
Object-relational complex structures for XML storage

Eric Pardede a,*, J. Wenny Rahayu a, David Taniar b

a Department of Computer Science and Computer Engineering, La Trobe University, Bundoora VIC 3083, Australia
b School of Business Systems, Monash University, Clayton VIC 3800 Australia

Received 31 October 2005; accepted 2 December 2005

Available online 8 February 2006

Abstract

XML data can be stored in various database repositories, including Object-Relational Database (ORDB). Using an ORDB, we get the benefit of

the relational maturity and the richness of Object-Oriented modeling, including various complex data types. These data types resemble the true

nature of XML data and therefore, the conceptual semantic of XML data can be preserved. However, very often when the data is stored in an

ORDB repository, they are treated as purely flat tables. Not only do we not fully utilize the facilities in current ORDB, but also we do not preserve

the conceptual semantic of the XML data.

In this paper, we propose novel methodologies to store XML data into new ORDB data structures, such as user-defined type, row type and

collection type. Our methodology has preserved the conceptual relationship structure in the XML data, including aggregation, composition and

association. For XML data retrieval, we also propose query classification based on the current SQL.

Compared to the existing techniques, this work has several contributions. Firstly, it utilizes the newest features of ORDB for storing XML data.

Secondly, it covers a full database design process, from the conceptual to the implementation phase. Finally, the proposed transformation

methodologies maintain the conceptual semantics of the XML data by keeping the structure of the data in different ORDB complex structures.

q 2006 Elsevier B.V. All rights reserved.

Keywords: Object Relational Database; User-Defined Type; Row Type; Collection Type; XML; XML Schema
1. Introduction

Object-Relational Database (ORDB) is increasingly popular as

a database storage for XML data [17,24]. Its popularity is

associated with its ability to capture the object-oriented modeling

semantic and the maturity of relational implementation. With

many new data structures introduced in the current SQL

[7,9,16,18], themodelingpower ofORDBhas gradually increased.

In particular, complex data structures such as row type, user-

defined type and collection types can be utilized in XML storage.

There are some works that have discussed the usage of

ORDB for XML storage. They map different schema languages

such as DTD and XML Schema [1] into the Object-Relational

(OR) Schema. However, very often when the data is stored in a

database repository, some complex structures are flattened

[2,8,10,14,26,31]. This implementation does not utilize ORDB

full capabilities. In addition, it has ignored the semantic
0950-5849/$ - see front matter q 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2005.12.015

* Corresponding author. Tel.: C61 3 9479 1280; fax: C61 3 9479 3060.

E-mail addresses: E.Pardede@latrobe.edu.au, wenny@cs.latrobe.edu.au

(J.W. Rahayu), david.taniar@infotech.monash.edu.au (D. Taniar).
constraints of the data. We should preserve the semantic

constraints in the logical and implementation level for a better

solution [21].

This paper proposes models that can preserve the complex

structures in XML into ORDB. We perform two mapping

steps. First is the mapping from the conceptual model using

Semantic Network Diagram [6] to the logical model using

XML Schema [28]. Second, the logical model is mapped into a

physical implementation using SQL in ORDB. For this

purpose, we use the current complex structures in SQL4. We

need to emphasize that this work will not cover XML-Enabled

features in ORDB, such as LOB and XML Type since, they

have not been implemented uniformly by ORDB products.

The paper is structured as follows. Section 2 briefly

introduces a number of new ORDB data types that have been

standardized in SQL. We only include the types that will be

used for XML data storage. Section 3 discusses the background

of our work and the existing work in this area. In Section 4, we

propose our transformation methodologies that are classified

based on the relationship structure. Section 5 describes the

queries to retrieve data stored in ORDB using complex

structures. We will compare our query performance with

other available techniques in Section 6. Finally, we will

conclude our work in Section 7.
Information and Software Technology 48 (2006) 370–384
www.elsevier.com/locate/infsof

http://www.elsevier.com/locate/infsof

E. Pardede et al. / Information and Software Technology 48 (2006) 370–384 371
2. ORDB new data structures: a preliminary

New data structures in ORDB enable database designers to

represent XML data as they are described in the conceptual

model [25]. In this section, we introduce three data types that

will be used in the subsequent sections.
2.1. User-defined type

User-Defined Type (UDT) in ORDB resembles a class in an

Object-Oriented Database. It comprises a number of attributes

and routines. The routines support the storage and the

manipulation of the complex structure. The internal structure

is encapsulated. Access to instances or attributes is done

through their routines. In this work, we emphasize the static

aspect of UDT only. General syntax for the SQL4 UDT is

shown as follows. UDTmay exist as value UDT or object UDT.

The former means that the type is bound to a table as column

object. The latter on the other hand is shown in an object table

as special kind of table.
2.2. Row type

Fortier and Melton [9,16] define a row type as a constructed

type that contains a sequence of attribute names and their

data types. This type is actually not a new data type in the

database systems. It has been used even since the legacy data

model era [4].

After the emergence of relational model, there is also a data

model that is aimed at capturing the nested structure such as

row type in relations. The model is called Nested Relational

Model (NRM) [12,23]. Nevertheless, the traditional relational

model still dominates the database community. Even until

recently, there is no commercial DBMS which has chosen to

implement the NRM even in its original form [5].

Not until the release of SQL3, did the Relational Model

recognizes Row Type as one data type that can enrich its data

structure [9]. In SQL4, it is even possible to have varying levels

of row type [16]. It is very useful to model a real world problem

that can rarely be represented by a simple flat table. The

general syntax for the SQL4 row type is shown in the following

code.
2.3. Collection type

Collection types are formulated by Object Database

Management Group (ODMG) [3]. A collection is composed

of distinct elements, each of which can be of a simple data type,

constructed data type or UDT. An important distinguishing

characteristic is that all collection elements must be of the same

type.

ODMG has defined four collection types: sets, lists, arrays,

and bag (multiset) [3]. However, at the time of writing, SQL4

[9,16] has only standardized array and multiset. An array is a

dynamically sized ordered collection that allows duplicates. A

multiset is an unordered collection that allows duplicates. The

collection type can be constructed by simple data types (such as

INTEGER), constructed data types (such as ROW), or UDT.

For simple data types, we can use any predefined types such

as integer, char, etc. For constructed data types we will use the

ROW type, which contains a sequence of attribute names and

data types [9,16]. Finally, we will also use UDT inside a

collection as to accommodate the sharing constraints in an

aggregation relationship.
3. Background and related works

In the last few years, we have witnessed many works

that aim to store the XML data into different kind of

repositories. A few researchers and products have chosen a

novel way by proposing native XML databases that keep

the XML in their natural tree-form [11,13,15,27]. Many

other researchers believe in the more-established databases

and try to tailor the existing technology to suit the XML

data requirements. XML storage based on the relational

model has proven very popular, especially for data-centric

XML document [2]. There is considerable amount of

research that works on the usage of relational database

(RDB) and object-relational database (ORDB) for XML

repository.

ORDB is a powerful database with a rich modeling

capability. The solid relational model foundation is enriched

with some OO and NRM features. From the OO concept,

ORDB adopts TYPE and from the NRM, ORDB adopts the

concept of ROW [10]. From both OO and NRM, ORDB

adopts the concept of collection types. These complex

structures have been implemented by many ORDB vendors

for years and have become a standard in SQL3 and the

forthcoming SQL4 [18].

These new data structures open many possibilities of XML

data implementation in an ORDB, especially since the complex

structure in some ways resemble the XML structure. Some of

the RDB limitations listed in [26], such as, support for sets and

multiple queries optimization have now been answered. Some

conceptual XML structures such as aggregation, composition

and association can also be preserved using these new data

Fig. 1. ORDB flat implementation for XML data.

E. Pardede et al. / Information and Software Technology 48 (2006) 370–384372
types. Unfortunately, very often when ORDB is used for XML

repository, the complex structures are not utilized. The

collection is usually flattened or split into an entirely separate

table (see Fig. 1).

Florescu and Kossmann [8] presents a simple mapping of

XML data into relational tables. In this work, they treat XML

documents as graphs with edges and leaves. The edges

represent the relationships while the leaves represent the

values. In this work, the aggregation relationship is mapped

into separate flat tables by using composite keys. It has

diminished the collection semantics in aggregation

relationship.

Bourret, Shanmugasundaram and co-workers [2,26] pro-

poses comprehensive mapping from DTD into an OO Schema

and the implementation of the results into tables. In the

implementation stage, again the aggregation type is flattened.

The association relationship is mapped using IDREF. This is

usually done when it is not possible to form collection or

nesting.

Han et al. [10] proposes mapping from the XML Schema

into the OO/OR Schema. The work compares how the mapping

into relational schema can be changed into the OR schema.

Thus, it does not cover the unique properties of an OR model

such as different types of relationships including aggregation.

Regarding association relationship, this work has mentioned

the usage of collection to store the reference. Nevertheless, it

does not show the step-by step mapping from conceptual level

down to the implementation.
Klettke and Meyer [14] proposes mapping from the DTD

into the OR Schema. The main contribution of the work is the

usage of a hybrid database where the users can select certain

attributes to be stored in ORDB and others to be stored as they

are (as XML data). It does not show the mapping for different

kinds of relationship and how we utilize the new data structures

in ORDB.

Xiaou et al. [31] proposes the mapping of the OO

Conceptual Model into the XML Schema. This work has

included collection for aggregation relationship. However,

this work does not discuss the usage of collection in

composition and association relationship. In addition, it only

covers the mapping into logical design. No implementation

in OROB is provided.

Finally, Widjaya and co-workers [29,30] propose the

mapping of different relationships of XML Schema to

ORDB. In [29], the collection in XML Schema disappears in

the tables since they store the reference in the ‘many’ side or in

the separate table. In [30], the collection is preserved in the

XML Schema, but again the data is stored separately in cluster

tables or nested tables.

We find that the existing works have not utilized the full

complex structures available in ORDB for their XML

repository. By not doing so, their relationship structures

semantic are not represented well. In this work, we propose

the usage of new ORDB data structures to preserve the

semantics of different relationship structures. Our proposed

method will cover the transformation from the conceptual to

Fig. 2. Faculty XML document diagram.

E. Pardede et al. / Information and Software Technology 48 (2006) 370–384 373
the implementation level of the database design. In

addition, we will also cover the queries to manipulate the

data and compare the query performance with other

methodologies.
4. Proposed transformation methodology

In this section, we will show the proposed transformation

methodology. We will differentiate the mapping based on the

relationship structure, where the complex structures can be

used.

As for running example, we will use the XML data

containing information on a Faculty (see Fig. 2). The diagram

used is a Semantic Network Diagram [6] that shows not only

complex and simple elements, but also the relationship type

and its semantic constraints.
Fig. 3. Aggregation transfo
In this diagram, a node can be represented as a box or a

small black circle. We use boxes for complex types and small

black circles for leaf elements and attributes. The difference

between leaf element and attributes are indicated by the lines.

If the line connecting the small black circle and the box has the

letter ‘a’ (for aggregation), the circle is a leaf element.

Otherwise, if the letter is ‘p’ (for property), the circle represents

an attribute.

In the following document, the faculty offers many subjects,

has many timetables, employs many staff, comprises many

schools and has many offices. Each complex type has simple

attributes associated with it. For example, a subject will have

simple attributes subject code, subject name and subject

description. Association relationship between complex types

is shown by reference attributes. For example, a timetable

complex type has two reference attributes. The first is subject

teaching which refer to a subject code. The second is teach by
rmation methodology.

Fig. 4. STAFF aggregation example.

E. Pardede et al. / Information and Software Technology 48 (2006) 370–384374
that refers to a staff ID. We will use a subset of this example for

each proposed methodologies in this section.
4.1. Proposed method for aggregation relationship

Aggregation is a relationship type in which a composite

object (whole) consists of component objects (parts). The ‘part’

components are shareable and their existence is dependent on

the ‘whole’ component. Therefore, we have to enable access to

the ‘part’ component without first accessing the ‘whole’

component.

In the first step (see Fig. 3), we map both the ‘whole’ and the

‘part’ components as complex types. For the second step, we

directly map the ‘whole’ complex type as the table or type and

the ‘part’ complex types as the complex attributes. If there is
only one ‘part’ component for each ‘whole’ component, we

can use single attribute with complex type. Otherwise, we

use collection of attributes. The mapping rules are shown

below [19].
4.1.1. Rule 1

Step 1: For two types namely T1 and T2 with elements/at-

tributes (A,B) and (M,N), respectively, if T1 can be

composed by shareable and existence-independent

T2, implement T1 as a complex type and T2 as another

complex type accessed as an element in T1 with

maxoccurs constraint set to unbound for cardinality

more than one.

Step 2 For two complex types namely T1 (A,B) and T2
(M,N), if T1 can be composed by more than one

shareable and existence-independent T2 implement

T2 as UDT attribute of table or another type T1.

Transformation result is TypejTable T1ðA;B;

UDTn
0 T2ðM;NÞÞ:
4.1.2. Example 1

From the running example (see Fig. 1), we use the example

of aggregation between staff and publication (see Fig. 4). The

publication can still exist outside staff type. For example, it can

also appear under school type. The aggregation type will be

mapped into single or collections of UDT in ORDB table. At

this stage, we will treat element content as a simple element. In

Section 4.2, we will demonstrate the rule for composition

relationship. Note that the horizontal line determines the

ordering semantic.
In our first transformation, we come up with XML Schema

where both the ‘whole’ and the ‘part’ components are defined

as complex types. Inside the ‘whole’ complex type, we will

E. Pardede et al. / Information and Software Technology 48 (2006) 370–384 375
have an element of the ‘part’ complex type. Having

done this, the ‘part’ type can actually be used inside another

‘whole’ complex type (shareable). To preserve the collection,

we use the XML Schema syntax maxOccursZ
‘unbounded’.

In the second transformation, we map the XML Schema to

the ORDB in the form of UDT collection attribute. The

mapping is straightforward. The ‘part’ complex type is mapped

as a UDT and the ‘whole’ complex type is mapped as a table

with one attribute formed by the ‘part’ type. We use the SQL

syntax TABLE (.Attribute MULTISET!ARRAY[]O
(UDT_TYPE)). If for example, the ‘whole’ can only have one

‘part’ component, we do not use the collection. We use the

SQL Syntax TABLE (.Attribute UDT_TYPE).

4.2. Proposed method for composition relationship

Frequently, a composition is categorized as an aggregation.

It is a ‘part-of’ relationship where the ‘part’ components are

non-shareable and their existence depends on the ‘whole’

component. Therefore, we need to exclusively define the ‘part’

component inside the ‘whole’ component.

In the first step (see Fig. 5), we map the ‘part’ component as

the complex type inside the ‘whole’ component. This process

prevented other components from owning this particular ‘part’

component. For the second step, we directly map the outer

complex type as the table or a type and the inner complex type

as the row type attribute. For multiple-row, we use multiset
data types standardized in SQL4 [14]. Another type of

collection is also possible depending on the requirements for

ordering semantic. The mapping rules are shown below [20].
4.2.1. Rule 2

Step 1: For two types namely, T1 and T2 with elements/at-

tributes (A,B) and (M,N), respectively, if T1 can be

composed by non-shareable and existence-dependent

T2, implement T1 as a complex type and T2 as an

inner complex type with maxoccurs constraint set to

unbound for cardinality more than one.

Step 2: For two complex types namely, T1 (A,B) and T2
(M,N), if T1 can be composed by shareable and

existence-dependent T2, implement T2 as a single

ROW or collection of ROW attribute of table or type

T1. Transformation result is TypejTable T1ðA;B;

Rown
0 T2ðM;NÞÞ:
4.2.2. Example 2

Continuing Example 1, now we want to extend the

relationship between publication and content. Type publication

is the composition of type content (see Fig. 4). The latter type

can only exist inside type publication. The composition type

will be mapped into single or collection of ROW in ORDB

table or type.

Fig. 5. Composition transformation methodology.

E. Pardede et al. / Information and Software Technology 48 (2006) 370–384376
In the first transformation, we come up with the XML

Schema where the ‘part’ component is defined as a complex

type inside the ‘whole’ type element. By doing this, we avoid

other element type to share the particular ‘part’ component

(non-shareable constraint). We also ensure that on removal of

the ‘whole’ type, we remove all ‘part’ components that are

defined inside it (existence-dependent constraint). To preserve

the collection, we use the XML Schema syntax maxOc-
cursZ“unbounded”.

In the second step, we map the outer complex type as the

type in the ORDB and the inner complex type as the ROW

attribute. To preserve the collection, we implement the ROW

as a collection with this syntax TABLE (.MULTISET!
ARRAY[]O(ROW()). If, for example, the ‘whole’ can only

have one part component, we do not use the collection. We use

the SQL Syntax TABLE (.Attribute ROW()).
Fig. 6. 1:N associatio
4.3. Proposed methods for association relationship

In this section, we propose the mapping methods of the

association relationship in the XML data into the ORDB using

the new complex structures [19]. We will only cover the

association with ‘many’ cardinality: 1:N and N:N. We have not

included 1:1 cardinality because the mapping will be very

similar to the mapping of 1:N association, without involving

collection data type.

As with the previous sections, the proposed method is

divided into two steps. In the first step, we map the

conceptual model in the semantic network into the XML

Schema. The associating types will become the complex

types. In the second step we map the complex types as the

tables or types and the ‘referential’ object as the single or

collections of type attribute.
4.3.1. One:many association

For the 1:N association relationship, the reference can

be stored as a collection inside the type that has ‘one’

side. In usual practice, the XML Schema mapping to

ORDB is not straightforward because the location of the
n transformation.

E. Pardede et al. / Information and Software Technology 48 (2006) 370–384 377
reference key in both schemas is different. Our method

proposes a more straightforward mapping, since the

reference type is always located in the type that has

‘one’ side (see Fig. 6).
4.3.1.1. Rule 3.

Step 1: For two types namely T1 (A,B) and T2 (M,N), if T1

and T2 has 1:N association relationship, implement

both as complex types with T1 has a collection of

reference to T2.

Step 2: For two complex types namely T1 (A,B) and T2

(M,N), if T1 holds collection of reference to T2,

implement both as type/tables with T1 has a collection

attribute refer to T2. Transformation result is Typej

Table T1ðA;B; T2_Key
n
1Þ and TypejTable T2 (M,N).
4.3.1.2. Example 3. From the running example (see Fig. 1), we

use the example of association between staff and office F (see

Fig. 7). The reference element/attribute from ‘one’ to ‘many’

side type will bemapped as collections attribute in ORDB table.
In our method, we utilize the collection to store the

relationship between two types. For the first transform-

ation we come up with two complex types. In the ‘one’

complex type we will have collection of element of the

‘many’ complex type. To preserve the collection, we use

XML Schema syntax maxOccursZ“unbounded”. And

to maintain the relationship, we use key and keyref in

addition to ID and IDREF. Using the formers, we enable

one to specify scope within which uniqueness applies

[28].

Fig. 7. 1:N association example.

E. Pardede et al. / Information and Software Technology 48 (2006) 370–384378
In the second step, we map the complex types as the tables

in the ORDB. In the ‘many’ type, we have collection attribute

consisting of attribute key from the ‘one’ type. If we have a

single key we will use a collection of simple data type.

Otherwise, we will have a collection of ROW type. To preserve

the collection the implementation syntax is TABLE (.MUL-
TISET!ARRAY[]O(SIMPLE_TYPEjROW()).

We have one shortcoming in using collection in the second

step of association relationship. At present, we cannot use

current SQL to embed integrity constraint checking in ORDB.

As we know, in traditional methods we can include the foreign

key or REF and then define the integrity constraint checking

such as ON DELETE CASCADE, ON UPDATE NULLIFY,
Fig. 9. STUDENT–SUBJEC

Fig. 8. N:N associatio
etc. We still cannot apply this for collection attribute.

Nevertheless, it does not mean we cannot have integrity

constraint checking for our methods. Triggers and embedded

routines are available in ORDB to enforce this task.
4.3.2. Many:many association

In the N:N association, the reference can be stored as a

collection inside one of the associated type (see Fig. 8). Our

method proposes a different way of implementing N:N

association because we do not require storing the relationship

in a separate table.

4.3.2.1. Rule 4.

Step 1: For two types T1 (A,B) and T2 (M,N) have N:N

association relationship in T3 (X), implement both as

complex types with T1 has a collection of T3 and

reference to T2.

Step 2: For two complex types namely T1 (A,B) and T2

(M,N) have N:N relationship, if T1 has the collection

of the relationship and the reference to T2 implement
T association example.

n transformation.

E. Pardede et al. / Information and Software Technology 48 (2006) 370–384 379
both as tables with T1 has collection ROW attribute.

Transformation results are TypejTable T1ðA;B;

Rown
1 ðT2 Key;T3ðXÞÞÞ and Type/Table T2 (M,N).
4.3.2.2. Example 4. From the running example (see Fig. 1), we

use the example of association between staff and subject (see

Fig. 9). In this N:N relationship, the reference of one type

together with the relationships attributes will be mapped as

collection in another type table.
In the first step, we map the associated types into two

separate complex types. In one of the complex types, we

include the key to the other complex type as well as the

relationship elements/attributes. Same as 1:N association, we

use maxOccursZ“unbounded” with key and keyref to

preserve the collection and the referential constraint. The

difference is now we have additional elements/attributes that

come up with the relationship.

In the second step, we will be likely to have a collection of

ROW attribute inside one of the ‘many’ side table. It is because

we need to include the key to the other ‘many’ side table and

the additional relationship attributes. To preserve the collec-

tion, we implement the collection with this syntax TABLE
(.MULTISET !ARRAY[]O (ROW()).
5. Proposed query techniques

In this section, we propose different SQL queries for XML

data stored in ORDB. They will follow our proposed

transformation methods that have been described in the

previous sections. We differentiate the query based on the

target of projection and the selection predicate. Along with

aggregation and composition relationships, we describe
sub-type query and super-type query. Also with association

relationship, we describe referencing query and dereferencing

query.
5.1. Super-type and sub-type query

Super-type query is a query which retrieves the information

of the super-type table with the selection predicates originated

at sub-type complex structures attributes. Fig. 10 shows the

flow of query in a sub-class query along with the general

syntax.

Sub-type query is a query which retrieves the information of

the complex structure with the selection predicates originated

at the super-type class attributes. Fig. 11 shows the flow of

Fig. 10. Super-Type query flow.

Fig. 11. Sub-type query flow.

E. Pardede et al. / Information and Software Technology 48 (2006) 370–384380
query in a sub-class query and the general syntax. Note that

SQL provides double dot notation [9] to specify a content of a

complex structures such as ROW type or UDT in a table.

5.2. Referencing query and dereferencing query

Referencing query is a query which retrieves the infor-

mation of the referred type (implemented in the complex

structures) with the selection predicates originated at the type

that holds the reference. Fig. 12 shows the flow of query in a

referencing query and the general syntax. The general syntax is

applicable if the referencing attribute is in the direct complex

attribute of the referencing table. Of course, there is a
Fig. 12. Referencin
possibility of the referencing attributes appearing below this

level.

Dereferencing query is a query to retrieve the information of

the referencing type with the selection predicates originated at

the type that is being referred. Fig. 13 shows the flow of query

in a referencing query and the general syntax.

6. Evaluation

In this section, we will evaluate our proposed method-

ologies of storing XML Documents in ORDB using complex

structures. We divide the section into quantitative and

qualitative evaluation. The first evaluation aims to show how
g query flow.

Fig. 13. Dereferencing query flow.

E. Pardede et al. / Information and Software Technology 48 (2006) 370–384 381
our proposed methodologies reduce the query cost compared to

the current practice. The second evaluation aims to show the

contribution of our works in a qualitative manner by

highlighting the strength of our methods compared to the

current implementation.
6.1. Quantitative analysis

The straightforward way to perform quantitative analysis is

by running the queries in two different scenarios, the current

practice and the proposed method. If we decide to do that, we

have to use one of the available ORDBMS for implementation.

However, it is inevitable that different product implement SQL

features differently and very frequently not all SQL

recommendations are followed through by these ORDBMS.
To avoid a vendor-specific evaluation, we determined to use

another approach of quantitative evaluation, which is by using

a cost model. The cost model will be based on the number

of I/O accesses as it is considered much more expensive

than the CPU processing cost (e.g. storage cost, computation

cost, etc.) [22].

In this cost model, we calculate the retrieval cost of the

query. Each object-relational table T has a set of records rZ(r1,

r2,., rn) which are stored in a set of pages pZ(p1, p2, ., p3).

If we assume that the tables involved in a query operation are

scanned separately, we can formulate the cost as follows:

PageCostZRound
R

Truncðpagesize=SÞ

� �
Z

RS

pagesize

� �
;

where R is the number of records and S is the record size.
From the formula, it is known that the evaluation will

consider the number of page accesses only. Also, the equation

suggests that two important parameters are record size and

number of records.
6.1.1. Super-type and sub-type query evaluation

For this query we use the example of aggregation

between Staff and the Publication. Without using ORDB

complex structures, we implement these two types into

three tables. The last table holds the keys to the other two

tables. Our proposed method implements this composition

using a collection of UDT. We will use a simple

super-type query, to retrieve the staff detail for the

publication with title ‘XML Updates’ and is published in

the year 2005.
Quantitatively, the record size and number of records for flat

table implementation are as follows

ST Z SStaffID C
Xk
gZ0

SStaffAtts

 !
C STitle C

Xl
hZ0

SPublAtts

 !

C ðSStaffID CSTitleÞ;

RT Z
Xm
iZ1

RStaffTable C
Xn
jZ1

RPublTable C
Xn
jZ1

RStaffPublTable;

where g and h are the number of attributes in the tables

excluding the ID attribute, i and j are the number of rows in the

tables and {k, l, m, n}R1.

E. Pardede et al. / Information and Software Technology 48 (2006) 370–384382
The record size and number of records for the proposed

design are as follows:
SP Z SStaffID C
Xk
gZ0

SStaffAtts CSTitle C
Xl
hZ0

SPublAtts

 !
;

RP Z
Xm
iZ1

RStaffTable C
Xn
jZ1

RPublTable;
where g and h are the number of attributes in the tables

excluding the ID attribute, i and j are the number of rows in the

tables and {k, l, m, n}R1.

Now we can use the cost model for both mapping results
CT Z

Pm
iZ1

RStaffTable C
Pn
jZ1

RPublTable C
Pn
jZ1

RStaffPublTable

pagesize

! 2SStaffID C
Xk
gZ0

SStaffAtts

 !
C 2STitle C

Xl
hZ0

SPublAtts

 !
;

CP Z

Pm
iZ1

RStaffTable C
Pn
jZ1

RPublTable

pagesize

! SStaffID C
Xk
gZ0

SStaffAtts CSTitle C
Xl
hZ0

SPublAtts

 !

The number of records component for the proposed method

is smaller than the number of records component of the

traditional method. Also, the record size component for the

propose method is smaller than the record size component of

the traditional method. From these two components, we can

conclude that the cost of our proposed method is smaller than

the cost of using an existing method.

To elaborate, in our database example, the record sizes for

Staff and Publication attributes are 1 KB each. The number of

records for Staff and Publication are 100 and 300. Assuming

every publication is written by two staff, the number of records

in StaffPubl will be 600. Assume that the record size for id is

0.01 KB each, each table page is 2 KB, and a record may not

span more than a single page. The costs are CTZ ð300C400C
600Þ!ð2!0:01C1C2!0:01C1Þ=2Z1326 I/O accesses,
and CPZ ð100C300Þ!ð0:01C1C0:01C1Þ=2Z404 I/O

accesses. The cost of the proposed method in this case is a

third of the cost of using flat tables.

We also found a smaller cost for sub-type query using our

proposed method. Due to the page limitation, we do not show

this result in this paper.
6.1.2. Referencing and dereferencing query evaluation

For this query, we use the example of 1:N association

relationship between Staff and the Office. With or without

complex structures, we will use two separate tables. The

interesting fact is that a referencing query in our proposed

implementation is actually a dereferencing query in traditional

implementation. This is because the location of the reference

keys is different.

We will use a referencing query, to retrieve the staff ID of

the office location ‘Bundoora E1’.
Quantitatively, the record size and number of records for flat

table implementation are as follows

ST Z SOfficeNumber C
Xk
gZ0

SOfficeAtts

 !

C SStaffID C
Xl
hZ0

SStaffAtts CSOfficeNumber

 !
;

RT Z
Xm
iZ1

ROfficeTable C
Xn
jZ1

RStaffTable;

where g and h are the number of attributes in the tables

excluding the ID attribute, i and j are the number of rows in the

tables and {k, l, m, n}R1.

The record size and number of records for proposed design

are as follows

SP Z SOfficeNumber C
Xk
gZ0

SOfficeAtts CSStaffID

 !
;

RT Z
Xm
iZ1

ROfficeTable C
Xn
jZ1

RStaffIDinOfficefTable;

where g is the number of attributes in the table excluding the ID

attribute, i and j are the number of rows in the table and in the

collection of referencing attribute and {k, l, m, n}R1.

E. Pardede et al. / Information and Software Technology 48 (2006) 370–384 383
Now we can use the cost model for both mapping results.

CTZ

Pm
iZ1

ROfficeTableC
Pn
jZ1

RStaffTable

pagesize

! 2SOfficeNumberCSStaffIDC
Xk
gZ0

SOfficeAttsC
Xl
hZ0

SStaffAtts

 !
;

CPZ

Pm
iZ1

ROfficeTableC
Pn
jZ1

RStaffIDinOfficeTable

pagesize

! SOfficeNumberC
Xk
gZ0

SOfficeAttsCSStaffID

 !
:

Even though the number of record component for the

proposed method does not differ significantly to the number of

record component in traditional method, the record size

component for our proposed method is significantly smaller

than the record size component of the traditional method. From

the difference in the record size component, we can conclude

that the cost of our proposed method is smaller than the cost of

using an existing method.

To elaborate, in our database example the record sizes for

Staff and Office attributes are 1 KB each. The number of

records for Staff and Office are 100 and 50. Assuming every

office is occupied by two staff, the number of StaffId in Office

table will be 100 (for our proposed implementation). Assume

that record size for id is 0.01 KB each, each table page is 2 KB,

and a record may not span more than a single page. The costs

are CTZ(100C50)!(3!0.01C1C1)/2Z152.25 I/O

accesses, and CPZ(100C100)!(2!0.01C1)/2Z102 I/O

accesses. The cost of the proposed method in this case is

two-thirds of the cost of using flat tables.

We also found a smaller cost for dereferencing query using

our proposed method. Due to the page limitation, we do not

show this result in this paper.
6.2. Qualitative analysis

From the previous evaluation, we have found that the

implementation using our proposed method reduces the costs

of many queries. In this section, we use a qualitative analysis to

highlight the strengths of our methods.
6.2.1. Support for set-valued attribute

Shanmugasundaram et al. [26] points out that one of the

main weaknesses of using flat tables to store XML documents

is the inability to support set-valued attributes. Set-valued

attributes are useful in storing sub-elements without fragmenta-

tion and in generating complex XML results. With the

existence of complex structures in ORDB, our methodologies

are able to accommodate set-valued attributes in one of the

collection types. This practice enables us to map more XML
tree structures and reduces, if not eliminates the fragmentation

of the data in many relations.

Currently, SQL only allows array and multiset. We may use

arrays for set-valued attributes with an addition of an index. In

further development, SQL will enable set collection [9].

6.2.2. Captures relationship semantic

Our mapping methodologies capture the real meaning of

relationships in XML Document. Without complex structures,

the XML document is stored in flat tables and all of the

relationships are treated as association relationships. For

example, with flat table implementation a composition is

treated as a 1:N association. With our methods, we store the

sub-types inside the super-type and thus the existence

dependent meaning remains intact.

6.2.3. Support for various query types

Our mapping methodologies enable the use of different

queries. In flat table implementation, we cannot have super-

type and sub-type query because the super-type and sub-type

inside the XML document are flattened. Without knowledge of

the conceptual design, we would not know which table stores

the super-type and which tables store the sup-types. With our

methodologies, these queries can be implemented with ease

because the conceptual structures are well kept in the physical

implementation

6.2.4. Multiple query optimisations

Query in a flat table only applies to a simple path direction

in an XML document. If we want to generate an XML

document that requires complex paths, we need multiple

simple paths to be converted into simple SQL queries. This, of

course, deals with more costly operation such as scan and joins.

With our implementation, we can support more complex

queries due to our more complex structures. A complex path

query can be converted more easily into our SQL query and

thus, requires less scans and joins.

7. Conclusion

Compared to relational data, XML documents have

considerably more complex structures. Storing the XML data

in a relational database, existing works implement the complex

structure as flat tables. This practice has diminished the

conceptual model semantic. With the existence of some

complex structures data types in ORDB, we propose a novel

implementation of XML repository in ORDB. In this paper, we

demonstrate how different relationship structures such as

aggregation, composition and different association can be

preserved in the implementation by using user-defined type,

row type and collection type in ORDB.

Unlike some works in transformation, our proposed

methods cover two straightforward mapping steps, spanned

from the conceptual model to the implementation into tables. In

logical level, we propose the mapping of Semantic Network

Diagram into XML Schema. In implementation level, we map

the XML Schema into ORDB schema tables with complex data

E. Pardede et al. / Information and Software Technology 48 (2006) 370–384384
types. By doing this, the results maintain the semantic stated in

the conceptual level. In addition, using the complex data types,

we have utilized the rich facility in ORDB.

Further, we also propose the query to retrieve the XML data.

These queries are further differentiated based on the projection

target and the selection predicates into four: super-type query,

sub-type query, referencing query and dereferencing query.

Our evaluations show that our proposed methods lead to the

development of a better alternative for XML data repository.

Not only does it generate less query cost, it can also be used for

more various queries and it maintains the real conceptual

semantics further down to the implementation.

Acknowledgements

We would like to thank the anonymous reviewers for their

thorough and comprehensive reviews. Their valuable sugges-

tions have helped us in revising this paper.

References

[1] A. Almarimi, J. Pokorny, A mediation layer for heterogeneous XML

schemas, International Journal of Web Information Systems 1 (1) (2005)

25–32.

[2] R. Bourret, Mapping DTDs to Databases, 2004, Available in: http://www.

xml.com/pub/a/2001/05/09/dtdtodbs.html

[3] R.C.G. Cattell, D. Barry, M. Berler, J. Eastman, D. Jordan, C. Russell,

O. Schadow, T. Stanienda, F. Velez (Eds.), The Object Database

Standard: ODMG 3.0, Morgan Kaufmann, San Francisco, CA, 2000.

[4] CODASYL Database Task Group, Data Base Task Group Report, 1971.

[5] R. Elmasri, S.B. Navathe, Fundamentals of Database Systems, Addison-

Wesley, Boston, MA, 2002.

[6] L. Feng, E. Chang, T. Dillon, A semantic network-based design

methodology for XML documents, ACM TOIS 20 (4) (2002) 390–421.

[7] L. Feng, T.S. Dillon, An XML-enabled data mining query language:

XML-DMQL, International Journal of Business Intelligence and Data

Mining 1 (1) (2005) 22–41.

[8] D. Florescu, D. Kossmann, Storing and querying XML data using an

RDMBS, IEEE Data Engineering Bulletin 22 (3) (1999) 27–34.

[9] P. Fortier, SQL3 Implementing the SQL Foundation Standard, McGraw-

Hill, New York, 1999.

[10] W.-S. Han, K.-H. Lee, B.S. Lee, An XML storage system for object-

oriented/object-relational DBMSs, Journal of Object Technology 2 (1)

(2003) 113–126.

[11] Ipedo, Ipedo XML Database, Available in: http://www.ipedo.com/html/

products.html, 2004.

[12] G. Jaeschke, H.-J. Schek, Remarks on the algebra of non first normal form

relations, Proceedings of the ACM PODS 1982, ACM Press, Los Angeles,

CA, 1982, pp. 124–138.

[13] H.V. Jagadish, S. Al-Khalifa, A. Chapman, L.V.S. Lakhsmanan,

A. Nierman, S. Paprizos, J.M. Patel, D. Srivastava, N. Wiwattana,

Y. Wu, C. Yu, TIMBER: a native XML database, VLDB Journal 11 (4)

(2002) 279–291.
[14] M. Klettke, H. Meyer, XML and object-relational database systems—

enhancing structural mappings based on statistics, Proceedings of the

WebDB 2000, Springer, Dallas, TX, 2000, pp. 151–170.

[15] W.M. Meier, eXist native XML database in: A.B. Chauduri, A. Rawais,

R. Zicari (Eds.), XML Data Management: Native XML and

XML-Enabled Database System, Addison-Wesley, Boston, MA, 2003,

pp. 43–68.

[16] J. Melton (Ed.), Database Language SQL—Part 2 Foundation, ISO-ANSI

WD 9072-2, International Organization for Standardization, Working

Group WG3, August 2002.

[17] V. Nassis, R. Rajagopalapillai, T.S. Dillon, J.W. Rahayu, Conceptual and

systematic design approach for XML document warehouses, International

Journal of Data Warehousing and Mining 1 (3) (2005) 63–87.

[18] E. Pardede, J.W. Rahayu, D. Taniar, New SQL standard for object-

relational database applications, Proceedings of SIIT 2003, IEEE, Delft,

The Netherlands, 2003, pp. 191–203.

[19] E. Pardede, J.W. Rahayu, D. Taniar, On using collection for aggregation

and association relationships in XML object-relational storage,

Proceedings of ACM SAC 2004, ACM Press, Nicosia, Cyprus, 2004,

pp. 703–710.

[20] E. Pardede, J.W. Rahayu, D. Taniar, Preserving composition in XML

object relational storage, Proceedings of AINA 2005, vol. 2, IEEE

Computer Society, Taipei, Taiwan, 2005, pp. 695–700.

[21] E. Pardede, J.W. Rahayu, D. Taniar, Preserving conceptual constraints

during XML updates, International Journal ofWeb Information Systems 1

(2) (2005) 65–82.

[22] J.W. Rahayu, E. Chang, T.S. Dillon, D. Taniar, Performance evaluation of

the object-relational transformation methodology, Data and Knowledge

Engineering 38 (2001) 265–300.

[23] M.A. Roth, H.F. Korth, The design of 1NF relational databases into nested

normal form, Proceedings of SIGMOD 1987, ACM Press, San Francisco,

CA, 1987, pp. 143–159.

[24] L.I. Rusu, J.W. Rahayu, D. Taniar, A methodology for building XML data

warehouses, International Journal of Data Warehousing and Mining 1 (2)

(2005) 23–48.

[25] K.-D. Schewe, B. Thalheim, The co-design approach to web information

systems development, International Journal of Web Information Systems

1 (1) (2005) 5–14.

[26] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D.J. DeWitt,

J.F. Naughton, Relational databases for querying XML documents:

limitations and opportunities, Proceedings of VLDB 1999, Morgan

Kauffman, Edinburgh, Scotland, 1999, pp. 302–314.

[27] Software AG, TAMINO, Number One in XML Management, 2004,

Available in: http://www1.softwareag.com/corporate/products/tamino/

default.asp.

[28] E.V.-D. Vlist, XML Schema, O’Reilly, Sebastopol, 2002.

[29] N.D. Widjaya, D. Taniar, J.W. Rahayu, E. Pardede, Association

relationship transformation of XML schemas to object-relational

databases, Proceedings of iiWAS 2002, SCS Publishing House, Bandung,

Indonesia, 2002, pp. 135–142.

[30] N.D. Widjaya, D. Taniar, J.W. Rahayu, Aggregation transformation of

XML schemas to object-relational databases, Proceedings of IICS 2003,

Springer, Leipzig, Germany, 2003, pp. 251–262.

[31] R. Xiaou, T.S. Dillon, E. Chang, E.L. Feng, Modeling and transformation

of object-oriented conceptual models into XML schema, Proceedings of

DEXA 2001, Springer, Munich, Germany, 2001, pp. 795–804.

http://http://www.xml.com/pub/a/2001/05/09/dtdtodbs.html
http://http://www.xml.com/pub/a/2001/05/09/dtdtodbs.html
http://http://www.ipedo.com/html/products.html
http://http://www.ipedo.com/html/products.html
http://http://www1.softwareag.com/corporate/products/tamino/default.asp
http://http://www1.softwareag.com/corporate/products/tamino/default.asp

	Object-relational complex structures for XML storage
	Introduction
	ORDB new data structures: a preliminary
	User-defined type
	Row type
	Collection type

	Background and related works
	Proposed transformation methodology
	Proposed method for aggregation relationship
	Proposed method for composition relationship
	Proposed methods for association relationship

	Proposed query techniques
	Super-type and sub-type query
	Referencing query and dereferencing query

	Evaluation
	Quantitative analysis
	Qualitative analysis

	Conclusion
	Acknowledgements
	References

