhe, 2004.

[15] Sari AK, Rahayu W and Bhatt M. An approach for sub-ontology evolution in a distributed health care enterprise. Information

Systems Journal 2013; 38(5): 727–744.

[16] Zablith F. Evolva: A comprehensive approach to ontology evolution. In: Proceedings of the PhD symposium of the 6th

European Semantic Web conference (ESWC-09), Heraklion, Greece, 2009, pp. 944–948.

[17] Guerrini G, Mesiti M and Rossi D. Impact of XML schema evolution on valid documents. In: Proceedings of the 7th annual

ACM international workshop on web information and data management (WIDM), Bremen, Germany, 2005, pp. 39–44.

[18] Selkow SM. The tree-to-tree editing problem. Information Processing Letters 1977; 7(4): 184–186.

[19] Cobéna G, Abiteboul S and Marian A. Detecting changes in XML documents. In: Proceedings of the 18th international confer-

ence of data engineering (ICDE), San Jose, CA, 2002, pp. 41–52.

[20] Wang Y, DeWitt DJ and Cai JY. X-Diff: An effective change detection algorithm for XML documents. In: Proceedings of the

19th international conference on data engineering (ICDE), Bangalore, 2003, pp. 519–530.

Fudholi et al. 397

Journal of Information Science, 41(3) 2015, pp. 383–398 � The Author(s), DOI: 10.1177/0165551515576478

 at La Trobe University on May 13, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

[21] Leonardi E, Bhowmick SS and Madria S. Xandy: Detecting changes on large unordered XML documents using relational data-

bases. In: Proceedings of the 10th international conference on database systems for advanced applications (DASFAA), Beijing,

2005, pp. 711–723.

[22] Baqasah A, Pardede E, Rahayu W and Holubova I. On change detection of XML schemas. In: Proceedings of the 11th IEEE

international symposium on parallel and distributed processing with applications (ISPA), Melbourne, 2013: 974–982.

[23] Cobéna G, Abdessalem T and Hinnach Y. A comparative study of XML diff tools, http://www.deltaxml.com/support/docu-

ments/articles-and-papers/is2004.pdf (2004, accessed June 2013).

[24] Dean M and Schreiber G (eds). OWL web ontology language reference, http://www.w3.org/TR/owl-ref/ (2004, accessed March

2014).

[25] Prud’hommeaux E and Seaborne A (eds). SPARQL query language for RDF, http://www.w3.org/TR/rdf-sparql-query/ (2008,

accessed March 2014).

Fudholi et al. 398

Journal of Information Science, 41(3) 2015, pp. 383–398 � The Author(s), DOI: 10.1177/0165551515576478

 at La Trobe University on May 13, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

