
Inf Syst Front (2013) 15:203–222
DOI 10.1007/s10796-012-9363-z

On the improvement of active XML (AXML)
representation and query evaluation

Binh Viet Phan · Eric Pardede · Wenny Rahayu

Published online: 15 July 2012
© Springer Science+Business Media, LLC 2012

Abstract Active XML (AXML) as intensional data
aims to exploit potential computing powers of XML,
Web services and P2P architecture. It is considered
a powerful extension of XML to deal with dynamic
XML data from autonomous and heterogeneous data
sources on a very large scale via Web services. How-
ever, AXML is still at an immature stage and various
issues need to be investigated before it can be accepted
widely. This paper will focus on two issues facing the
current AXML system, namely the representation and
the query process. We propose superior representa-
tion and improved query evaluation for AXML. For
justification purposes, we compare our proposed algo-
rithms with the existing algorithms.

Keywords Active XML · AXML representation ·
AXML query evaluation algorithm

1 Introduction

Recently, the widespread use of XML, the develop-
ment of Web services and the powerful computing abil-
ity of Peer-To-Peer (P2P) architectures have changed
and affected distributed data management as well as
Web technologies.

B. V. Phan (B) · E. Pardede · W. Rahayu
La Trobe University, Kingsbury Drive, Bundoora,
VIC 3083, Australia
e-mail: vbphan@students.latrobe.edu.au

E. Pardede
e-mail: E.Pardede@latrobe.edu.au

W. Rahayu
e-mail: W.Rahayu@latrobe.edu.au

XML is a flexible and scalable text-based language
which can capture semi-structured data (Bray et al. 2008;
Bradley 1998; Hoque 2000; Harold and Means 2002). It
has been approved and accepted as a standard format
for exchanging and publishing data over the web. Web
services are proposed as a new paradigm to integrate
Web-based applications, and are effective tools in re-
moving the antagonism between diversified systems and
platforms. Web services offer infrastructures for dis-
tributed computing and have become one of the most
important information providers over the internet (W3C
2004; Alonso et al. 2004). In addition, P2P architec-
tures, considered the third stage of the development
of the internet (Pras et al. 2007), are claimed to have
potential computing power and are able to support
various properties needed in current Web applications
such as exchangeability, heterogeneity, scalability of
data and autonomous systems. To exploit the capability
of the three technologies, (Milo et al. 2003; Abiteboul
et al. 2008; GEMO 2007) has proposed a new XML
extension, called Active XML (AXML).

The main goal of this XML extension is data and
services integration. This means integrating static XML
data with its dynamic components via Web services
from autonomous and heterogeneous sources on a
large scale. The advantages and remarkable capabilities
of AXML are proved through prototypes and case
studies in Abiteboul et al. (2004a), Abiteboul et al.
(2003), Vidal et al. (2008), Abiteboul et al. (2009).

However, AXML is still in a development stage
so it has several shortcomings. This paper will focus
on improving the current AXML representation and
algorithms to query AXML data. These two issues are
of vital importance to ensure AXML systems perform
effectively.

204 Inf Syst Front (2013) 15:203–222

The rest of paper is structured as follows. Section 2
will introduce AXML systems as well as its current
problems in terms of representation and query evalua-
tion. Our solution for AXML representation and query
evaluation will be proposed in Sections 3 and 4, re-
spectively. We will evaluate our proposals in Section 5.
Finally, Section 6 will conclude the paper and summa-
rize potential future work.

2 Related work

AXML was developed to manage regular XML data as
well as dynamic parts of data, namely intensional data
(Milo et al. 2003; GEMO 2007; Abiteboul et al. 2004d).
Intensional data can be seen as metadata that provides
information used to retrieve explicit data from Web
services. Intensional XML data includes information
about Web services, their parameters and their control
information for service invocation and result storage.
Intensional XML data facilitates, instructs and provides
the means for retrieving explicit XML data from multi-
ple sources via Web services. This section will introduce
some background to AXML and discuss problems with
its current representation and query evaluation.

2.1 Active XML: An overview

The main purpose of AXML is to integrate XML data
and intensional data via Web services (Milo et al.
2003; Abiteboul et al. 2009, 2004b). AXML offers po-
tential advantages in exploiting the computing power
of decentralized network architectures and Service-
Oriented architectures. Moreover, AXML can be ap-
plied to save internet bandwidth, retrieve on-demand
data, and achieve dynamic as well as up-to-date XML
data (Milo et al. 2003; Abiteboul et al. 2004d, c).

AXML representation AXML documents are valid
XML documents and comply with XML W3C stan-
dards (Bray et al. 2008; Milo et al. 2003). AXML
documents include regular (static) and intensional (dy-
namic) XML data. Intensional data is placed as nodes in
XML trees and is materialized into normal XML data
when requested. Since intensional XML data is not real
XML data, it needs a particular definition to distinguish
it from normal XML data.

Milo et al. (2003) and Abiteboul et al. (2004d) pro-
posed special elements called sc to represent inten-
sional XML data. These sc elements contain informa-
tion for invoking Web services to retrieve their matching
XML data. AXML documents are modeled as ordered
trees with two kinds of nodes: (i) XML data nodes

and (ii) intensional (function) nodes sc (Milo et al.
2003; Abiteboul et al. 2008; The Active XML Team
2005). When an intensional node is being requested,
its XML data received from the invocation will replace
or append as siblings of the intensional node (Milo
et al. 2003; Abiteboul et al. 2004d). Other attributes
of intentional nodes such as timeStamp and id can be
added into returned results for tracking and statistical
purposes. In its current state, elements sc consist of four
groups: (i) Web service information for activation; (ii)
information to specify how to activate the Web services;
(iii) result handling to indicate how results of invocation
will be held; and (iv) parameters for Web service calls
(Milo et al. 2003; The Active XML Team 2005; Ruberg
and Mattoso 2008).

The current representation can manage both sta-
tic and dynamic XML data. However, the spread of
intensional nodes in AXML documents is concern-
ing because the high cost of searches and updates is
unavoidable. In addition, redundancy and repetition
of data can create data management problems. Issues
relating to the current representation will be analyzed
and discussed in Section 2.2.

AXML architecture The current AXML systems are
comprised of AXML Peers. AXML peers are built
from four different types of software: the Tomcat web
server, eXist native XML database, Axis2 Web ser-
vice engine, and the AXML engine (Milo et al. 2003;
Abiteboul et al. 2008). Each AXML peer performs as a
server; a client and an engine (see Fig. 1). Each AXML
peer can provide a collection of Web services that
can be invoked by other peers. It also stores AXML
documents in its own AXML repository. The AXML
engine in each peer can provide access and evaluate
XML queries against its AXML repository.

AXML query evaluation One key task of the AXML
system is to efficiently evaluate XML queries against
AXML data. The goals of AXML research, includ-
ing representation, repository platforms and rewriting
techniques are to make data query evaluation more
efficient.

Since AXML documents contain both normal and
intensional XML data (Milo et al. 2003; Abiteboul
et al. 2004d, b; Ferraz et al. 2007), there are differences
between querying XML and AXML documents. For
XML documents, all data in the nodes are explicit
so XML data that satisfies conditions (predicates) of
XML queries are selected and extracted as the final
results of the queries. However, in AXML documents,
XML nodes and intensional node can contribute to the
final results to answer XML queries. It is noted that,

Inf Syst Front (2013) 15:203–222 205

Fig. 1 AXML peer
architecture

XML data corresponding to those intensional nodes
are stored at other peers so to request XML data for
those nodes, Web services, which are stored in those
intensional nodes, will be invoked.

Therefore, to evaluate XML queries against AXML
documents, some questions need to be answered (Milo
et al. 2003; Abiteboul et al. 2004b). Such questions
include: do any intensional nodes need to be material-
ized?; which intensional nodes should be materialized?;
and what are the desired data that should be returned?
As AXML query evaluation is accompanied with Web
service invocation, it is easy to see that there are
three possible solutions to process XML queries against
an AXML document: (i) materializing all intensional
XML data in AXML documents before querying so
that XML queries are evaluated normally; (ii) materi-
alizing only intensional XML data related to queries
before evaluating the XML query as normal; and (iii)
materializing intensional data encountered during the
evaluation of XML queries (Abiteboul et al. 2004b).

The f irst solution is the most simple when querying
intensional XML data, which is the materialization of
all intensional XML data. However, it seems to be
the naivest solution because this solution can invoke
many Web services, which are not used and unneeded
for query evaluations. This algorithm will cause time
waste, high computing resource usage, high bandwidth
(Abiteboul et al. 2004b), as well as outdated results.
However, it can be useful in some cases, for example,
if users want to work off-line or for resource limited
mobile devices.

Current AXML systems (Milo et al. 2003) apply the
second solution (Abiteboul et al. 2004b). A superset
of intensional nodes related to the query is specified,
materialized and updated into the AXML document.
Finally, the input XML query is evaluated against the
evolved AXML documents (Abiteboul et al. 2004b).
This implementation can take full advantage of exist-
ing query optimization algorithms in XML database

systems. It also does not intervene with XML query
engines and it is possible to apply parallel invocations
and computing in query evaluation processes. Based on
explanations in (Abiteboul et al. 2004b), we can sum-
marize the current implementation to evaluate queries
against AXML data as follows, where Q is a query
being evaluated against an AXML document D.

It is noted that when the pre-query evaluation step
is finished, it is guaranteed that all data in the AXML
documents needed for that query are extensional. How-
ever, there is no result for the input query if any Web

206 Inf Syst Front (2013) 15:203–222

service invocation fails or if there are infinite Web
service invocations.

This implementation can take full advantage of
query optimizations, it does not intervene with the
XML query engine and it is possible to apply parallel in-
vocations and computing in query evaluation processes.
However, there are concerns about this algorithm such
as the cost of creating and updating F-Guides for each
concrete query, the cost of traversals of the AXML doc-
uments and re-evaluation of NQF algorithms as well as
rewriting documents. Furthermore, mixing invocations
of intensional nodes in predicates and context nodes
in queries can create new intensional nodes which will
affect the whole query evaluation processes. All of
these issues will be discussed later in our proposal.

The third solution seems to be easy, simple and
natural, but it can cause interventions of query en-
gines. Whenever intensional nodes are encountered,
query evaluation processes are postponed until they
are materialized. Moreover, this solution cannot apply
optimization mechanisms from XML query engines if
the original document is frequently changed.

Current practices of AXML data management (Milo
et al. 2003; Abiteboul et al. 2004c) satisfy the require-
ments of dealing with static and dynamic data. How-
ever, it also has some performance issues. In the next
sections, we will analyze and explain some of these
problems.

2.2 Issues with current AXML representation

Milo et al. (2003) and GEMO (2007) proposed a
representation for intensional XML data in AXML
documents that centered around sc elements. These
elements consist of information that indicates which
Web services will be invoked, where they are, how to

activate them, what their parameters are, and how to
store the results. However, the current representation
suffers from shortcomings such as wasted storage space,
data repetition, it is time-consuming in searching and
managing Web service calls, it is an inefficient mech-
anism to determine relationships between intensional
nodes, as well as other issues when dealing with P2P ar-
chitectures. Each of the shortcomings will be illustrated
by using an AXML document example for tourism
information (see Fig. 2).

Wasted storage space As shown in Fig. 2, every hotel
element can contain intensional nodes such as getNear-
byMuseum, getNearbyRestaurant and getRatingHotel.
Therefore, similar information of these Web services
is repeated in each hotel element. It is easy to see that
when the number of hotel elements is large, the amount
of repeated information will also be considerably large.
Hence, repetitions of data regarding Web services will
results in wasted storage.

Repetition of service call and data nodes Intensional
nodes with the same information and even the same
data nodes can be repeatedly stored under a parent
node after some activation of a Web service call under
the parent node. For example (see Fig. 3), the first
materialization of intensional Node A results with Node
1, Node 2, ... ,Node n, and an intensional Node B. Then,
the second materialization of A will return Node m,
... , Node p, and an intensional node B, and so on.
Therefore, if A is materialized many times, returned
results can contains many intensional nodes B (with the
same parameters) and even many repeated data nodes.
These repeated intensional nodes can return exactly the
same results when they are materialized in the future.
This will deteriorate performance and it is difficult to
manage.

Fig. 2 AXML document
example

Inf Syst Front (2013) 15:203–222 207

Fig. 3 Repetition of data
nodes

Service call management issues It is hard to disable
one or more Web service calls in AXML documents
for several reasons including security. Currently, an
attribute callable with a “false” value is used to counter-
act Web service calls in sc node and it affects only the
Web service in that particular sc node. However, the
intensional nodes can appear anywhere in the AXML
documents (Milo et al. 2003; Abiteboul et al. 2008,
2004b), so it wastes time and computing resources to
search then to deactivate all relevant nodes.

Inef f iciency to materialize all intensional nodes in
AXML documents or fragments To work off-line or
to work with devices of limited abilities, AXML docu-
ments can be transformed into pure XML data. More-
over, AXML results from query evaluation against
AXML documents can be requested in XML data. In
these cases, all intensional nodes in AXML documents
or AXML fragments need to be materialized. With the
current representation, AXML systems must always
traverse and search all intensional nodes in whole doc-
uments, determine relationships between them, then
invoke their Web services. These processes are time
consuming, particularly in large AXML documents.
Moreover, conversion issues between XML and
AXML documents have not been investigated yet
(Milo et al. 2003). These issues are important to deploy
AXML systems in the real world because it allows
suitable data exchanges between AXML and XML
documents, as well as applying a suitable strategy to
process them.

Inef f icient mechanism to determine dependencies
among existing intensional nodes in each AXML
document To indicate dependencies among services,
additional algorithms such as F-Guides are applied
but these algorithms can negatively impact the
performance of AXML systems. It is even more costly
when new intensional nodes appear (see Goldman and
Widom 1997).

Lack of support to deal with typical P2P networks char-
acteristics such as unavailability of slave peers If invok-
ing a Web service related to a sc element is the only

option, this is problematic in P2P architectures. If we
only store one URL and method name, etc. that refers
exactly to a Web service as the current presentation,
many queries related to that Web service will not be
evaluated when the peers providing the Web service
are not available. In P2P networks, every peer can join
or leave the network at any time so dealing with the
unavailability of intensional nodes is an essential issue
for AXML systems.

In addition, the representation proposed by Abiteboul
et al. (2004d, 2008), GEMO (2007), Milo et al. (2003)
creates problems in finding alternative Web services or
choosing the most suitable one to invoke. Normally, in
P2P networks and distributed database systems, data
and Web services should be repeated at some peers
(Kemme et al. 2010; Brinkmann and Effert 2008), who
assists in ensuring service providers and data are always
available. Therefore, AXML representation needs to
be improved to facilitate multiple choices in invoking
a Web service and dealing with unavailability of peers.

This section has listed AXML representation prob-
lems which can affect the future performance of AXML
systems. These issues are strongly related to the issues
in query evaluation against AXML data. The next sec-
tion will discuss the shortcomings in query evaluation
performance for current AXML systems.

2.3 Issues with current AXML query evaluation

Based on the current implementation of AXML sys-
tems, there are several shortcomings in the evaluation
process of XML queries against AXML. These short-
comings will be specified and discussed in this section.

Inf lexible workload shares between master and slave
peers Master peers in current AXML systems still
take most responsibilities and computations in arrange-
ments and management of Web service invocations
(Abiteboul et al. 2004b). Master peers are responsi-
ble for creating and re-evaluating F-Guides structures
and Node-focused queries NFQ, to search whole doc-
uments, to arrange and organize temporal results re-
turned from invocations, etc. These workloads require

208 Inf Syst Front (2013) 15:203–222

resources and time and should be shared with other
peers with strong computation capabilities. Hence, it is
hard to apply AXML systems on devices with limited
resources.

Overhead of extra data structures It is expensive to
build additional data structures F-Guides (Abiteboul
et al 2004b; Goldman and Widom 1997) for AXML
documents based on Data-Guides (Goldman and Widom
1997) when they are not reusable. In addition, F-Guides
is created and frequently updated at the time of query-
ing so it increases the query response time. Further-
more, it is expensive to update F-Guides structures (see
Goldman and Widom 1997) whenever new intensional
nodes are received. It is worse that frequent updates
for F-Guides during query evaluation processes are
unavoidable.

In addition, F-Guides is not ef fective to determine
the relationships of intensional nodes. F-Guides stores
paths of each single intensional node. However, it is
not useful to specify relationships between intensional
nodes. Moreover, F-Guides is not able to determine
and eliminate irrelevant intensional nodes based on
invocations or other related extensional nodes.

NFQA (Abiteboul et al. 2004b) cost during query eval-
uation In the pre-query evaluation steps, NFQs will
be created and executed against AXML documents to
find the intensional nodes related to the query and
divide them into layers (see Abiteboul et al. 2004b) for
further materialization. Each NFQ execution needs a
whole document search so there are many documents
searches in these steps. Moreover, after invocations for
each layer, a re-evaluation of NFQ is needed. Hence, it
can be seen that many document searches are needed to
create and re-evaluate NFQs during query evaluation.

Management of temporary results Currently, AXML
systems have to spend a large amount of resources
and computing power to manage the temporary results
from invocations before actually evaluating the queries.
During the materialization of intensional nodes in
“Lazy Mode” (Abiteboul et al. 2004b), the results re-
turned from the materialization will be updated into
AXML documents. This can be expensive, particularly
when there are a large amount of invoked Web ser-
vices. It is because the system also needs to frequently
manage, update and delete the temporary results
(Abiteboul et al. 2004b).

Cost of AXML document updates Updates of AXML
documents which depend on mode attributes (Milo
et al. 2003; Abiteboul et al. 2008) can occur unex-
pectedly when evaluating queries. In practice, updates

should be only implemented at the users’ request. It is
inefficient if there are many updates for every query
because update operations are expensive and the tem-
porary results may not be used in the future.

Failed query for unf inished Web service invocations
In current query evaluation, if there is any unfinished
Web service invocation, the query will fail. However,
in many cases, results with some missing parts (partial
results) are accepted and useful.

Cost of traversing and searching whole documents
Traversals of whole documents are expensive. How-
ever, some must still be applied in current AXML
systems such as running NFQA, re-evaluating NFQs,
creating and updating F-Guides, determining relation-
ships of intensional nodes and AXML document up-
dates (Abiteboul et al. 2004b). These traversals are
applied many times during query evaluation.

The same algorithm to process intensional nodes in con-
text nodes and predicates of XML query There are two
types of intensional nodes when evaluate XML queries
against AXML data. They are intensional nodes be-
longing to predicates of queries and intensional nodes
belonging to context nodes of queries. Intensional
nodes in predicates need to be invoked immediately
to prune and process their related intensional nodes
and other XML nodes. When materialize intensional
in predicates, we may not need to send sub-queries
and desired data structures to slave peers to filter in-
vocation results because data types of those nodes are
simple. Intensional nodes belonging to context nodes
can be processed later. XML data from materialization
of those nodes can be large and complex.

In addition, invocation results can contribute to the
final results to answer queries so we need to send
sub-queries extracted from input queries and desired
data structures to slave peers to filter those invoca-
tion results. However, Abiteboul et al. (2004b) has not
differentiated these nodes. All intensional nodes are
processed the same. Hence, the number of intensional
nodes, relationships between intensional nodes during
materialization processes can increase. It means that we
need to materialize more and more intensional nodes,
and determine many relationships between those in-
tensional nodes. This will negatively affect the parallel
computing of AXML systems.

3 Proposed AXML representation

In this section, we propose a new AXML representa-
tion to solve the current issues discussed above. The

Inf Syst Front (2013) 15:203–222 209

aims of AXML representation are: (1) the efficient
management of intensional nodes; and (2) the efficient
performance of query evaluation by preparing com-
putations before query execution time. As mentioned,
current intensional nodes are represented by sc nodes
to store information to obtain XML data by means of
Web services. Information stored inside sc nodes can
be classified into three groups: (1) information about
Web services such as URLs, method names, etc.; (2)
their parameters; and (3) control information which
is used to indicate how these services are invoked,
how to store results, frequency of invocations, etc (Milo
et al. 2003; Abiteboul et al. 2004d). However, the
current representation can result in inefficient perfor-
mance during query evaluation as stated in Section 2.2.
Therefore, it is necessary to re-organize and improve
current AXML representation so that the represen-
tation not only serves materialization but also facili-
tates query evaluation and intensional data manage-
ment. We propose adjustments to the current AXML
representation and the construct structures of AXML
documents to overcome the issues discussed. We firstly
focus on the heart of AXML documents.

Definition 1 An intensional XML node is a node
named sc to store essential data regarding Web ser-
vices, parameters and control data to invoke the Web
service and process invocation results.

Intensional XML nodes (sc nodes) are used as rep-
resentatives of their corresponding XML data. When
intensional nodes are passively or automatically acti-
vated (Abiteboul et al. 2008), Web services belonging
to those nodes will be materialized to retrieve XML
data. The process of obtaining XML data from Web
service invocations is called materialization. Sets of
intensional nodes are called intensional data. Figure 4
is an example of a general sc node.

These sc nodes store information including the ID
of a Web service, parameters for the Web service and
other control information to process invocations and
invocation results. The first attribute of a sc node is
wsRef, which holds the ID of a Web service. Element
Parameters have child elements named para to store

Fig. 4 Example of a general sc node

parameters for Web services. Elements subQuery store
sub-queries applied on invocation results of this node.
In our proposal, intensional nodes only contain a ref-
erence to Web services. Information on Web services
will be gathered in other places so that we can easily
manage all Web services and avoid the repetition of
Web services in intensional nodes.

The element subQuery is a new element in sc. This
subQuery element is applied to allow intensional data
exchange between AXML peers to be possible and
more efficient. For example, in Fig. 2, we want to
update a document with data on five-star (‘*****’)
hotels in New York, from an AXML peer P2. A Web
service P2, named getHotels with parameters location,
can provide data on hotels in specified locations. If the
AXML representation proposed in Milo et al. (2003),
Abiteboul et al. (2008, 2002), The Active XML Team
(2005) is applied to exchange data, all exchanged data
on hotels must be extensional. This does not sat-
isfy the requirements as stated for AXML systems:
data exchange should be intensional so that users
have the right to materialize intensional data when
needed; and data are up-to-date (Milo et al. 2003;
Abiteboul et al. 2004b, 2002). If we employ our rep-
resentation, the exchanged data can be intensional.
These intensional data will include the Web service get-
Hotels with the parameter New York and sub query
hotels/hotel[rating = ‘*****’].

Definition 2 AXML documents are XML documents
containing XML nodes and intensional XML nodes.

AXML documents can become XML documents
when all intensional nodes are replaced by their cor-
responding XML data by invoking Web services. XML
documents can become AXML documents when some
normal XML fragments are represented by their repre-
sentative Web service calls.

To assist with efficient intensional node management
and the performance of query evaluation, we divide the
AXML documents into two sections. The first, called
webServiceInfor, is a catalogue of Web services and
the IDs of intensional nodes; the second, called AXML
data, contains XML data as well as intensional XML
data. Structures of webServiceInfor fragments are likely
schemas of the AXML data section of the documents.
This means that representatives of similar elements’
names will be hierarchically stored in webServiceInfor.
Each element will store the IDs of its intensional nodes
and Web services belonging to this element’s name.
These Web services are stored in ws nodes. The IDs
of intensional instances in the data section are stored in
node nodes.

210 Inf Syst Front (2013) 15:203–222

Fig. 5 An example of an AXML tree

Table 1 Elements and attributes in proposed AXML representation

Name Description Attributes and child elements

webServiceInfor It is used to manage information about Web services ws and elementName
intensional nodes sc

elementName It is used to group and manage (1) all equivalent Web services name, ws, node
which provide XML data for elements specified in attribute
name and (2) references to intensional nodes sc related to
these Web services

name This attribute specifies the name of elements which will be
provided as XML data when their relevant Web services are invoked

node Contains the ID of sc node and mode to materialize the node scID, frequency
scID Contains the ID of sc node to connect to its corresponding sc node
frequency Indicates the frequency of materialization of this node
ws This element contains information about a Web service call wsID, namespace, serviceURL,

methodName, signature,
useWSDLDef inition (Milo et al.
2003; Abiteboul et al. 2008;
The Active XML Team 2005)

nameSpace Used in SOAP message to invoke the Web service (Abiteboul et al. 2008;
The Active XML Team 2005)

serviceURL Used in SOAP message to invoke the Web service (Abiteboul et al. 2008;
The Active XML Team 2005)

methodName To invoke the Web service (Abiteboul et al. 2008; The Active XML
Team 2005)

signature To validate the Web service (Abiteboul et al. 2008; The Active XML
Team 2005)

useWSDLDef inition To validate the Web service (Abiteboul et al. 2008; The Active XML
Team 2005)

sc Intensional nodes Parameters, subQuery
parameters It is used to organize parameters for service invocations (Milo et al. 2003; para

Abiteboul et al. 2008; The Active XML Team 2005)
para Contains concrete parameter for Web services (Abiteboul et al. 2008;

The Active XML Team 2005)
subQuery Sub-query applied on invocation results

Inf Syst Front (2013) 15:203–222 211

For example, Fig. 5 is a tree of the nyHotel.xml
document, where the sub-tree rooted at Root/nyHotel
is the AXML data fragment and the sub-tree rooted at
Root/webSericeInfor stores the structure of the AXML
data in the document, collections of Web services and
the IDs of intensional nodes in the document. In the
data fragment, there are many hotel nodes under Root/
nyHotels. The representative of these hotel nodes is
named hotel node and is stored under Root/ webSer-
viceInfor/nyHotels. All IDs and Web services of inten-
sional instances of hotel nodes in the data section are
collected and stored as child nodes of the hotel node in
webServiceInfor. It is similar for the rest of the nodes in
the data fragment.

As webServiceInfor fragments store the IDs of all
intensional nodes of AXML documents, it is fast and
simple to locate the positions of intensional nodes in
AXML documents. This reduces the time to search
intensional nodes for materialization. In addition, Web
services for the same elements’ names are also gath-
ered, thereby reducing repetitions of Web services in
intensional nodes. To facilitate query evaluation, the
Dewey decimal system will be applied to label the IDs
of nodes in the data section. These IDs and webSer-
viceInfor will be combined to decide whether or not
an intensional node is materialized while evaluating
XML queries. Nodes ws contain attributes including
wsID, namespace, serviceURL, methodName, signa-
ture, useWSDLDef inition (see Table 1). Nodes node
contain attributes scID and frequency, where scID is
the ID of its intensional node in the data section and
frequency indicates mode and frequency of materializa-
tion for this node. These nodes’ frequency are stored in
the reference nodes of intensional nodes in webServi-
ceInfor but not in intensional node sc. In the current
AXML representation, it is necessary to traverse whole
AXML documents to locate intensional nodes which
are automatically activated, whereas those intensional
nodes can be found by searching in a small fragment of
webServiceInfor in our proposal. Figure 6 is an example
of a general AXML document.

The attribute name in elementName is used to indi-
cate the elements that will receive normal XML data
by invoking the corresponding child Web service ws.
These elements are organized hierarchically, based on
their positions in AXML documents. All equivalent
Web services will be placed under an elementName,
in which the attribute name is equal to the element
name owning these Web services. Therefore, it can be
said that Web service ws nodes are also stored hierar-
chically. Positions of intensional nodes can be used to
quickly detect relationships between them.

Fig. 6 Example of a general AXML document

In practice, there are replications of exactly the same
Web services in different peers; and there are many
equivalent Web services (at a peer or different peers)
with the same functions and parameters which are able
to provide the same XML data. Therefore, these Web
services should be stored and grouped together (under
elementName) to assist choosing the most suitable one

Fig. 7 Example of local newspaper

212 Inf Syst Front (2013) 15:203–222

for invocation. Figure 7 is an example of an AXML
document localNewspaper.xml.

The Table 1 is a summary of the elements and at-
tributes of the proposed AXML representation.

It is noted that there are some attribute and elements
for sc in Milo et al. (2003), Abiteboul et al. (2008), The
Active XML Team (2005) which have been removed
in our representation. For example, attributes for Web
service invocation result handling (storedMode) and
managing call results (valid) Abiteboul et al. (2008);
The Active XML Team (2005) are eliminated because
the results of Web service invocations are not allowed
to be automatically updated into AXML documents
during query evaluation. Therefore, AXML documents
are not changed after being queried.

This proposed AXML representation and re-
organized structures of AXML documents will be ex-
ploited during the query evaluation process. The advan-
tages and efficiency of the new AXML representation
will be explained in the next sections.

4 Proposed AXML query evaluation

This section proposes and explains the algorithms for
XML query evaluation against AXML data. We start
with the preliminaries, followed by the query evalua-
tion algorithms.

4.1 Preliminaries

Assume that we will evaluate the following XPath
query Q against an AXML document doc.xml.
doc(‘doc.xml’)/N1 [n11 = ‘val11’, n12 = ‘val12’... n12 =
‘val12’]/N2[n21 = ‘val21’, n22 = ‘val22’...] /.../Nk[nk1 =
‘valk1’, nk2 = ‘valk2’...]/.../Nm[nm1 = ‘valm1’, nm2 =
‘valm2’...].

In AXML documents, nodes can be extensional or
intensional. Hence, both context nodes Ni (i = 1,...,m)
and predicates nij (i = 1,..., m and j = 1,..., r) of query Q
can contain intensional instances. For each XML query
Q, intensional nodes can be divided into two groups:
(i) intensional candidate nodes (ICa nodes); and (ii)
intensional conditional nodes (ICo nodes) based on the
positions of these intensional instances.

Definition 3 Intensional candidate nodes (ICa nodes)
of an XML query are intensional instances of context
nodes in the query path.

ICa nodes can contribute to the results of the query
after materialization. For example, for the XPath query
doc(‘doc.xml’)/N1/N2/... /Nk[nk1 = ‘valk1’, nk2 =

‘valk2’ ...]/.../Nm, ICa nodes are intensional instances of
nodes Ni (i = 1,2,...,m).

Definition 4 Intensional condition nodes (ICo nodes)
of an XML query are intensional instances of nodes in
the predicates of the query.

Values of ICo nodes in predicates are used to
determine whether or not their descendant nodes
(both extensional and intensional nodes) satisfy the
XML queries. The relationships among them are
called dependant relations. For example, for the XPath
query doc(‘doc.xml’)/ N1/N2/.../Nk[nk1 = ‘valk1’, nk2 =
‘valk2’...]/.../Nm, ICo nodes are all intensional instances
of nij (i = 1,...m and j = 1...r).

Intensional candidate nodes can appear in the final
results of the query, if the results from invocations
after filtering are not empty. It is noted that ICa node
materialization can generate additional ICo nodes but
this does not happen in reverse.

To reduce the amount of data exchanged between
AXML peers, to share workloads and facilitate inten-
sional data exchanges during materialization, master
peers will send queries to slave peers to filter invoca-
tion results and share computation tasks. These queries
are derived from the original query being evaluated
by master peers, and stored in elements subQuery in
intensional nodes sc. Queries sent to slave peers are
called sub-queries.

Definition 5 An XPath query SQ is known as a sub-
query of an XPath query Q if the root node of SQ is a
context node of Q, and all predicates of nodes in SQ are
exactly the same as those that appear in Q.

For example, assume Q, Q1 and Q2 are the XPath
queries listed below.

Q Root/N1[predicate1]/N2[predicate2]/.../Ni[predicate i]
Q1 N1/[predicate1]/N2[predicate2]/.../Ni[predicate i]
Q2 N j[predicate j]/.../Ni[predicate i] (2 > j > i)

Q1 and Q2 are sub-queries of the query Q. Moreover,
Q2 is also a sub-query of Q1.

Definition 6 For a query Q, AXML document D with
two nodes na and nb of D, the node na is called a
precondition node of the node nb (in the context of
query Q), if (1) na and nb belong to a path which is an
instance of path in query Q and (2) na is the instance
node of predicate in query Q.

This means that the value of na is one of the con-
ditions in query Q to determine whether or not nb is

Inf Syst Front (2013) 15:203–222 213

examined and satisfies Q. If na is a precondition node
of nb , nb is also called a dependent node of na.

For example, in the AXML document tourism.xml
(see Fig. 2) and a XPath query doc(tourism.xml)
/tourism/hotels/hotel[name = ‘Best Western’, rating =
‘*****’]/nearby/restaurant[rating = ‘*****’], node get-
NearbyRestaurants and node getNearbyMuseums have
the same precondition node getRatingHotel. Node
name (= ‘Best Western’) is also a precondition node
of node getRatingHotel.

AMXL documents contain both intensional and ex-
tensional XML data so some queries need to access and
materialize intensional data. However, other queries
do not relate to intensional XML data. Queries are
called related to intensional data if nodes (including
predicates and context nodes) which have intensional
instances exist in the query path. Otherwise, the query
is unrelated to intensional data.

We will propose algorithms that focus on a flexible
sharing of workload between master and slave peers,
reducing additional algorithms during querying AXML
data and reducing update operations as much as possible.
Furthermore, our algorithms will apply a divide and con-
quer strategy, parallel computing and are based on as-
sumptions that peers providing intensional data should
take the responsibility to fully materialize their inten-
sional XML data and filter results whenever requested.

In this paper, we apply the proposed AXML rep-
resentation above to facilitate the proposed algorithm.
The webServiceInfor is applied to indicate relationships
among existing intensional nodes in AXML documents.
Moreover, webServiceInfor is also useful to analyze
and to decompose original queries into sub-queries for
intensional nodes related to the queries being evalu-
ated. Furthermore, webServiceInfor is also employed to
decide the desired format of results such as which nodes
can be intensional, etc.

By applying the proposed AXML representation,
when an intensional node is materialized, AXML sys-
tems are able to choose the available and most suitable
peers as well as the Web services to invoke by using
information regarding Web services in WebServiceInfor
fragments. The flexibility of choosing the best Web ser-
vices for invocations will assist AXML query evaluation
to be more efficient.

In addition, master peers not only request slave
peers to materialize intensional data but also to share
computing tasks and filter results from invocation by
the enclosed sub-queries. This means that slave peers
will be responsible for the materialization of intensional
nodes being sent from master peers, and new inten-
sional nodes generated in the materialization and sub-
query evaluation process.

However, if a slave peer is busy and cannot fully
materialize the intensional node, the slave peer can
report that to master peer, and send back its results
(that are not fully materialized). The master peer will
be able to take responsibility for processing the rest of
the materialization.

The proposed algorithm will also employ attributes
ID of intensional nodes to determine the relationship
between two arbitrary intensional nodes. It is noted
that these attributes ID are numbered using the Dewey
encoding system.

All temporary results from Web service invocations
and materialization will not be updated into the original
documents. These AXML documents are not changed
after query evaluation, unlike the existing system.

In the current AXML systems in Milo et al. (2003),
intensional nodes related to a query are not distin-
guished. All intensional nodes are considered and
processed in similar ways. During the materialization
process, the algorithm creates sub-queries both for
predicate and context nodes. It also creates the schema
for data exchanges and finds the relationship between
the (predicate and context) nodes and other related
intensional nodes.

These processes can be inflexible and inefficient to
indicate a superset (see Abiteboul et al. 2004b) of inten-
sional nodes for invocations. Therefore, classifications
of different types of intensional nodes will be carefully
considered in our proposal to reduce additional compu-
tations and costs, to find relationships between inten-
sional nodes, and to detect and control data exchanges
between master and slave peers.

The main ideas of our proposed algorithm are:

1. Apply the new AXML representation to classify
input queries so that queries which are not related
to intensional data can be evaluated as normal
XML queries without employing the AXML en-
gine. Other queries will be processed by different
algorithms to make performance more effective.

2. Exploit the new AXML representation to man-
age intensional nodes and to detect relationships
among intensional nodes. In addition, the new rep-
resentation also allows the system to invoke the
available and most effective alternate Web services.

3. Distinguish intensional nodes into two groups,
namely ICo and ICa nodes. This helps to efficiently
process intensional nodes and parallel computing.

4. Request slave peers to be more involved in query
evaluation processes. Slave peers will invoke Web
services and evaluate sub-queries corresponding to
ICa nodes. New intensional nodes related to sub-
queries appear in materialization processes will be
materialized by those slave peers.

214 Inf Syst Front (2013) 15:203–222

5. Store invocation results into memory or temporary
documents, instead of updating them into the orig-
inal AXML documents.

The proposed algorithms include an algorithm each for
master peers and slave peers. The master peer will find
and determine ICa nodes for a query and indicate sub-
queries for those nodes. Then, those nodes and their
sub-queries will be sent and processed at the corre-
sponding slave peers. Master peers evaluate the query
against the AXML document while slave peers process
the nodes. During query evaluation, master peers will
collect the positions of the ICa nodes encountered for
assembling the final results. After the query evaluation
in the master peers, the results will contain all exten-
sional nodes as well as the positions of the required ICa
nodes. These nodes’ positions will be replaced by the
invocation results from the slave peers. In cases where
some intensional nodes cannot be materialized, these
nodes can be kept in the final results with a report on
failed materialization. These partial results can also be
useful in some cases.

Slave peers, which are Web service providers, apply
the same algorithms in master peers after invoking Web
service in intensional nodes. The results of Web service
invocations and the sub-query will act as AXML doc-
uments and a query in master peers, respectively. New
intensional nodes can appear at the slave peers, after
Web service invocations. If these new nodes are related
to sub-query evaluation, they will be materialized by
the slave peers. In this circumstance, the slave peers
will become master peers. In the proposed algorithm,
the intensional nodes’ positions in the queries are also
considered to improve the performance of the query
evaluation. Based on the nodes’ positions, we have
divided the query into two types as follows:

Query type 1: XML Path queries unrelated to inten-
sional XML data, where every node in
the path of the query does not have
intensional instances.

Query type 2: XML Path queries, which are related
to intensional data. This means that
all nodes, including context nodes and
nodes in the paths of those queries, can
have intensional instances.

Instead of using the AXML engine, we can evaluate
type 1 queries with a normal XML engine, which will
be more efficient since the latter requires less com-
putation. For type 2 queries, the satisfaction of ICo
and ICa nodes are dependent on their precondition
nodes. Therefore, each ICo and ICa node needs to
satisfy its precondition nodes before materialization.

To examine the preconditions of arbitrary intensional
nodes, backward and forward traversals of these nodes
are required. To facilitate multi-direction traversals,
Dewey encoding will be applied for labeling nodes in
AXML documents.

Algorithms to indicate types of XPath queries and to
evaluate those two query types will be introduced in the
next sections.

4.2 Algorithm for classifying queries

The main module in the master peer will be used to
classify input queries into three groups and prepare sets
of ICa and ICo nodes as well as sub-queries for those
intensional nodes. In this module, ICa and ICo nodes
of input queries will be examined and compared with
data in webServiceInfor for classification.

After completing this process, the input query is
ready to apply different algorithms for query evalua-
tion. Type 1 queries will be evaluated by normal XML
engines. To evaluate type 2 queries, additional compu-
tations are needed so these queries will be processed by
AXML engines.

4.3 Query evaluation for type 1 queries

As mentioned earlier, all type 1 queries will be eval-
uated as normal XML queries to avoid additional, ex-
pensive and unnecessary computations before employ-
ing normal XML query engines. Evaluation processes
for this query type only happen at the peer containing
the AXML document.

4.4 Query evaluation for type 2 queries

Input query Q belonging to query type two will be
in the form of doc(‘doc.xml’)/N1[n11 = ‘val11’, n12 =
‘val12’...]/N2[n21 = ‘val21’, n22 = ‘val22’...]/.../Nk[nk1 =
‘valk1’, nk2 = ‘valk2’...]/.../Nm[nm1 = ‘valm1’, nm2 =
‘valm2’...], where intensional instances can appear in
both context and predicate nodes. This means that Ni

and nij (i = 1,..., m and j = 1,.., p) can contain intensional
instances.

For this query type, we firstly look for all ICa and
ICo nodes related to query Q by traversing webServi-
ceInfor fragments to find all instances of ICaSet and
ICoSet, which were found in the query classifications
above.

Nodes in ICoSet will be processed before nodes in
ICaSet. This step is called ICo node elimination. Based
on the structure of data in webServiceInfor and the ID
of nodes in the data section of the AXML document,
we will locate all preconditions related to each ICo

Inf Syst Front (2013) 15:203–222 215

node. If there is an extensional node in the precondition
of an ICo node which does not satisfy the conditions
in query Q, we will eliminate that ICo node as well
as all dependent nodes ICa of that ICo node from the
list of intensional nodes for materialization. When this
elimination step is finished, the rest of the ICo nodes
will be materialized to serve query evaluation.

Next, we will remove the ICa nodes (in the ICaSet)
which are not related to or do not satisfy the conditions
in query Q. For each ICa node, we also find its precon-
dition nodes based on the structure of webServiceInfor
and the ID of nodes in AXML documents. If there is
a precondition node of an ICa node which does not
satisfy the conditions indicated in query Q, we remove
the ICa node from ICaSet. Each ICa node will be at-

tached to a corresponding sub-query extracted from Q
for materialization if those nodes are requested to ma-
terialize. Results of materialization will be connected or
assembled based on the ID of intensional nodes.

Algorithms for query evaluation are implemented in
master and slave peers as listed in Algorithms 3 and 4.

For example, assume that node H (with label 1.1.2.4),
node G (with label 1.1.2.2), D (with label 1.2.1) and G
(with label 1.2.2.1) are intensional nodes. The query Q:
A/B[D = ‘1’]/E[H = ‘3’]/G will be evaluated against the

216 Inf Syst Front (2013) 15:203–222

Fig. 8 Example for query evaluation

tree in Fig. 8. ICoSet includes D(1.2.1) and H(1.1.2.4).
ICaSet includes G(1.1.2.2) and G(1.2.2.1).

In the ICo node elimination step, node D (1.2.1) will
be firstly examined. This node does not have any pre-
condition node so node D (1.2.1) will be kept in ICoSet.
Next, H (1.1.2.4) will be examined. There is only one
precondition node D (1.1.1) for node H (1.1.2.4). If
node D (1.1.1) is not satisfied D = ‘1’, ICo node H
(1.1.2.4) will be removed from ICoSet. In addition,
node G (1.1.2.2), which is a dependent node of node H
(1.1.2.4), will also be removed. After finishing this step,
ICo nodes will be materialized.

When examining node G (1.1.2.2) in ICa node elimi-
nation step, the precondition nodes of node G including
node D (1.1.1) and node H (1.1.2.4) will be checked. If
one of them does not satisfy the conditions in query Q,
node G will be eliminated, and so on.

Subsequently, sub-queries for nodes in ICaSet will be
attached to those nodes for materialization.

When users request XML data from these ICa nodes,
information on these intensional nodes and sub-queries
will be sent to slave peers to materialize. Algorithms in
slave peers are similar to those in master peers.

5 Evaluation

5.1 Proposed AXML representation evaluation

In this section, we will evaluate the advantages of
our proposed AXML representation in comparison to

the current AXML representation. We use the same
AXML document described in Fig. 2.

The proposed representation avoids employing
AXML engines when processing pure XML docu-
ments. In the real world, AXML peers do not work
with AXML documents only, but also with pure XML
documents. Therefore, when processing a query against
XML documents, we can use normal XML engines with
additional expenditure from algorithms attached inside
AXML. In our proposal, we only need to examine
the existence of webServiceInfor elements to indicate
whether a document is an AXML or XML document.
In the current representation, we need to traverse
through the whole document to examine the existence
of intensional nodes.

The proposed representation saves time in cases
invoking all Web services. Converting AXML to XML
documents is necessary in cases where XML data is
exchanged between AXML and non-AXML systems,
requests are received from limited resource systems, as
well as for working off-line, etc. It is easy to see that
these requests for full materialization are essential and
even frequent in the real world, particularly requests
to fully materialize results of concrete queries. In these
cases, all Web service calls in AXML documents need
to be invoked. An advantage of the new proposal is that
is saves time when searching to invoke all sc elements
in whole AXML documents because we only need to
look for sc under webServiceInfor instead of traversing
whole documents.

Using the document described in Fig. 2, we consider
the XML query “List all hotels in Sydney with their
ratings”. By using the proposed AXML representation,
in SydneyTourism.xml, we only need to traverse web-
ServiceInfo to find and materialize all nodes getRating-
Hotel under rating whereas the current AXML system
has to traverse whole AXML documents, calculate
NQFs and use F-Guides (Abiteboul et al. 2004b) to
materialize rating.

The proposed representation can save time and re-
sources to invoke particular Web services, which are
activated at a specific time or at constant time intervals
because the scope of searching is limited under webSer-
viceInfor. Using the document in Fig. 2, the getEvents
intensional node will automatically retrieve data regarding
events, such as daily exhibition schedules, every day at
9:00 am. In the current representation, the getEvents
node must be located by examining many elements
because getEvents can appear anywhere in the docu-
ment. However, we only need to find and specify these
intensional nodes in a small section of webServiceInfor.

With the proposed representation, it is easy to de-
termine the dependency among Web services without

Inf Syst Front (2013) 15:203–222 217

using any additional algorithms such as DataGuides
(Goldman and Widom 1997; Eda et al. 2005). This is
because in the proposed representation, webServiceIn-
for is organized as a hierarchical tree so dependencies
among Web services will be indicated by their position
in webServiceInfor.

Using the document in Fig. 2, rating is a child node
of the hotel node. getRatingHotel and getHotels inten-
sional nodes provide data for rating and hotel, respec-
tively. Therefore, getRatingHotel must be child of hotel
under webServiceInfor. With the same reasoning, it is
easy to see that getNearbyRestaurants and getNearby-
Museums are independent Web services. Moreover, if
we use some simple label algorithms, the dependencies
of Web services can be identified more easily, based on
their concrete labels.

The proposed representation offers the flexibility to
choose more suitable Web services to invoke. All Web
service calls are organized into groups and stored under
the same element names. This assists in reducing the
effect of peer unavailability when invoking Web ser-
vices. In addition, it is possible to invoke the required
Web services at peers which are not busy, have the
nearest distance, have the lowest bandwidth cost, etc.

Using the document in Fig. 2, assume that a
tourism office branch in Victoria stores data and ser-
vices in different AXML peers such as AXMLPeer1,
AXMLPeer2 and AXMLPeer3. Data and services are
offered by these peers.

We assume AXMLPeer1 is disconnected, AXMLPeer2
is too busy, and AXMLPeer3 is free. If there is a
request for information on hotels in Victoria, the pro-
posed representation enables us to choose a Web ser-
vice in AXMLPeer3 to invoke, since equivalent Web
services from these peers are stored under the same
element.

In the current representation, there is only one URL
endpoint, for example to AXMLPeer1, so every re-
quest to this peer will not be able to proceed.

The proposed representation avoids the replication
of Web services in each AXML document. In contrast,
with the current AXML representation, the same Web
services will appear at many sc nodes (Milo et al. 2003;
Abiteboul et al. 2008; The Active XML Team 2005).
This repetition causes storage waste and management
problems in some processes such as searching, materi-
alizing, or disabling a Web service.

Using the document in Fig. 2, assume we notice
that getRatingHotel is suspected of dangerous behav-
ior, so this Web service must be disabled. With the
proposed representation, we will find getRatingHotel in
webServiceInfor then update this getRatingHotel once
only. Using the current AXML representation, we must

search for this Web service in a whole document and
update it many times when the Web service is found.

The proposed representation is useful in prevent-
ing unnecessary updates. In a previous proposal (Milo
et al. 2003), it is difficult to control updates on AXML
documents because sc elements can appear at any po-
sition in the documents. Each sc has its own storeMode
attributes which will be applied immediately when Web
services in that sc are executed. However, in the new
proposal, we will remove the storeMode attribute and
do not allow unexpected update into AXML docu-
ments, which are queried. Therefore, it is easy to con-
trol updates on AXML documents during materializa-
tion processes.

The proposed representation can detect the desired
format for results fairly quickly. Whenever a Web
service is invoked, the structure of its child elements
in webServiceInfor requires a desired results format.
This expected structure also assists in stipulating which
elements should be in intensional data as well as what
Web service should be accepted.

Using the document in Fig. 2, when getNear-
byRestaurant is invoked, it is easy to specify the desired
data including restaurants with their child elements
such as restaurantName, restaurant-Address, and
restaurantRating.

From this evaluation, we demonstrate that the pro-
posed AXML representation can overcome the short-
comings in the current AXML representation. The pro-
posed representation assists in saving time and comput-
ing resources, avoids replications of Web service calls
and enables the application of additional algorithms.
It also assists in managing Web service calls effectively
and enhances the performance of AXML systems.

5.2 Evaluation of proposed AXML query
processing algorithms

The proposed algorithms can be applied to exploit
default optimizations for querying XML documents
because the AXML documents are not changed in the
query processing period. In addition, the proposed al-
gorithms do not intervene or force XML query engines
to wait for Web service invocations. The materializa-
tion of intensional nodes is transferred to other slave
peers to invoke and query. We list the evaluation of our
proposed query process algorithms as follows.

The proposed algorithms do not need to use
expensive F-Guides and NFQA algorithms because
they require whole document traversals and updates
of AXML documents, the re-evaluation of NQFA
(Abiteboul et al. 2004b) as well as F-Guides structures
(Abiteboul et al. 2004b) whenever any new Web ser-

218 Inf Syst Front (2013) 15:203–222

vice is received during the query evaluation process. It
is also noted that F-Guides are created and updated
during the query so the cost of query evaluation is
significantly affected.

The proposed algorithms require fewer intensional
nodes to be materialized in comparison to the existing
algorithms. ICo and ICa nodes are only materialized
when all of its precondition nodes (including exten-
sional and intensional nodes) satisfy the query. These
intensional nodes are elaborately filtered, based on
extensional and intensional predicates.

The current algorithms are not able to eliminate
intensional nodes based on satisfying the criteria of
related extensional nodes. Hence, there are many in-
tensional nodes, which are not needed for query eval-
uation, to be invoked. These excessive invocations can
result in ineffective performance such as wasted time,
resources and computations. Furthermore, with sup-
port from WebServiceInfor, the proposed algorithms
are able to choose which Web services to invoke, that
is, those which are the best in terms of availability,
distance, etc. by using statistical information and alter-
native Web service invocations.

For example, we will evaluate a query Q Root/
A[a1 <= ‘50’]/B[b1 <= ‘50’]/C[c1 <= ‘50’]/D[d1 <=
‘50’]/E against a tree in Fig. 9A. a1, b1, c1 and E are
intensional XML nodes; we assume that their exten-
sional values of those nodes will be smaller than 50. d1

is an XML node and its value is 60. In current AXML
systems, to evaluate Q, all nodes a1, b1, c1 and E are
materialized. NFQA algorithm cannot eliminate inten-
sional nodes a1, b1, c1 and E from a list of intensional
nodes, which will be materialized. In our algorithm,
a1 is an intensional node so related condition nodes
of a1 in predicates of Q will be examined, particularly
extensional nodes. d1 is extensional node related to a1,
and d1 is not satisfied condition in query Q. Therefore,
a1 will be removed from the list of intensional nodes

being materialized. b1, c1 and E are dependent nodes
of a1 so these intensional nodes also removed from
the list. Hence, numbers of nodes, which need to be
materialized in our proposal, are smaller than that in
the current XML systems.

Materialization of unneeded intensional nodes such
as A, B, C are also happened, when we evaluate query
Q2 Root/N[A <= ‘50’, B <= ‘50’, C <= ‘50’, D =
‘50’]/E against Fig. 9B, where A, B, C are intensional;
D is extensional XML node; and value of D is greater
than 50.

Workloads for query evaluation should be shared
as much as possible among peers. Other peers should
be involved in query evaluation processes but not only
for Web service invocations. Filtering data before send-
ing it to master peers can reduce the amount of data
exchanges between peers, save bandwidth and reduce
the cost of data management and processing at master
peers. By sending sub-queries to the slave peers of the
Web service providers, the proposed algorithms will
eliminate redundant data before sending them back
to requester-master peers. The advantages of our pro-
posal are that it controls the content of data exchanges
and reduces the amount of data exchanges between
peers. Moreover, the proposal also assists in reducing
the costs of management for temporary results such as
updates, deletions, filter and searches for the required
results.

Fault tolerances to cope with P2P network charac-
teristics, such as dealing with unavailability of peers, is
another aspect that needs to be compared between the
proposal and the existing algorithms. The measurement
unit for fault tolerance is the probability of completing
a query.

If i is ith Web service invocation for intensional node
ith; n is the number of Web services being invoked
to serve query Q; Pi (Pi < 1) is the probability of
the unavailability of Web service provider for inten-

Fig. 9 Eliminations of intensional nodes in query evaluation

Inf Syst Front (2013) 15:203–222 219

sional node ith, the formula to calculate the probability
of completeness for evaluating query Q (PExisting(Q))
in the existing AXML systems will be PExisting(Q) =

n∏

i=1
(1 − Pi).

In our algorithm, there can be k different equiv-
alent Web services for each intensional node i, the
probability of those Web services being unavailable is
Pi1,...,Pik (Pt < 1, t = i1...ik) so the probability of the
completeness of the materialization of intensional node

i is (1 −
k∏

j=1
Pij). Therefore, the formula to calculate

the completeness probability of our proposal will be

POur(Q) =
m∏

i=1
(1 −

k∏

j=1
Pij).

Fault tolerance probability for existing algorithms
and our proposed algorithm are PExisting(Q) =

n∏

i=1
(1 − Pi); and POur(Q) =

m∏

i=1
(1 −

k∏

j=1
Pij), respectively.

It is noted that m < n because the numbers of
intensional nodes being materialized in our algorithms
are fewer than those materialized using the existing

algorithms. Moreover, (1 −
k∏

j=1
Pij) is never higher

than (1 − Pi) because Pi... Pij... Pk < 1. Therefore,
POur(Q) is never higher than PExisting(Q). In other words,
our algorithm is better than the existing algorithms
in dealing with the unavailability of Web service
providers.

In current AXML systems, original documents being
queried are updated frequently after each single Web
service invocation. Therefore, the contents are usually
changed by query evaluation. Temporary results from
previous query evaluation can be affected by the results
of other queries in the future. In addition, temporary
results which have been updated in AXML documents
need to be removed or this will result in redundancy as
well as additional cost for data management.

The new proposal is superior to current mechanisms
because it saves time in materializing specific Web
services. Using the document in Fig. 2, to materialize
all getHotels nodes in the existing algorithm, it is neces-
sary to search all getHotels nodes in the whole AXML
document whereas in our proposal, it only necessary to
search in the webServiceInfor fragment to invoke the
Web services and materialize the indicated nodes.

The ability to perform concurrent computing is an
important factor in P2P architectures. The exploita-
tion of P2P computing power in concurrent processing,
management and implementation of parallel comput-
ing in AXML systems should be investigated because it
assists in the reduction of query response time. In the

existing implementation, we need additional computa-
tions such as F-Guides, traversals in documents, deter-
minations of relationships (Abiteboul et al. 2004b) to
divide intensional nodes into layers so that intensional
nodes in each layer can be concurrently invoked in the
hierarchy. After performing invocations on each layer,
the rest of the layers need to be calculated and updated
because of the new intensional nodes received. Hence,
it can be said that parallel invocations in each layer
must wait for all invocations in previous layers as well
as computations to re-classify the rest of the intensional
nodes and the newly arrived ones.

In our proposal, ICa nodes can be concurrently
processed. New intensional nodes (including ICo and
ICa) derived from the materialization of existing nodes
are divided, managed and processed in slave peers so
it helps to reduce computations, classifications of in-
tensional nodes, and the determination of relationships
of new intensional nodes with existing ones. Parallel
materialization in the proposed algorithms work more
directly and faster than the existing algorithms.

The proposed algorithm takes full advantages of the
P2P network by exploiting power from other peers not
only by invoking Web services but also by filtering
results by enclosed sub-queries. It overcomes short-
comings such as being disconnected by other peers by
having the ability to choose alternative Web services to
invoke.

In addition, the workload in finding, organizing and
managing Web service invocations is shared with other
slave peers so the answer retrieval time is faster. There-
fore, this can help to reduce the time needed for
computing requests. However, abuses, overuse and the
exploitation of the computing power of other peers are
issues which need to be investigated because of their
adverse effects. To query AXML documents using our
proposal, master peers will receive and manage the
least amount of AXML data from invocations because
the results are filtered by enclosed sub-queries. These
queries also function as a controller for the format of
data exchanges.

With the proposed algorithm, the original AXML
documents are not changed after the query. In current
AXML systems, AXML documents evolve after each
single query evaluation, having a negative effect on the
performance of the system as well as increasing the cost
of data management and updates.

Updates are very expensive operators so query eval-
uation should avoid using updates except for requests
for updates from users. With the current algorithm,
each single Web service invocation can result in many
updates. Moreover, after query evaluation, the current
algorithms will require deletion operations for tempo-

220 Inf Syst Front (2013) 15:203–222

rary results. In contrast, with the proposed algorithms,
the temporary results are not updated into original
documents.

5.3 Quantitative evaluation of proposed AXML
query processing

In this section, we use simple queries to compare the
query evaluation using existing algorithms and the pro-
posed algorithms.

Cost of query evaluation In this case study, we will
use the tree in Fig. 9A, where Root have 100 A nodes.
We assume that all nodes A, B, C, D and E can
have intensional instances. Fifty percent of each A, B,
C, D, and E nodes are intensional instances. Values
of these nodes will be equally distributed from 1 to
100. All nodes in result of query evaluation can be
intensional. We consider to evaluate query Q: Root/
A[a1 <= ‘5’]/B[b1 <= ‘5’]/C[c1<= ‘5’]/D[d1<=
‘5’]/E against the tree. We assume that cost to access
a node in the tree is Caccess, and the cost is equal for
accessing an arbitrary node. Cost to materialize an
arbitrary intensional node is Cmaterialization. To evaluate
Q, the current AXML systems need to access 193 nodes
and must materialize 87 intensional nodes. Therefore,
cost of current AXML systems for Q is CCurrent = 193
* Caccess + 87 * Cmaterialization. Our algorithm access only
94 nodes in webServiceInfor section; and materialize 45
intensional nodes so cost to evaluate Q in our algorithm
CProposal = 94 * Caccess + 45 * Cmaterialization.

Fault tolerances For demonstration, we use the
AXML document “tourism.xml” shown in Fig. 2, de-
scribing information on hotels and events. This AXML

document contains information including names, ad-
dresses and ratings of hotels. In addition, the nearby
node consists of other information in relation to ho-
tels such as nearby museums and restaurants. Names
and addresses of hotels are extensional XML data,
but rating, museum and restaurant can be intensional
XML data. Web services getRatingHotel, getRating-
Restaurant, getNearbyMuseums and getNearbyRestau-
rants provide data for rating a hotel, rating a restaurant,
museums and restaurants elements, respectively. We
use three queries below:

Q1: doc(‘tourism.xml’)/tourism/hotels/hotel
Q2: doc(‘tourism.xml’)/tourism/hotels//*
Q3: doc(tourism/.xml)/tourism/hotels/hotel[name= ‘Best

Western’, rating= ‘*****’]/nearby/restaurant [name=
‘KFC’ rating = ‘*****’]

For the three queries, the existing algorithm needs to
traverse a significantly larger number of nodes in com-
parison to the proposed algorithm, due to the fact that
the existing algorithm needs to use the NFQ algorithm
to find relevant intensional nodes. The comparison is
shown in Fig. 10.

Using the same AXML document, we also mea-
sure the probability of completing a query using our
proposed method and the existing method. For this
evaluation, we vary the number of intensional nodes
from 1 to 15 and the number of available Web service
providers for each node between 2 and 3. Assume that
the probabilities of incomplete invocations for these
nodes are the same and equal to 5 % (Pi = 0.05).
The comparison (Fig. 11) shows that the probability
of completing the query using the proposed method is
better than the existing method. It is even better when

Fig. 10 Number of searched nodes for different queries

Inf Syst Front (2013) 15:203–222 221

Fig. 11 Probability to complete a query

the number of intensional nodes, as well as the number
of Web service providers for each node is increased.

Based on the evaluation, it can be seen that our
proposal in relation to AXML representation and
AXML query evaluation algorithms can contribute to
improving the performance of current AXML systems.
However, there is one particular limitation to this
work, namely the use of the Dewey coding system
into the AXML document, as it can create overheads
for AXML systems when AXML documents are fre-
quently updated.

6 Conclusion and future work

Data and service integration is imperative in the rapid
development of information technology today. AXML,
which is able to combine and exploit the potential
power of XML, Web service and P2P architectures, has
become one of candidates in integrating and managing
XML data and intensional XML data. This paper in-
troduces the essential foundations of AXML, which is
the formal representation and algorithms for querying
AXML data. It specifies the shortcomings in AXML
representation and querying the AXML data of cur-
rent AXML systems. Then, it proposes improvements
for AXML representation as well as evaluating XML
queries against AXML data. The proposed represen-
tation and algorithms will be applied in the manage-
ment of intensional data, AXML query evaluation, and
intensional data materialization to improve the perfor-
mance of AXML systems.

There are many issues that need to be studied in
relation to current AXML systems. These include the
ability to transform arbitrary XML data into AXML
data, effective recursive invocations, and processing
strategies for Web services both in synchronous and
asynchronous communication. In addition, it is essen-
tial to propose a benchmark criterion that can be
used to assess and compare AXML systems as well as
AXML systems with other XML systems.

Although AXML systems are still in their infancy,
with remarkable abilities to integrate data and services,
AXML can be considered a powerful XML extension
to satisfy the need for Web technologies and distributed
data management (Abiteboul et al. 2003, 2009) in the
future.

References

Abiteboul, S., Alexe, B., Benjelloun, O., Cautis, B., Fundulaki,
I., Milo, T., et al. (2004a). An electronic patient record
“on steroids”: Distributed, peer-to-peer, secure and privacy-
conscious. In Proceedings of the thirtieth international confer-
ence on very large data bases, VLDB ’04 (Vol. 30, pp. 1273–
1276). VLDB Endowment.

Abiteboul, S., Baumgarten, J., Bonifati, A., Cobéna, G.,
Cremarenco, C., Dragan, F., et al. (2003). Managing dis-
tributed workspaces with active xml. In VLDB ’2003: Pro-
ceedings Of The 29th international conference on very large
databases (pp. 1061–1064). VLDB Endowment.

Abiteboul, S., Benjelloun, O., Cautis, B., Manolescu, I., Milo, T.,
& Preda, N. (2004b). Lazy query evaluation for active xml.
In SIGMOD ’04: Proceedings Of The 2004 ACM SIGMOD
international conference on management of data (pp. 227–
238). New York, NY, USA: ACM.

Abiteboul, S., Benjelloun, O., Manolescu, I., Milo, T., & Weber,
R. (2002). Active xml: Peer-to-peer data and web services
integration. In Proceedings Of VLDB (pp. 1087–1090). Mor-
gan Kaufmann.

Abiteboul, S., Benjelloun, O., Manolescu, I., Milo, T., & Weber,
R. (2004c). Active xml: A data-centric perspective on web
services. In Web dynamics (pp. 275–300).

Abiteboul, S., Benjelloun, O., & Milo, T. (2004d). Positive active
xml. In PODS ’04: Proceedings of the twenty-third ACM
SIGMOD-SIGACT-SIGART symposium on principles of
database systems (pp. 35–45). New York, NY, USA: ACM.

Abiteboul, S., Benjelloun, O., & Milo, T. (2008). The active xml
project: An overview. The VLDB Journal, 17(5), 1019–1040.

Abiteboul, S., Gottlob, G., & Manna, M. (2009). Distributed xml
design. In Proceedings of the twenty-eighth ACM SIGMOD-
SIGACT-SIGART symposium on principles of database sys-
tems, PODS ’09 (pp. 247–258). New York, NY, USA: ACM.

Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2004). Web
service concepts, architectures and applications. Springer.

Bradley, N. (1998). The XML companion (1st ed.). Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., &
Yergeau, F. (2008). Extensible markup language (xml) 1.0

222 Inf Syst Front (2013) 15:203–222

(5th ed.). http://www.w3.org/TR/2008/REC-xml-20081126/.
Accessed 11 July 2012.

Brinkmann, A., & Effert, S. (2008). Data replication in p2p en-
vironments. In Proceedings of the twentieth annual sympo-
sium on parallelism in algorithms and architectures, SPAA
’08 (pp. 191–193). New York, NY, USA: ACM.

Eda, T., Onizuka, M., & Yamamuro, M. (2005). Processing xpath
queries with xml summaries. In Proceedings of the 14th ACM
international conference on information and knowledge man-
agement, CIKM ’05 (pp. 223–224). New York, NY, USA: ACM.

Ferraz, C. A., Braganholo, V. P., & Mattoso, M. (2007). Storing
axml documents with araxa. In SBBD (pp. 255–269).

GEMO (2007). Active xml. http://webdam.inria.fr/axml/index.
axml.html. Accessed 11 July 2012.

Goldman, R., & Widom, J. (1997). Dataguides: Enabling query
formulation and optimization in semistructured databases.
In M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky, P.
Loucopoulos, & M. A. Jeusfeld (Eds.), VLDB’97, proceed-
ings of 23rd international conference on very large databases,
August 25–29, 1997, Athens, Greece (pp. 436–445). Morgan
Kaufmann.

Harold, E. R., & Means, W. S. (2002). XML in a nutshell.
Sebastopol, CA, USA: O’Reilly & Associates, Inc.

Hoque, R. (2000). XML for real programmers (1st ed.). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Kemme, B., Peris, R. J., & Patio-Martnez, M. (2010). Database
replication (1st ed.). Morgan and Claypool Publishers.

Milo, T., Abiteboul, S., Amann, B., Benjelloun, O., & Ngoc,
F. D. (2003). Exchanging intensional xml data. In SIGMOD
’03: Proceedings Of The 2003 ACM SIGMOD international
conference on management of data (pp. 289–300). New York,
NY, USA: ACM.

Pras, A., Schönwälder, J., & Stiller, B. (2007). Peer-to-peer tech-
nologies in network and service management. Journal of
Network and Systems Management, 15, 285–288.

Ruberg, G., & Mattoso, M. (2008). Xcraft: Boosting the perfor-
mance of active xml materialization. In EDBT ’08: proceed-
ings of the 11th international conference on extending data-
base technology (pp. 299–310). New York, NY, USA: ACM.

The Active XML Team (2005). Active xml user’s guide.
Technical report, AXML Group. http://www.activexml.net/
reports/docs/AXML%20Guide.pdf. Accessed 11 July 2012.

Vidal, V., Lemos, F., & Porto, F. (2008). Towards automatic gen-
eration of axml web services for dynamic data integration.
In DataX ’08: Proceedings of the 2008 EDBT workshop on
database technologies for handling XML information on the
web (pp. 43–50). New York, NY, USA: ACM.

W3C (2004). Web services architecture. http://www.w3.org/TR/
ws-arch/. Accessed 11 July 2012.

Binh Viet Phan is a PhD Candidate in Computer Science in the
Department of Computer Science and Computer Engineering at
La Trobe University, Australia. From the same institution, he
received his Master of Education in 2008. His research interest
is XML Databases and Web Services.

Eric Pardede is a lecturer in the Department of Computer
Science and Computer Engineering at La Trobe University in
Melbourne, Australia. His teaching and research fields are In-
formation Systems, Databases and Software Engineering. He has
published more than 50 research papers in international journals,
proceedings and books.

Wenny Rahayu is currently an Associate Professor and the Head
of Data Engineering and Knowledge Management research at
the Department of Computer Science and Computer Engineer-
ing La Trobe University. The main focus of her research is the
integration and consolidation of heterogeneous data and systems
to support a collaborative environment within a highly data-rich
environment. She has been leading a number of large projects
in the above area. In the last 10 years, she has published two
authored books, three edited books and more than 100 research
papers in international journals and proceedings in the area of
XML-based data integration, database design and processing, as
well as semantic web and ontology.

http://www.w3.org/TR/2008/REC-xml-20081126/
http://webdam.inria.fr/axml/index.axml.html
http://webdam.inria.fr/axml/index.axml.html
http://www.activexml.net/reports/docs/AXML%20Guide.pdf
http://www.activexml.net/reports/docs/AXML%20Guide.pdf
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/

	On the improvement of active XML (AXML) representation and query evaluation
	Abstract
	Introduction
	Related work
	Active XML: An overview
	Issues with current AXML representation
	Issues with current AXML query evaluation

	Proposed AXML representation
	Proposed AXML query evaluation
	Preliminaries
	Algorithm for classifying queries
	Query evaluation for type 1 queries
	Query evaluation for type 2 queries

	Evaluation
	Proposed AXML representation evaluation
	Evaluation of proposed AXML query processing algorithms
	Quantitative evaluation of proposed AXML query processing

	Conclusion and future work
	References

