
Information Sciences 177 (2007) 2493–2521

www.elsevier.com/locate/ins
The use of Hints in SQL-Nested query optimization

David Taniar a,*, Hui Yee Khaw a, Haorianto Cokrowijoyo Tjioe a, Eric Pardede b

a Clayton School of Information Technology, Monash University Clayton, Vic. 3800, Australia
b Department of Computer Science & Computer Engineering, La Trobe University, Bundoora, Vic. 3083, Australia

Received 17 April 2004; received in revised form 3 April 2006; accepted 13 December 2006
Abstract

The query optimization phase in query processing plays a crucial role in choosing the most efficient strategy for execut-
ing a query. In this paper, we study an optimization technique for SQL-Nested queries using Hints. Hints are additional
comments that are inserted into an SQL statement for the purpose of instructing the optimizer to perform the specified
operations. We utilize various Hints including Optimizer Hints, Table join and anti-join Hints, and Access method Hints.
We analyse the performance of various nested queries using the TRACE and TKPROF utilities which provide query exe-
cution statistics and execution plans.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Query optimization; SQL; Nested query; Hints; TRACE; TKPROF
1. Introduction

Query optimization is the most important stage in query processing where the database optimizer has to
choose a query-evaluation plan with minimized cost and maximized performance [4,13,25,27]. The function-
ality of query optimization in deciding the best query execution plan is a significant task since there are a lot of
possible queries in terms of the canonically equivalent algebraic expression for one given SQL query [4,7,8].
Moreover, the response time for those algebraic representations can vary one from another. Nonetheless, the
efficiency of the chosen plan could make a great difference to the system’s performance and hence this step
should not be neglected. This is especially the case when the query being optimized consumes a considerable
amount of resources such as physical disk reads and memory buffer. Thus, reasons such as these have made
the task for query optimization critically important.

There are three essential components of a query optimizer [4,15]: (1) search space, (2) cost modeling, and (3)
search strategy. In the search space, there are several possible canonical equivalent query expressions whose
0020-0255/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.ins.2006.12.015

* Corresponding author. Tel.: +61 3 9905 9693; fax: +61 3 9905 5159.
E-mail addresses: David.Taniar@infotech.monash.edu.au (D. Taniar), Haorianto.Tjioe@infotech.monash.edu.au (H.C. Tjioe),

E.Pardede@latrobe.edu.au (E. Pardede).

mailto:David.Taniar@infotech.monash.edu.au
mailto:Haorianto.Tjioe@infotech.monash.edu.au
mailto:E.Pardede@latrobe.edu.au


2494 D. Taniar et al. / Information Sciences 177 (2007) 2493–2521
function is not merely to reduce the cost. It is the job of the cost modeling component to estimate the cost of
those query expressions based on the database’s statistical information. The search strategy will choose the
most efficient execution plan for a given query task by investigating the search space.

Generally, in the query optimization process, the system will automatically choose the most efficient opti-
mization technique [15,27]. There are two commonly used query optimization techniques: Heuristics and Cost

estimation optimization [4,10]. For example, in a commercial database industry, Oracle adopts these most
common optimization techniques [16]. By applying Heuristics optimization, the algebraic representation uses
a set of Heuristics rules to transform the query which selects the appropriate operator trees in a query search
strategy in order to give the efficient query execution plan [18]. However, one should not only depend on the
Heuristics technique; another consideration should be the cost involved in executing the query by applying
different search strategies and selecting the cheapest cost estimation. The Cost estimation technique predicts
the cost of different execution strategies and selects the cheapest execution cost [5,13,17]. Unfortunately, these
optimization techniques are not enough to serve the best query optimization technique. The Heuristics tech-
nique, although it is relatively stable when compared with the cost estimation technique, still does not serve the
most efficient optimization plan [17]. The Cost estimation technique, although it serves the most efficient opti-
mization technique based on the cost estimation model, does not always give the best optimization technique
and there are many search strategy options which are too time-consuming when estimating these search strat-
egies [3,4].

Moreover, since the Database Administrator (DBA) often has knowledge about their data better than the
system optimizer, the application of Hints as the optimization technique on the SQL statement will give the
DBA the ability to manually turn on the SQL statement in order to improve system performance with less
resource consumption compared with the Heuristics and Cost estimation techniques. Last but not the least,
the Hints optimization technique is capable of choosing the best query transformation based on the user’s
specified comment which is added to the SQL query statement [23].

Basically, Hints are some additional comments that are placed within an SQL statement aiming to directly
guide the current system optimizer to alter the optimized execution plan. It can directly decide the execution
plan, guided by a user’s specified notes inserted within an SQL statement [2]. Hints can be categorized into
optimizer Hints, table join and anti-join Hints, access method Hints [2,16].

In this paper, we introduce nested query optimization using Hints in the context of relational database
management systems (RDBMS), since the modern database applications usually deal with many complex que-
ries in RDBMS and those complex queries often involve nested queries. Moreover, a nested query optimiza-
tion consumes a larger number of resources such as physical disk reads and memory buffers when compared
with a non-nested query [25]. Hints could significantly speed up the system’s performance and reduce the
resources needed for processing the nested queries. Here, we particularly focus on standard nested query,
non-equality nested query, semi-join nested query and anti-join nested query.

There is work on the use of Hints in SQL for certain system such as [1] for Sybase. In this paper, our imple-
mentation will be done using Oracle. In Oracle itself, the use of Hints for Object-Relational queries has been
published in our previous paper [23].

The organization of the rest of the paper is as follows. We discuss the related works in Section 2. In Section
3 we will introduce Hints and its specification. In Section 4, we discuss a nested query optimization frame-
work; this is followed by performance evaluation with some results showing the effectiveness of using Hints
in Section 5. Finally in Section 6, we give our conclusions and discuss future work.
2. Related works

Kim [14] first introduced an efficient technique to improve the processing of nested queries. The idea is to
rewrite the initial nested query form to its canonical equivalent non-nested form. The traditional technique in
implementing nested queries can be very inefficient since, by using the nested-iteration method, it has to
retrieve the inner query block once of each tuple of its outer query block. This is a very time-consuming pro-
cess. First, he identified five types of nested queries which are: type-A nesting, type-N nesting, type-J nesting,
type-JA nesting and type-D nesting. As can be seen in Table 1, there are certain conditions which stated the



Table 1
Kim’s nested queries classification

Conditions Type A Type N Type J Type JA Type D

Inner query block Q has a join predicate that references the outer query block No No Yes Yes Yes
SELECT clause of Q includes an aggregate function Yes No No Yes No
Inner query blockQ contains a division predicate No No No No Yes

D. Taniar et al. / Information Sciences 177 (2007) 2493–2521 2495
criteria of each nested query type. The first condition is that the inner query block Q has a join predicate that
references the outer query block. The second condition is that the SELECT clause of Q includes an aggregate
function. The final condition is that the inner query block Q contains a division predicate.

Based on these classifications, Kim [14] proposed sets of algorithms to transform the initial nested queries
to their canonical equivalent non-nested form. This allows the query optimizer to choose a merge join algo-
rithm when implementing nested queries rather than applying the high cost nested-iteration method. However,
Ganski and Wong [7] later discovered some deficiencies in Kim’s algorithms [14] and have attempted to fix
these bugs. Nonetheless, Kim’s idea of query rewriting became the foundation of today’s evolution of query
optimizer approaches [14].

There are two commonly used query optimization techniques which are: the Heuristics and the Cost esti-

mation technique. A Heuristics method transforms the initial query presentation into an efficient query tree
equivalent based on the order of operation for executing a query [6,18]. For example, in the Volcano [10]
and the Cascades [9] systems, the ordering of operations for executing a query is applied widely to represent
the knowledge of search space [4]. The main idea of this technique is to change the internal representation of a
query tree structure by using the Heuristics technique. Generally, the SELECT and PROJECT operations,
which reduce the number of records and the number of attributes respectively, are found to be the most
restrictive operations [6]. So there could be a great reduction in resource usage if some of the restrictive oper-
ations, which can efficiently reduce the intermediate result size, are executed first.

In addition to the Heuristics technique, the Cost estimation technique seems to be more effective for many
nested queries operations [5,11,17]. The system optimizer needs information about database statistics that is
kept in the DBMS’s catalogue in order to be able to estimate the costs of various execution plans generated [5].
For example, MAGIC [17] is one of methods which apply the Cost estimation technique. It uses the rewriting
method as a special join method to be added into any existing Cost estimation query optimizer. Although the
Cost estimation technique is capable of providing reasonably accurate estimates, it should be borne in mind
that these are only estimates and hence, the chosen execution plan might not be the cheapest [4]. After some
alternative execution plans have been generated, the Cost estimation technique optimizer uses the statistics to
predict the cost of each plan and chooses the one with the lowest cost.

Due to the estimation nature of this technique, the need for Hints has emerged. The introduction of Hints
for nested query optimization has indicated the inability of those commonly used optimization techniques to
produce the best strategy for every nested query. By applying Hints as an optimization technique, the search
strategy is directed to choose the optimize execution plan based on the specified knowledge which is stated in
Hints [2,16]. There are two main goals of Hints optimization: a faster response time, and lower resource con-
sumption. Moreover, the Hints approach is easy to understand in terms of human language and its process is
simple to follow.
3. Hints: a background and classifications

As can be seen in Fig. 1, all Hints have to be written after a SELECT /UPDATE /INSERT/ DELETE
statement with /*+ Hint */. In this example, we use USE_HASH Hint to optimize the nested query between
cust_order and staff tables. Oracle provides an extensive list of Hints that can be used to tune various aspects
of a query performance [16].

We categorize Hints for nested query optimization into three parts: (1) optimizer Hints, (2) table join and
anti-join Hints, (3) access method Hints. Detailed explanations of these are given in the following sections.



SELECT * FROM Cust_order r a HINT statement 
WHERE r.staffid IN 

(SELECT /*+ USE_HASH(s, r)*/ s.staffid FROM staff s) 

Fig. 1. Using a Hint in an SQL statement.

2496 D. Taniar et al. / Information Sciences 177 (2007) 2493–2521
3.1. Optimizer Hints

Optimizer Hints apply a different optimizer to a query, which in turn redirects the overall processing goal
[1]. Oracle offers four kinds of optimizer Hints, which are all_rows, first_rows, rule, and choose (refer to Fig. 2).
The all_rows Hint explicitly chooses the cost estimation technique to optimize a statement block with a goal of
best throughput (that is, minimum total resource consumption).

The choose Hint causes the optimizer to choose between the Heuristics optimization and cost estimation
techniques for an SQL statement. The optimizer bases its selection on the presence of statistics for the tables
accessed by the statement. If the data dictionary has statistics for at least one of these tables, then the opti-
mizer uses the cost estimation technique and optimizes with the goal of best throughput. If the data dictionary
does not have statistics for these tables, it uses the Heuristics optimization technique.

The first_rows Hint favors a full-index scan and invokes the cost estimation technique to return the first row
of a query within the shortest processing time and with minimum resource consumption. Since its goal is to
achieve the best response time, it is suitable for use in Online Transaction Processing (OLTP).

Fig. 3 shows that the optimizer goal has been changed from No-Hint to add first_rows Hint to the select
statement. In Fig. 3a the goal of select statement is rule (Heuristics technique) in which we do not apply any
Hint since it is a default optimization technique from the system. By applying first_rows Hint in Fig. 3b, the
select statement goal is forced to change from the system default optimization. Although the execution plan
between Figs. 3a and b is quite the same, however by applying a Hint, it gives a better performance result as
can be seen in our performance evaluation in Section 5.

3.2. Table join and anti-join Hints

There are several Hints in the table join and anti-join Hints provided by Oracle as shown in Fig. 4, which
are: use_nl Hint, use_merge Hint and use_hash Hint. The use_nl Hint causes Oracle to join each specified table
to other row sources with a nested loop join that uses the specified table as the inner table. In general, the
default join method in Oracle is the nested loop join [24]. Therefore, use_nl Hint is not used in the performance
evaluation. There are six Hints which can be used for join nested query optimization:

• The use_hash Hint. The Hint invokes a hash join algorithm to merge the rows of the specified tables. In
many circumstances, it changes the access path to a table in addition to the change in join method [20].

• The use_merge Hint. Alternatively, the Hint forces the optimizer to join tables using the sort–merge oper-
ation [21].
ALL ROWS syntax/*+ all_rows*/

FIRST ROWS syntax/*+ first_rows*/

Optimiser Hints 

RULE syntax/*+ rule*/

CHOOSE syntax/*+ choose */

Fig. 2. Optimizer Hints.



Fig. 3. The effect of adding an optimizer Hint.

USE_NL syntax/*+ use_nl (table) */

USE_HASH syntax/*+ use_hash (table) */

USE_MERGE syntax /*+ use_merge (table)*/

HASH_SJ syntax /*+ hash_sj */

MERGE_SJ syntax /*+ merge_sj */ 

HASH_AJ syntax /*+ hash_aj */

MERGE_AJ syntax/*+ merge_aj*/

Table Join
and Anti-
Join Hints 

Fig. 4. Table join and anti-join Hints.

D. Taniar et al. / Information Sciences 177 (2007) 2493–2521 2497
• The hash_sj Hint. This is a semi-join Hint that is added to the inner block of a correlated nested query using
the EXISTS clause for the purpose of transforming the query into a hash semi-join to access the specified
table.

• The merge_sj Hint. Similarly, the Hint also transforms a correlated EXISTS nested query into a semi-join
except that it invokes a merge semi-join.

• The hash_aj Hint. The Hint is placed in the inner loop of a NOT IN nested query to invoke a hash anti-join
operation.

• The merge_aj Hint. The Hint joins the tables in a NOT IN nested query using the merge anti-join operation.

As can be seen from Fig. 5a, a use_merge Hint has two parameters which are S for table Staff and C for
table Customer to be joined to the row source resulting from joining the previous tables in the join order using
a sort–merge join. Similar to Fig. 5a, in Fig. 5b a use_hash Hint has been specified two parameters which are S

for table Staff and R for table Cust_order to be joined to the row source resulting from joining the previous
tables in the join order either using a hash join.



Fig. 5. Table join and anti-join Hints examples.

Fig. 6. An example of access method Hints.

2498 D. Taniar et al. / Information Sciences 177 (2007) 2493–2521
3.3. Access method Hints

The access method Hints can be classified into Hints without index and Hints with index. Rowid Hint is one
of Hints without index with syntax: /*+ Hint(table) */. Hints with index consist of index Hint, index_ join

Hint and index_ffs Hint with syntax: /*+ Hint (table, index) */. As shown on Fig. 6, there is a
SELECT statement with index Hint consist of two parameters which are V as the alias of table Inventory

and Inventory_invid_pk as the table index of table Inventory. We will briefly explain each Hint in the access
method Hints as follows:

• The Rowid Hint. The Hint forces the optimizer to scan the specified table by row id, which is generally gath-
ered from an index.

• The Index Hint. The Hint explicitly instructs the optimizer to use an index scan as the access path to the
specified table.

• The Index_join Hint. The Hint alerts the optimizer to access the specified table using the index join method
[22].

• The Index_ffs Hint. The invoked index fast full scan operation by the Hint will fully access an index in ran-
dom order. It is suitable to be used in cases where access to index alone is sufficient to resolve the query. In
other words, it is not necessary to access the table rows.

4. Nested query optimization framework

In this section, we explain the nested query and the optimizer modes used in our experimentations.

4.1. Nested queries

Basically, a nested query is a query within another query in a nested form and can be classified into four
groups [6,7,13], which are:

• Standard nested queries (IN),
• Non-equality nested queries (ANY/ALL with conditional operators),
• Semi-join nested queries (EXIST),
• Anti-join nested queries (NOT EXIST and NOT IN).

However, we categorize the nested query taxonomy according to the clauses used, which include EXIST,
IN, ANY/ALL, NOT EXISTS, and NOT IN. Therefore, there will be five major types of nested queries where
each group is further divided into various join structures.



Fig. 7. Inner and outer table.

D. Taniar et al. / Information Sciences 177 (2007) 2493–2521 2499
The first level of division within each defined clause is related to the correlation between the inner table and
the outer table in a nested query. According to Kim [14], a correlated nested query is where a join predicate of
the inner table references the outer table (see Fig. 7). Thus, for every outer row processed, the inner table has
to be evaluated once. If the correlated outer table is large, the processing could cause an extensive scan of the
inner table. On the other hand, a non-correlated nested query has to be executed once only in order to produce
a temporary output, which will serve as an input to the outer table for further processing. The recursive pro-
cessing on the inner table is eliminated, as it does not reference the outer table. In the second level of division,
the classification of join structure is based on the characteristics of indexed attribute and non-indexed attri-
bute. In the case of nested queries, a primary table can be either in the inner or the outer block query. There-
fore, the two scenarios will be considered in the experiments in order to analyze the effect of index on both the
inner and the outer blocks.

The IN clause is one of the most commonly used operators in standard nested queries. It returns a row from
the outer table if the value in the attribute before the clause is equal to one value, or a set of values, produced
by the inner query. The processing is similar to the equi-join where the values of two tables are compared on a
common attribute. In correlated nested queries, further classification is made on the position of the primary
table (see Fig. 8(a)), while the characteristics of attributes required by the IN clause categorize non-correlated
nested queries into classes (see Fig. 8(b)).

The use of the ANY or ALL clause in correlated Non-equality nested queries is rather complex. Therefore,
any structure where the correlation is between non-key attributes will not be considered. Moreover, it is not
practical to implement the structure in the real world due to its futility. Fig. 9(a) shows the syntax of using
correlated non-equality nested queries while Fig. 9(b) shows the syntax of using non-correlated non-equality
nested queries. Nonetheless, the ANY and the ALL clauses have to be used in sync with conditional operators
(see Figs. 9(a) and 9(b)).
Fig. 8(a). Correlated IN clause nested queries.

Fig. 8(b). Non-correlated IN Clause nested queries.



Fig. 9(a). Correlated non-equality nested queries.

Fig. 9(b). Non-correlated non-equality nested queries.

2500 D. Taniar et al. / Information Sciences 177 (2007) 2493–2521
A nested query that uses the EXISTS clause is also called a semi-join nested query. This is because the
matching row in the outer table would be displayed once only even if there are multiple rows produced by
the inner query [2]. Besides, Burleson [2]) proves that it is inappropriate for non-correlated nested queries
to use the EXISTS clause, as the result produced would be incorrect. Therefore, the taxonomy will include
only the correlated nested queries in the experiments. The following illustration shows the structure of a cor-

related semi-join nested query.
SELECT
 hAttributei

FROM
 hTable1i halias1i

WHERE
 EXISTS
(SELECT
 hAttributei

FROM
 hTable2i halias2i

WHERE
 halias2i.hAttributei=halias1i.hAttributei);
An Anti-join nested query using the NOT EXISTS or NOT IN clause is similar to that using the EXISTS
clause or IN clause. Yet, in the former case, a row in the outer table would be retrieved only if the condition
specified in the inner query does not exist. In other words, the final result excludes the matching rows in the
inner query. The following illustration shows the structure of an anti-nested query.
SELECT
 hAttributei

FROM
 hTable1i halias1i

WHERE
 NOT EXISTS/NOT IN
(SELECT hAttributei

FROM hTable2i halias2i

WHERE halias2i.hAttributei = halias1i.hAttributei);
4.2. Optimizer modes

There are two kinds of optimizer modes in Oracle: the Heuristics optimizer and the Cost estimation opti-
mizer [16]. The Heuristics optimizer’s main function is to reduce the size of the intermediate result. In general,
the SELECT and PROJECT operations, which reduce the number of records and the number of attributes
respectively, are found to be the most restrictive operations [6]. Apparently, the re-ordering of the leaf nodes
on the query tree can have a significant impact on the system’s performance and, hence, good Heuristics should
be applied whenever possible. However, as shown in the performance evaluation section, this optimizer mode
is less effective on many join nested queries optimizations when compared with using Hints on CBO optimizer
mode.



D. Taniar et al. / Information Sciences 177 (2007) 2493–2521 2501
The Cost estimation optimizer determines which execution plan is the most efficient by considering available
access paths and by factoring in information based on statistics for the schema objects (tables or indexes)
accessed by the SQL statement [11]. For instance, the decision to choose between an index scan and a full-table
scan for a table with skewed (disproportional) data will not always be obvious, and hence cannot be concluded
without first examining the statistics.

A Cost estimation optimizer will favor an index scan over a full-table scan if a given query retrieves less than
40% of the data in a table. On the other hand, a full-table scan will be preferred if the retrieved data will be
over 60%. As can be seen, the Cost estimation optimizer is more flexible and intelligent in choosing the SQL
operations. Therefore, it should make a better execution plan than the Heuristics optimizer does if it has all the
statistical information it needs. Moreover, Cost estimation has two main optimization goals: the fastest
response time with minimum resource usage, and the best throughput with minimum total resource
consumption.

5. Performance evaluation

In this section, we present our performance evaluation result incorporating Hints using TKPROF utility in
Oracle.

5.1. Execution plan (query tree) and TKPROF utilities

In general, an execution plan is the strategy produced and used by the optimizer to process a query in order
to get the desired result [12]. It is also known as the query tree due to its tree-like structure. It is essential to
understand the functioning of the execution plan, as it provides a useful indication of the performance of the
query processing. For instance, as shown in the following illustration (Fig. 10), an indexed nested loop join is
used to join the tables in the given query. The join method may indicate an efficient processing, as the previous
section explained that the presence of an index in the inner table may dramatically improve the performance of
the nested loop join.

However, the operations used in the execution plan are only an indicator, not an absolute answer. More-
over, its main function is to explain the steps involved in the processing and the sequence of execution. As can
be seen, there are four steps involved in the processing of the given query:

Step 1: Nested loops;
Step 2: Full-table access to Orderline table;
Step 3: Table access to Inventory table by index ROWID;
Step 4: Index unique scan on the primary key of the Inventory table.

The operations below the nested loops are indented indicating that they are executed prior to the join oper-
ation. Hence, the first execution is Step 2, which will retrieve a row from the Orderline table and return it to
Fig. 10. Example of execution plan.



2502 D. Taniar et al. / Information Sciences 177 (2007) 2493–2521
Step 1. Then, Step 1 will send the invid (inventory number) to Step 4 for every row obtained from Step 2. In
Step 4, the optimizer will perform an index unique scan on the invid to gather the ROWID. If no ROWID is
found, Step 3 will instruct Step 1 to discard the row. Otherwise, Step 3 will use the ROWID to access the
Inventory table to retrieve the corresponding row. Finally, Step 3 will return the row to Step 1, where the
row will be joined with that from Step 2 if the current price is equal to the order price. If the two prices
are not the same, Step 3 will not return a row, and Step 1 will eliminate the row from the result set. The steps
will be carried out recursively until all the rows have been processed.

The TRACE utility is also known as the SQL trace facility, which can be activated only by setting the
relevant parameters. There are two types of parameters that need to be carefully set [2]: a file size and
location parameters (eq. User_dump_dest = c:norahomentracefile) b function enabling parameters (e.g.
time_statistics and sql_trace). However, the report produced is difficult to understand. Therefore, it must
be used in conjunction with the TKPROF utility, whose task is to translate the traced result into a read-
able format [2]. When the Oracle database is installed, TKPROF is automatically installed in the directory
norahomenbin. Firstly, we add norahomenbin to the current path. Then, the utility is invoked by using the
following command:
TkprofhTraceFileihOutputFilei½explain ¼ husernamei=hpasswordi�
The trace file has an extension of .trc, while the output file that is in the readable format will have an exten-
sion of .prf. It is essential to specify the location in both the hTraceFile iand the hOutputFile i, otherwise,
TKPROF would not be able to perform its task due to the missing file. The following shows the command line
we use to invoke TKPROF: Tkprof d:nora0001.trc d:ntrace.prf explain = system/manager.

As shown in Fig. 11, the TKPROF result is divided into three parts which are: sql statement, statistic infor-

mation and execution plan. The statistics section contains seven statistics measurements and one call column
(the first column) indicating the phases of query execution. The following will provide a description of the
phases and the statistics measurements.

5.1.1. Phases

• Parse. The parser checks the syntax and the semantics of the SQL statement, which will be decomposed into
relational algebra expressions for execution.

• Execute. After the parsing and validation stage, the optimizer will execute the decomposed SQL statement
using the execution plan operations shown in Fig. 11.

• Fetch. Finally, in the fetching phase, the optimizer will retrieve the final output from the corresponding
tables based on the instruction passed from the query execution phase.
Fig. 11. Example of TKPROF result (formatted trace report).



D. Taniar et al. / Information Sciences 177 (2007) 2493–2521 2503
5.1.2. Statistics

• Count. The number of times the phases (parse, execute, fetch) are called.
• CPU. The total CPU time (in hundredths of a second) taken for each phase to perform.
• Elapsed. The total processing time for each phase to complete their tasks.
• Disk. The total number of physical disk reads.
• Query. The total number of data buffers retrieved from memory, which is generally used by the SELECT

statement.
• Current. The statistic is similar to the query statistics, which also indicates the total number of data buffers

retrieved from memory except that this mode is generally used by the UPDATE, INSERT, and DELETE
statements.

• Rows. The total number of rows processed by the SQL statement.
5.2. Experimental results

For the purpose of experimentation in the paper, a Sales database has been created as a sample database.
Table 2 shows the details of the database, while Fig. 12 depicts the relationships between each individual table.
We perform the experiments on Pentium IV 1.8 GHz CPU with 256MB. We use Oracle9i Database to perform
our SQL queries. The Exception is given to table Cust and table Staff; in our experimental results the terms
Cust and Customer are interchangeable to identify table Cust; also in our experimental results we use name
Staff_S and Staff interchangeably to identify table Staff.

In the next section, we use an experimental Hints optimization technique and also an optimization tech-
nique without using Hints. For the No-Hint approach, the optimizer system will choose the commonly used
optimization techniques which are: the Heuristics and Cost estimation techniques. We also compare those opti-
mization techniques results based on the join nested query framework in Section 4. These nested queries are
Table 2
Sales database

Table Attributes Records

Cust (custid, cname, addr, city, pcode) 10,010
Staff (staffid, sname, city, pcode) 1010
Cust_order (ordered, orderdate, custid, staffid) 10,000
Item (itemid, itemdesc, category) 999
Inventory (invid, itemid, curr_price, qoh) 9500
Orderline (ordered, invid, order_price, qty) 15,000

Orderline 
Orderid
Invid
Order_price
Qty

Inventory
Invid
Itemid
Curr_price
Qoh

Item
Itemid
Itemdesc
Category

Cust_order
Orderid
Orderdate
Custid 
Staffid

Cust
Custid
Cname 
Addr
City 
Pcode

Staff
Staffid
Sname 
City
Pcode

Fig. 12. Sales order systems.



2504 D. Taniar et al. / Information Sciences 177 (2007) 2493–2521
IN clause nested queries, EXISTS clause nested queries; ANY/ALL clause nested queries and NOT EXISTS
and NOT IN clause nested queries. Nested queries with aggregate functions are not within the experimenta-
tion scope of this paper.

In the following comparisons as we will see in the next section, the place to add a Hint (inner or outer loop)
is specified by enclosing an ‘O’ or ‘I’ at the end of the Hint indicating the outer loop and the inner loop respec-
tively. For example, use_hash (O) means that the Hint is added to the outer loop of a nested query. Notice
that, the ‘(O)’ is not part of the Hint.

5.2.1. IN clause nested queries results

As can be seen in Fig. 14, the execution plan generated for a correlated INDEX attribute on a standard
nested query is exactly the same as that for a standard join query, meaning that the optimizer has rewritten
the query and treated it as a normal join. Therefore, it does not matter whether or not a Hint is placed in the
outer or the inner loop, as either one will cause the optimizer to change the execution plan, only with some
differences in the statistics.

Fig. 13 clearly explains the advantage of the hash join algorithm in processing this type of join nested query.
As can be seen from the number of rows processed in the execution plan, the nested loop join shows an exten-
sive scan (30,000) in the Inventory table while only 81 records are retrieved and joined in the end. On the other
Fig. 13. Comparison of No-Hint and Hint optimized trace reports for Correlated INDEX attribute on IN clause nested query structure
with inner loop: primary table.



D. Taniar et al. / Information Sciences 177 (2007) 2493–2521 2505
hand, the hash join algorithm scans only the Inventory table (9500 records) once into the memory buffer and
uses the established hash table in the memory to process the query, thus eliminating an unnecessary scan of the
table. Although almost 90% of the execution plans use the same join method, that is the hash join, each of
them actually differs in some aspects such as the processing time and the number of disk reads. It is concluded
that adding the use_hash Hint in the inner loop is the optimal solution. This is because the generated execution
plan is the fastest, which is 1.21 s as shown in Fig. 13b. Moreover, the number of disk and memory reads have
been reduced to only 442 and 424 respectively, compared with 555 and 30,234 reads initially.

As shown in Fig. 14, there are two Hints used in a correlated NON-INDEX attribute in the IN clause nested
query with the inner primary table compared with the No-Hint approach. The results have shown that either
use_hash Hint or index_join Hint has reduced the disk read and elapsed time up to 20% from No-Hint. However,
as depicted in Fig. 15, the result has shown that the No-Hint approach is better for a correlated NON-INDEX
attribute on IN clause nested query with inner foreign table compared with all Hints experimented.

For the non-correlated INDEX attribute on a standard nested query using unique inner SELECT, the add-
ing of the use_hash Hint on the inner loop has invoked a more efficient join algorithm (hash join) that will
result in better query processing. As shown in Fig. 16, applying use_hash Hint has decreased the memory read
up to 93% when compared with the No-Hint approach. Moreover, the elapsed time using use_hash Hint also
decreased up to 50% in comparison with the No-Hint approach.

As shown in Fig. 17, we tested all Hints experimented on non-correlated INDEX attribute on a standard
nested query against the No-Hint approach. In general, all Hints experimented have faster elapsed time pro-
cesses than No-Hint. Moreover, use_merge Hint is surprisingly faster than that of the use_hash Hint. This has
made use_merge Hint is the best Hint of this type of nested query.
Fig. 14. Comparison of the Hints on the Correlated NON-INDEX attribute on IN clause nested query with inner primary table.

Fig. 15. Comparison of all Hints experimented on the Correlated NON-INDEX attribute on IN clause nested query with inner foreign
table.



Fig. 17. Comparison of all Hints on Non-correlated NON-INDEX attribute on IN clause nested query.

Fig. 16. Comparison of the Hints on the Non-correlated INDEX attribute on IN clause nested queries (Unique Inner SELECT).

2506 D. Taniar et al. / Information Sciences 177 (2007) 2493–2521
5.2.2. ANY/ALL clause nested query results

The Correlated INDEX attribute on a Non-Equality Nested query (ANY clause) structure would normally
invoke a full-table scan, so, Oracle has replaced the nested select with the FILTER operation in sync with full-
table scan on both Inventory and Orderline tables. Unfortunately, the all-tested Hints are not generating a
more efficient execution plan to process this poorly structured nested query; they managed only to contribute
a minor improvement to the processing speed. As shown in Fig. 18, it is found that the use_merge Hint is rel-
atively the best of all, with a processing time of 815 s compared with the initial 868.58 s. Besides, the number of
disk reads has also been reduced from 969,760 to 967,261 reads.

As shown in Fig. 19, although the No-Hint approach has eliminated the VIEW operation (nested select), it
did not utilize the index that exists in the Staff table. As a result, the two full-table scans have caused a dra-
matic downgrade to system performance with a number of disk reads of 23,704. On the other hand, the Hints
optimization detects the presence of the index immediately and then replaces the resource intensive full-table
scan with an index full scan without any hesitation. After analysing the results from different Hints, the
index_ffs Hint appears to be superior to the other Hints (see Fig. 20).

As can be seen in Fig. 20, most of the Hints added have an elapsed time of around 16 s, while the index_ffs

Hint has an outstanding performance of 14.24 s. This difference is probably caused by a slight change in the
access path to the Staff table. As shown in Fig. 20b, the optimal Hint invokes an index fast full scan operation,
which is different from the other Hints that use the index full scan. As a result, the utilisation of index has
upturned the number of disk reads from 23,704 to only 185. Moreover, the expected situation, where the
use of index should be followed by an increase in memory usage, did not happen. Instead, it has declined
by about 33%.

When a nested query join does not involve an indexed attribute, the No-Hint and Hints optimization tech-
niques tend to generate an identical execution plan as shown in Fig. 21. The absence of an index also leaves the



Fig. 18. Comparison of No-Hint and Hint optimized trace reports for Correlated INDEX attribute on ANY clause nested query.

D. Taniar et al. / Information Sciences 177 (2007) 2493–2521 2507
optimizer with no choice but to perform a full-table scan on both tables. Therefore, the Hints approach cannot
contribute any significant improvement to this type of processing. It is found that first_rows Hint causes the
optimizer to produce relatively the fastest execution plan (0.49) compared with the other Hints, which is
around 0.5 s and there is also a slight improvement in the number of disk reads. Hence, it can be concluded
that the Hints approach is still better than the No-Hint in query processing although it did not make signif-
icant difference in this case.

5.2.3. EXISTS clause nested query results
There are a number of Hints that perform equally well in optimizing this nested query, which are:

(i) use_hash, (ii) use_merge, and (iii) rowid. Interestingly, they all have produced exactly the same execution
plans as the original one, which was generated by the No-Hint approach. The graph in Fig. 22 compares
the performances of these Hints. As can be seen, the use_merge Hint produces the fastest execution plan with
0.10 s, compared with that of the use_hash and the rowid Hints, which are only 0.01 s slower. On the other
hand, rowid demonstrates the most efficient resource usage in terms of the physical disk access. Therefore,
it seems that there is more than one optimal Hint for this type of nested query and decisions should be made
according to specific aims. For example, if the response time is the main issue, the use_merge Hint should
be chosen, while the rowid Hint would be more suitable if the disk access is considered as a more expensive
cost component.



Fig. 19. Comparison of No-Hint and Hint optimized trace reports for Non-correlated INDEX attribute on ALL clause nested query:
unique inner SELECT.

Fig. 20. Comparison of all Hints experimented on Non-correlated INDEX attribute on ALL clause nested query: unique inner SELECT.

2508 D. Taniar et al. / Information Sciences 177 (2007) 2493–2521
As mentioned earlier, Oracle may not be able to drive a given query with a proper table although it can
automatically transform certain nested queries into standard joins. This scenario can be seen in Fig. 23a where
the Cust_order table should really be the outer table since its join attribute is non-indexed. Therefore, it is



Fig. 21. Comparison of No-Hint and Hint optimized trace report on Non-Correlated NON-INDEX attribute on ANY clause nested
query.

Fig. 22. Comparison of the Hints experimented in Correlated INDEX attribute on EXISTS clause nested query: inner primary table.

D. Taniar et al. / Information Sciences 177 (2007) 2493–2521 2509
important to optimise a nested query with every available means while using Hint as only one of the solutions.
It is found that the hash_sj Hint has the most outstanding performance by being able to reduce the processing
time to only 0.14 s compared to the initial 4.96 s. This significant reduction is clearly shown in Fig. 24 when



Fig. 23. Comparison of rule-based and Hint optimized trace report of Correlated INDEX attribute on EXISTS Clause Nested Query
(inner Foreign Table).

Fig. 24. Comparison of all Hints experimented on Correlated INDEX attribute on EXISTS nested query (inner foreign table).

2510 D. Taniar et al. / Information Sciences 177 (2007) 2493–2521



D. Taniar et al. / Information Sciences 177 (2007) 2493–2521 2511
compared with the other Hints that perform equally poorly as the original execution plan. Note that the
merge_sj Hint can also produce a very fast execution plan being only 0.05 s slower than the optimal Hint.

As shown in Fig. 23b, the best Hint has invoked a semi hash join, which is designed specifically for nested
queries using the EXISTS clause, to replace the FILTER operation. Although the Staff table remains as the
outer table, the optimizer has utilized the index by using an index fast full scan instead of the time-consuming
full-table scan. Apparently, this whole new execution plan is more suitable for this type of correlated nested
queries due to its ability to significantly improve the overall performance. The improved cost components
include the processing time, and the number of physical disk and memory reads as can be seen from
Fig. 23. In Fig. 24, all Hints experimented have shown that only hash_sj and merge_sj hints have the best
elapsed time, being less than 1 s.

As can be seen from the elapsed columns in Fig. 25b and c, both the use_merge and the merge_sj Hints need
the same period of time (0.03 s) to process the given non-key correlated nested query that uses the EXISTS
clause. However, the same time frame is achieved with different execution plans. Under the use_merge Hint,
Fig. 25b shows that the execution plan generated is exactly the same as that from No-Hint. Interestingly, its
processing time and disk access are 86% and 37% better respectively.

On the other hand, the merge_sj Hint actually causes the optimizer to invoke a different operation (merge
semi-join) to process the query. While it results in the same improvement in the processing speed as the first
Hint did, the number of disk reads is nearly the same as the original plan with only one disk read difference.
This is likely to be caused by the sorting operation on two tables, which requires a large sort area [19]. None-
theless, this execution plan is better in memory consumption by reading only 33 data blocks from the memory
buffer compared to the initial 223 reads. On balance, the use_merge Hint may be a better choice due to its
ability to cut down the more expensive component, which is the physical disk read.

5.2.4. NOT EXISTS clause nested query results

The No-Hint approach appears to be slightly better than the Hints optimization technique on the Corre-
lated INDEX attribute on the NOT EXISTS Clause Nested Query with the inner primary table. While all the
execution plans generated by the Hints are exactly the same as in Fig. 26, they need more than 0.46 s to process
the given nested query. There is one Hint (index_ffs) that managed to replace the index unique scan on the
Staff table with an index fast full scan. However, the processing time soared to 13 s. In the meantime, both
the hash_aj and the merge_aj Hints do not work for this join structure, meaning that the anti-join operation
cannot be invoked.

As usual, the No-Hint approach uses the full-table scan to process the transformed correlated nested query.
On the other hand, every Hint added to the SQL statement instructs the system to utilize the available index,
which then improves the processing time. After comparing the performance of all Hints, it is found that the
execution plan produced by the use_hash Hint is the fastest. As can be seen in Fig. 27b, while no hash join is
invoked, the index in Staffid attribute has been utilized to access the Staff table instead of a full-table scan,
which is slower. However, this response time improvement is at the expense of disk reads. Also, the disk col-
umn shows an extra 332 disk reads compared with that in Fig. 27a. Therefore, it cannot be concluded that
adding the use_hash Hint to the correlated INDEX attribute on a NOT EXISTS clause nested query on inner
foreign table is definitely the best solution - unless response time is the main concern.

As shown in Fig. 28, the adding of Hints did not produce a significant improvement to the correlated
NON-INDEX attribute on the NOT EXISTS clause nested query. Moreover, neither the hash_aj nor the
m erge_aj Hints should work for nested queries that use the NOT EXISTS clause, meaning that no anti-join
operation would be invoked in the execution plan, the latter Hint appears to have the fastest processing time
among the other Hints. This means that improvement has been made to the processing speed without chang-
ing the execution plan. The other improvement shown in Fig. 28b is a minor reduction in the number of disk
reads.

5.2.5. NOT IN clause nested query results

Experiment results show that no single Hint was able to change the execution plan for the correlated
INDEX attribute in the NOT IN Clause Nested Query on the inner primary table. It is insufficient to bring
significant improvement to the processing performance by adding Hints solely to this type of nested query



Fig. 25. Comparison of No-Hint and Hint optimized trace reports for Correlated NON-INDEX attribute on EXISTS nested query.

2512 D. Taniar et al. / Information Sciences 177 (2007) 2493–2521



Fig. 26. The best TKPROF result No-Hint for the Correlated INDEX attribute on NOT EXISTS clause nested query: inner primary
table.

Fig. 27. Comparison of No-Hint and Hint optimized trace reports for Correlated INDEX attribute on NOT EXISTS clause nested query:
inner foreign table.

D. Taniar et al. / Information Sciences 177 (2007) 2493–2521 2513
structure for the purpose of optimisation. As can be seen in Fig. 29b, the number of the expensive disk reads is
almost half of the original, which is then followed by a 40% reduction in processing time.

Although the changes to the performance are not as significant, the use_hash Hint is still relatively the best
compared with the other Hints and the No-Hint optimisation. Therefore, it is worthwhile to add Hints to this



Fig. 28. Comparison of No-Hint and Hint optimized trace reports for the Correlated NON-INDEX attribute on NOT EXISTS clause
nested query.

2514 D. Taniar et al. / Information Sciences 177 (2007) 2493–2521
type of key-correlated nested queries using the IN clause, if users wish to avoid the inconvenience of rewriting
the query, or if they are unfamiliar with other optimisation techniques.

Once again, instructions from Hints alone are inadequate as a means for the system to generate any better
execution plans than the No-Hint approach. On the correlated INDEX attribute in the NOT IN Clause
Nested Query with the inner foreign table, the best Hint shown in Fig. 30b is in terms of response time. As
can be seen, the plan produced with the help of the Hint is 123 s faster than the original one. However, this
improvement is at the great expense of disk reads. The disk column shows an increase from 1,743,303 reads to
2,000,669 reads, which is an extra of 257,366 reads. This means, the system would need to perform additional
physical disk reads of 2092 in order to improve response time by only 1 s. On balance, it seems that the costs
involved have outweighed the benefits received.

The three Hints shown in Fig. 31 on the Correlated INDEX attribute on the NOT IN Clause Nested Query
with the inner primary table have the best performance of all with a reduction of almost 100% in both the
processing time and the number of disk reads compared with the original one generated by the No-Hint
approach. It is observed that the use_hash and the merge_aj Hint have the same and the fastest processing
speed (1.35 s), while the hash_aj Hint uses the least resource (disk reads) and is only 0.01 s slower than the
other two. Therefore, it can be said that the three Hints perform equally well in optimizing this type of nested
query and adding either of them to an SQL statement would produce similar improvements to the system per-
formance. However, it might be more reasonable to employ the use_hash Hint, since the other two did not



Fig. 29. Comparison of No-Hint and Hint optimized trace reports for the Correlated INDEX attribute on NOT IN clause nested query:
inner primary table.

D. Taniar et al. / Information Sciences 177 (2007) 2493–2521 2515
actually invoke an anti-join operation, indicating a possibility that they are not designed to be used in this join
structure.

Experiment results of the Correlated INDEX attribute on the NOT IN Clause Nested Query with an inner
foreign table show (Fig. 32) that the Hints optimization failed to generate a more efficient execution plan to
process this poorly structured nested query. Therefore, both the No-Hint and the Hints optimization have
generated identical strategies. Nonetheless, the merge_aj Hint is the best in comparison with the others, which
managed to contribute some minor improvements to the statistics. As can be seen from Fig. 32, the processing
time is now 1587.85 s compared with the initial 1693.05 s, while the number of disk reads has also been
reduced from 2,005,487 to 1,999,338 reads.

After comparing the performance of each Hint experimented on a Non-correlated INDEX attribute on an
Anti-Nested query (NOT In clause) with the unique inner SELECT, the index_ffs Hint as shown in Fig. 33
appears to be able to produce the fastest execution plan with a processing time of 15.62 s, which is almost dou-
ble that of the original speed. This is because it uses the index fast full scan to access the Staff table instead of
an index full scan as did the other Hints. The other significant improvements following the change are a 99%



Fig. 30. Comparison of No-Hint and Hint optimized trace reports for the Correlated INDEX attribute on NOT IN clause nested query:
inner foreign table.

Fig. 31. Comparison of No-Hint and Hints optimized for Correlated INDEX attribute on NOT IN clause nested query: inner primary
table.

2516 D. Taniar et al. / Information Sciences 177 (2007) 2493–2521
reduction in the number of disk reads and also a 33% decline in memory reads. Therefore, there is no reason
not to add the index_ffs Hint to the inner loop of this type of Non-correlated nested queries for optimization
purposes.



Fig. 32. Comparison of No-Hint and Hints optimized for correlated INDEX attribute on NOT IN clause nested query: inner foreign
table.

Fig. 33. Comparison of No-Hint and Hint optimized trace reports for the Non-correlated NOT IN clause nested query: unique inner
SELECT.

D. Taniar et al. / Information Sciences 177 (2007) 2493–2521 2517
The No-Hint approach appears to perform better than the Hints optimization technique in the processing
of a Non-correlated INDEX attribute on a NOT IN Clause Nested Query with the non-unique inner
SELECT. As shown in Fig. 34, although all the elapsed times are below 5 s, the adding of Hint shows further



Fig. 34. Comparison of all Hints experimented on the Non-correlated NOT IN clause nested query: non-unique inner SELECT.

2518 D. Taniar et al. / Information Sciences 177 (2007) 2493–2521
deterioration to system performance in terms of both processing time and disk reads. Therefore, it is best to
process the Non-correlated INDEX attribute on a NOT IN Clause Nested Query with a non-unique inner
SELECT under the rule-based optimization.

When no index is applicable to the Non-correlated NON-INDEX attribute on a NOT IN Clause Nested
Query, both the No-Hint and the Hints optimization have generated identical execution plans with a full-table
scan of both tables as expected. However, the Hints technique still performs slightly better than the No-Hint
approach by contributing minor improvement to the processing time and the number of disk reads. It is found
that the first_rows Hint added to the outer loop is the best candidate compared with the other Hints by slightly
improving the performance as shown in Fig. 35b. This means, the contribution of Hints optimization does not
significantly guide the current system to optimize the given nested query.

5.3. Discussions

There can be more than one goal when it comes to optimizing a given query. For instance, the main concern
of a company running an online business (online transaction processing) will be the response time, as custom-
ers or clients would not want to waste their time waiting for web page reloading while a transaction is being
processed. Therefore, the DBMS must be able to produce and display the first available result as quickly as
possible, although it may be at the expense of resources or overall processing time. On the other hand, tasks
such as generating a large report generally require the best throughput (minimum total resource consumption)



Fig. 35. Comparison of No-Hint and Hint optimized trace reports for the Non-correlated NON-INDEX attribute on NOT IN clause
nested query.

D. Taniar et al. / Information Sciences 177 (2007) 2493–2521 2519
since responsiveness does not play a key role. That is, while it may need a longer period to display the first
record, the overall performance is better.

In this paper, an optimal Hint is chosen based on the fastest overall processing time. However, it is possible
that some of the chosen Hints might be resource intensive. Table 3 recommends the type of Hint which is best
for each individual join structure.

On IN clause nested queries results, by applying hash_sj Hint on Correlated INDEX attribute with inner
loop foreign table structure, use_merge Hint on Correlation INDEX attribute with inner loop primary table
and Correlation NON-INDEX attribute structure, it has shown those Hints do effectively improve the system
performance compared with the No-Hint approach. While on ANY/ALL Clause nested query results, the
use of use_hash Hint either on Correlated INDEX attribute with inner loop primary table, correlated
NON-INDEX attribute with inner loop primary table structure or Non-correlated INDEX attribute struc-
ture and the use of index Hint on correlation INDEX attribute with inner loop foreign table and the use
of use_merge Hint on Non-correlated NON-INDEX attribute, has proven that the Hints approach is better
than the No-Hint approach. However, on a Correlated NON-INDEX attribute with an inner loop foreign
table join structure, none of the optimized Hints approaches is better than the No-Hint approach.



Table 3
Optimal Hint(s) for each join nested query structure

Clause Join structure Additional join structure Optimal Hint (s)

EXISTS Correlation: INDEX attribute Inner loop: primary table Use_merge (inner loop)
Inner loop: foreign table Hash_sj (inner loop)

Correlation: NON-INDEX attribute – Use_merge (outer loop)
IN Correlation: INDEX attribute Inner loop: primary table Use_hash (inner loop)

Inner loop: foreign table Index (outer loop)
Correlation: NON-INDEX attribute Inner loop: primary table Use_hash (outer loop)

Inner loop: foreign table No-Hint
Non-correlated: INDEX attribute Inner SELECT: unique primary key Use_hash (inner loop)

Inner SELECT: non-unique foreign key Use_hash (inner loop)
Non-correlated: NON-INDEX attribute – Use_merge (inner loop)

ANY/ALL Correlation: INDEX attribute – Use_merge (inner loop)
Non-correlated: INDEX attribute Inner SELECT: unique primary key Index_ffs (inner loop)

Inner SELECT: non-unique foreign key Use_hash (inner loop)
Non-correlated: NON-INDEX attribute – First_rows (inner loop)

NOT EXISTS Correlation: INDEX attribute Inner loop: primary table No-Hint
Inner loop: foreign table Use_hash (inner loop)

Correlation: NON-INDEX attribute – First_rows (inner loop)
NOT IN Correlation: INDEX attribute Inner loop: primary table Use_hash (inner loop)

Inner loop: foreign table No-Hint
Correlation: NON-INDEX attribute Inner loop: primary table Use_hash (inner loop)

Merge_aj (inner loop)
Inner loop: foreign table Merge_aj (inner loop)

Non-correlated: INDEX attribute Inner SELECT: unique primary key Index_ffs (inner loop)
Inner SELECT: non-unique foreign key No-Hint

Non-correlated: NON-INDEX attribute – First_rows (outer loop)

2520 D. Taniar et al. / Information Sciences 177 (2007) 2493–2521
Moreover, for the EXISTS clause nested queries results, only two Hints are most suitable, these being the
use_merge Hint for correlation of the INDEX attribute with the inner loop primary table and correlation of
the NON-INDEX attribute; and, the hash_sj Hint for correlation of the INDEX attribute with the inner loop
foreign table. Finally, for the NOT EXISTS clause nested queries results on Correlation INDEX attribute
with inner loop foreign table, the use_hash Hint is most suitable. However, no optimized Hint is best for
the correlation of the INDEX attribute with the inner loop primary table by using the NOT EXISTS clause.
The first_rows Hint is optimizing correlation NON-INDEX ATTRIBUTE structure on the NOT EXISTS
clause. Unlike the NOT EXISTS clause, on NOT IN clause nested queries results, there are three optimized
hints which are use_hash, merge_aj and index_ffs. However, NOT IN clause nested queries results of correla-
tion INDEX attribute with inner loop foreign table and non-correlated INDEX attribute with non-unique
inner SELECT No-Hint approach is still the best solution.

6. Conclusions and future work

The need for a query optimization technique for providing the best response time and the best throughput in
query processing is very important. Considering that nested queries are the most complex and expensive oper-
ators, this paper has focused on providing an effective optimization technique by using Hints. The chosen tech-
nique is precisely a manual tuning that requires users to insert additional comments into an SQL statement.

We have tested various Hints which are: (a) Optimizer Hints, (b) Table join and anti-join Hints, and (c)
Access method Hints on our performance evaluations and provided the experiments results. We have applied
those Hints to various nested queries such as IN, ANY/ALL, EXISTS, NOT EXISTS/NOT IN clause nested

query. The overall studies found that adding Hints to a join nested query solely can significantly improve sys-
tem performance.

In Section 5 we summarized the optimal hint option for different SQL clause and the join structures of each
clause. With hint, the performance of IN clause can be reduced up to 20% for disk read and elapsed time. The
number of processing time in ANY/ALL clause can be reduced up to 6%. For EXIST clause the number of



D. Taniar et al. / Information Sciences 177 (2007) 2493–2521 2521
disk read and the processing time can be reduced up to 37% and 86% respectively. For NOT IN clause, the
hint can reduce the number of disk reads and memory used up to 99% and 33% respectively. However, for the
NOT EXISTS clause, the hint does not significantly improve the query performance.

Our future work will include evaluating Hints as an effective optimization technique for nested queries
using aggregate function [26,28] and object-relational database management system (ORDBMS) queries, since
join queries usually include nested queries with a lot of aggregate functions for processing real-world query
data that cost complex processing time which may impact on the system’s performance. Moreover, join que-
ries in ORDBMS also require a good optimization technique, as the new database design that uses the REF
data structure operates differently from the conventional database.

References

[1] M. Andrei, P. Valduriez, User-optimizer communication using abstract plans in Sybase ASE, in: Proceedings of the International
Conference on Very Large Databases, Rome, Italy, 2001, pp. 29–38.

[2] D.K. Burleson, Oracle High-Performance SQL Tuning, McGraw Hill, 2001.
[3] S. Chaudhuri, K. Shim, An overview of cost-based optimization of queries with aggregates, IEEE Data Eng. Bull. 18 (3) (1995) 3–9.
[4] S. Chaudhuri, An overview of query optimization in relational systems, in: Proceedings of the ACM Symposium on Principles of

Database Systems, Seattle, WA, 1998, pp. 34–43.
[5] S. Chaudhuri, K. Shim, Optimization of queries with user-defined predicates, ACM Trans. Database Syst. 24 (2) (1999) 177–228.
[6] R. Elmasri, S.B. Navathe, Fundamentals of Database Systems, Addison Wesley, 2004.
[7] R.A. Ganski, H.K.T. Wong, Optimization of nested SQL queries revisited, in: Proceedings of the ACM SIGMOD Conference, San

Fransisco, CA, 1987, pp. 23–33.
[8] G. Graefe, Query evaluation techniques for large databases, ACM Comput. Surveys 25 (2) (1993) 73–170.
[9] G. Graefe, The cascades framework for query optimization, IEEE Data Eng. Bull. 18 (3) (1995) 19–29.

[10] G. Graefe, W.J. McKenna, The Volcano optimizer generator: extensibility and efficient search, in: Proceedings of the Ninth IEEE
International Conference on Data Engineering, Vienna, Austria, 1993, pp. 209–218.

[11] E.P. Harris, K. Ramamohanarao, Join algorithm costs revisited, VLDB J. 5 (1996) 64–84.
[12] M. Jarke, J. Koch, J.W. Schmidt, Introduction to query processing, in: W. Kim, D.S. Reiner, D.S. Batory (Eds.), Query processing in

database systems, Springer-Verlag, 1985, pp. 3–28.
[13] N. Kabra, D.J. DeWitt, Efficient mid-query re-optimization of sub-optimal query execution plans, in: Proceedings of the ACM

SIGMOD Conference, Seattle, WA, 1998, pp. 106–117.
[14] W. Kim, On optimizing an SQL-like nested query, ACM Trans. Database Syst. 7 (3) (1982) 443–469.
[15] V. Markl, V. Raman, D.E. Simmen, G.M. Lohman, H. Pirahesh, Robust query processing through progressive optimization, in:

Proceedings of the ACM SIGMOD Conference, Paris, France, 2004, pp. 659–670.
[16] Oracle, Oracle9i Database Performance Guide and Reference, in: http://www.oracle.com, 2001.
[17] P. Seshadri, J.M. Hellerstein, H. Pirahesh, T.Y.C. Leung, R. Ramakrishnan, D. Srivastava, P.J. Stuckey, S. Sudarshan, Cost based

optimization for magic: algebra and implementation, in: Proceedings of the ACM SIGMOD Conference, Montreal, Canada, 1996,
pp. 435–446.

[18] A. Swami, Optimization of large join queries: combining heuristics and combinatorial techniques, in: Proceedings of the ACM
SIGMOD Conference, Portland, OR, 1989, pp. 367–376.

[19] D. Taniar, J.W. Rahayu, Parallel database sorting, Inform. Sci. 146 (2002) 171–219.
[20] D. Taniar, J.W. Rahayu, Parallel sort–hash object-oriented collection join algorithms for shared-memory machines, Parallel

Algorithms Appl. 17 (1) (2002) 85–126.
[21] D. Taniar, J.W. Rahayu, Parallel sort–merge object-oriented collection join algorithms, Int. J. Comput. Syst. Sci. Eng. 17 (3) (2002)

145–158.
[22] D. Taniar, J.W. Rahayu, A taxonomy of indexing schemes for parallel database systems, Distribut. Parallel Databases 12 (1) (2002)

73–106.
[23] D. Taniar, H.Y. Khaw, H.C. Tjioe, J.W. Rahayu, The use of hints in object-relational query query optimization, Int. J. Comput. Syst.

Sci. Eng. 19 (6) (2004) 337–346.
[24] D. Taniar, R.B-.N. Tan, C.H.C. Leung, K.H. Liu, Performance analysis of group by-after-join query processing in parallel database

systems, Inform. Sci. 168 (2004) 25–50.
[25] L.B. Warshaw, D.P. Miranker, Rule-based query optimization revisited, in: Proceedings of the Eighth ACM International

Conference Information and Knowledge Management, Kansas City, MO, 1999, pp. 267–275.
[26] C. Shahabi, M. Jahangiri, D. Sacharidis, Hybrid query and data qodering for fast and progressive range-aggregate query answering,

Int. J. Data Warehousing Mining 1 (2) (2005) 49–69.
[27] A.B. Waluyo, B. Srinivasan, D. Taniar, Research in mobile database query optimization and processing, Mobile Information

Systems, vol. 1(4), IOS Press, 2005, pp. 225–252.
[28] B. Ozakar, F. Morvan, A. Hameurlain, Mobile join operators for restricted sources, Mobile Information Systems, vol. 1(3), IOS

Press, 2005, pp. 167–184.

http://www.oracle.com

	The use of Hints in SQL-Nested query optimization
	Introduction
	Related works
	Hints: a background and classifications
	Optimizer Hints
	Table join and anti-join Hints
	Access method Hints

	Nested query optimization framework
	Nested queries
	Optimizer modes

	Performance evaluation
	Execution plan (query tree) and TKPROF utilities
	Phases
	Statistics

	Experimental results
	IN clause nested queries results
	ANY/ALL clause nested query results
	EXISTS clause nested query results
	NOT EXISTS clause nested query results
	NOT IN clause nested query results

	Discussions

	Conclusions and future work
	References


