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Abstract: Detecting changes in XML data has emerged as an important 
research issue in the last decade, but the majority of change detection 
algorithms focus on XML documents rather than on their schemas because 
documents that contain data are deemed more significant than the schema 
itself. However, the XML schema change detection tool is essential, especially 
in situations where we need to maintain related XML documents with evolving 
schema, sustain relational schema generated by schema-conscious approach for 
storing XML data and provide support for XML versioning. This paper focuses 
on XML Schema (XSD) changes and provides a more meaningful description 
of the detected changes. Our proposed algorithm XS-Diff uses the technique of 
storing XML Schema versions in a relational database where the detection and 
storage of delta changes are employed on relational tables. We demonstrate the 
correctness of the proposed algorithm through both synthetic and real data sets 
without deteriorating the execution time. 
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1 Introduction 

EXtensible Markup Language (XML) has been widely used for representing, storing and 
manipulating data from different data sources. Due to its dynamic property, XML data 
tend to change from time to time in different ways, and a system is required to properly 
detect possible changes. As a consequence, there has been an increasing number  
of studies dedicated to the detection of changes in XML documents (Cobena et al., 
2002b; Wang et al., 2003; Al-Ekram et al., 2005; Leonardi and Bhowmick 2005) or 
hierarchically structured documents in general (Chawathe et al., 1996; Chawathe and 
Garcia-Molina, 1997). In some situations, rules imposed by XML schema languages, 
such as Document Type Definitions (DTDs) (W3C, 2000) or XML Schemas (XSDs) 
(W3C, 2004a), are utilised to specify and enforce the XML document structure. 
However, these schemas may also change over time to reflect real-world changes and 
changes in the user’s requirements, or to correct mistakes in the initial design. Moreover, 
complex structures (such as complexType in XML Schema) are often created but not 
fully configured to allow a user to restrict or expand them in future releases (Guerrini  
et al., 2005b). 

A method to detect changes to XML Schema serves many purposes, such as the 
following: 

• Efficient maintenance (revalidation) of associated XML documents when their 
schema evolves. In manipulating XML documents, it is common that documents 
need to be verified with respect to more than one schema and the cost of revalidating 
the whole document is known to be high (Raghavachari and Shmueli, 2004). This 
paper provides an alternative method for document revalidation that is much more 
efficient. We obtain this by identifying delta changes between two versions of the 
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schema so that only the document portions affected by those changes can be 
revalidated. For example, assume that XML Schema S1 at time t1 evolves to S2 at 
time t2. Let D be a set of XML documents associated with the schema S1 where di ∈ 
D. Assume that S1 evolves to S2 due to errors in the initial design or the addition of 
new constructs. Consequently, di ∈ D may no longer be valid against S2. Therefore, 
it is important to detect changes between S1 and S2 automatically so that delta 
changes, i.e. delta(S1, S2), can be used to facilitate the conversion between di and dj 
such that dj is valid against S2. 

• Incremental maintenance of relational schema generated by the schema-conscious 
approach for storing XML data. The usage of relational database systems to  
store and process XML data is a popular research area and several methods have 
been developed for this purpose. One of these methods is the schema-conscious 
approach where a DTD or XML Schema is used to create the relational schema 
(Shanmugasundaram et al., 1999). XML Schema change detection can be 
particularly useful in this approach where relational schema needs to be maintained 
incrementally due to XML Schema changes. 

• Traditional support for XML versioning. Change detection is an integral part of 
version management for databases and document archives. Users and applications 
may want to query different versions of data and schema both retrospectively and 
prospectively. In this case, the delta generated by the change detection system works 
both forward and backward, allowing the user or the application to reverse the Vi+1 
version of the document to the Vi. This technique was first introduced by Marian et 
al. (2001) by calculating the ‘completed delta’ for XML documents. XML Schemas 
are written using different rules, so the delta used in XML document versioning is 
unlikely to be used in XML Schema versioning. The proposed change detection 
method, in this paper, creates delta records that are more meaningful with respect to 
XML Schema language. 

In this paper, we address the problem of XML Schema change detection based on the 
three above-mentioned motivations. We propose a relational-based algorithm called XS-
Diff for detecting the changes to XML Schemas. The relational model is utilised because 
previous researches, such as Leonardi et al. (2007) and Leonardi and Bhowmick (2007), 
have proven that DOM-based change detection methods (e.g. Cobena et al., 2002b; 
Wang et al., 2003) may often fail to find semantically correct and optimal changes. 
Moreover, they suffer from scalability problems since they are not able to handle large 
XML documents (due to lack of memory). 

In our work, first, XS-Diff parses and stores the resulting XSD trees of two schema 
versions, say S1 and S2, in the relational tables. Then, by issuing SQL queries, it matches 
the identical nodes and stores them in temporary tables. Finally, it uses the information 
stored on those tables in order to detect changes and store them in delta tables. 

The work in this paper extends our previous effort (Baqasah et al., 2013) on XML 
Schema change detection in the following ways: 

• Two schema components, namely group and attributeGroup, are included in the 
change detection model as secondary components. This inclusion will improve the 
proposed algorithm by supporting components that are widely used. Thus, we 
redefine XML Schema tree based on the new enhancement (in Section 3). 



   

 

   

   
 

   

   

 

   

    A. Baqasah et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

• A detailed explanation of our delta model (XS-Rel delta) is given. This can be used 
to convert one version of the schema into another. 

• A formal and generic definition for each phase of the proposed algorithm is 
provided. That is, we aggregate similar operations on each phase (e.g. moving of 
elements and attributes) in a more generic style. 

• We conduct additional experiments by including a performance test. The 
performance in terms of execution time can be measured in different settings, such 
as varying the percentage of changes, switching between different design patterns 
and varying the number of nodes (scalability). 

The organisation of this paper is as follows. Section 2 provides a literature review of 
related researches in this field. Section 3 introduces XML Schema components used 
along this paper and defines the XML Schema model. We then define the relational 
model (XS-Rel) used for the change detection process in Section 4. In Section 5,  
we describe our change detection algorithm (XS-Diff) and introduce XML Schema-
specific changes. Section 6 conducts some experimental results to measure the 
correctness, performance and result quality of the proposed algorithm and, finally, 
Section 7 concludes the paper with remarks on the contribution of the paper and possible 
improvements on this topic in the future. 

2 Related work 

This section describes previous researches in the field that are closely related to our 
paper. More comprehensive descriptions of the topic on comparing different XML 
change detection techniques can be found in the literature (Cobena et al., 2002a; Peters, 
2005). 

2.1 Change detection in hierarchically structured data 

As an early work, Chawathe et al. (1996) designed a differencing system called LaDiff 
for hierarchically structured information. It takes two versions of a LaTeX document as 
input and produces a marked-up version of the document with changes. LaDiff considers 
two sub-problems: a ‘good matching’ and a ‘minimum cost edit script computing’. The 
four primary edit operations used to define the minimum cost edit script are node delete, 
node insert, node update and subtree move. Change detection is also studied in the 
context of nested-object documents in MH-Diff algorithm (Chawathe and Garcia-Molina, 
1997). MH-Diff produces operations that allow it to describe changes semantically 
between two trees in a more meaningful way. In addition to the traditional insert, delete 
and update operations, MH-Diff also supports move, copy and glue (inverse of copy) 
operations. The introduction of new operations results in an even higher quality edit of 
scripts, especially when the copied or moved sub-trees are large. The main weakness of 
the previous approaches is that they cannot understand components of XML Schema. 
Furthermore, as the authors note, MH-Diff can detect changes between unordered  
trees, while XML Schema contains both ordered and unordered segments. In ordered 
trees, both ancestor (parent–child) relationships and left-to-right ordering among siblings 
are considered important, while in unordered trees, only ancestor relationships are 
considered significant. 
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2.2 Change detection in XML documents 

In another group of studies, XML documents are processed. XMLTreeDiff (developed by 
IBM) finds changes between two XML documents using a set of java beans to compute 
the differences of Document Object Model (DOM) structures (IBM, 1998). This method 
mainly consists of two phases: in the first phase, hash values for the nodes of two 
document versions are computed using DOMHash (Maruyama et al., 2000); in the 
second phase, it computes the difference between the two simplified trees using Zhang 
and Shasha’s (1989) algorithm. Despite its ease of use, Wang et al. (2003) reported that 
its result may not be optimal due to the conflicts with the cost model proposed by Zhang 
and Shasha’s algorithm. Cobena et al. (2002b) proposes a main-memory algorithm  
called XyDiff for detecting changes between versions of XML documents. The algorithm 
detects changes in a bottom-up fashion of ordered documents. XyDiff also takes advantage 
of XML specifications, e.g. handling attributes and treating them differently from text and 
element nodes. In addition to the basic insert, delete and update operations, the algorithm 
supports a move operation. In contrast to XyDiff, the X-Diff algorithm proposed by Wang 
et al. (2003) is able to handle unordered XML documents in a top-down fashion, but it 
does not support the move operation. It achieves the optimal changes by integrating key 
XML structure characteristics with standard tree-to-tree correction methods. 

Although XyDiff and X-Diff are able to detect differences between versions of  
XML documents, Leonardi et al. (2007) argue that they may often fail to detect 
semantically correct and optimal changes. (The semantic correctness is further explained 
with examples in Section 6.) Furthermore, they suffer from scalability problems, as they 
cannot handle large XML documents (more than 5000 nodes) due to the use of DOM to 
represent the compared trees. 

To address the scalability problems of XML document change detection described 
above, a number of algorithms have been proposed using relational database systems. 
The idea is to exploit the relational environment to store XML data, and then apply a set 
of SQL queries to find changes between the stored documents. A set of modules called 
XANADUE is proposed by Leonardi and Bhowmick (2007) to detect changes to 
unordered and ordered XML documents. In Al-Ekram et al. (2005), diffX algorithm is 
also proposed for detecting changes between XML document versions. This method aims 
to minimise the size of the resulting edit script and optimise the runtime of mapping  
the nodes. To achieve these targets, it performs the ‘isolated tree fragment mapping’ 
technique to identify the largest matching fragments between the two trees. Therefore, it 
handles ordered elements and unordered attributes, and supports primitive operations, 
such as insert, delete and move in addition to replace, which is introduced to reduce the 
size of the edit script (i.e. insert followed by the delete operation). DeltaXML is a 
commercial tool that provides a comparison for XML documents and also represents 
changes in XML. The principal idea behind the tool can be found in Robin (2001). Its 
technique is based on ‘longest common subsequence computations’. Operations 
supported by DeltaXML are insert, delete and update, while move is not supported. As a 
result, in case the XML document node, for instance element or attribute, moved from 
one part of the tree to another, the tool will detect that change as a deletion from the first 
tree followed by an insertion to the second. 

2.3 Change detection in XML schemas 

XML schemas (i.e. XML Schema or DTD instances) have not been extensively studied 
in the area of change detection. As far as we know, the DTD-Diff algorithm published by 
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Leonardi et al. (2007) is the only work in this context and is used to find changes 
between versions of a DTD. The algorithm takes two DTD files representing the first and 
the second versions as input and returns a list of changes containing the differences 
between the two versions. It defines types of changes for the following DTD components: 
Element Type Declaration (ETD), Attribute Declaration (AD) and Entity Declaration 
(ED). Leonardi et al. (2007) claim that converting DTD to XML Schema and detecting 
the changes using one of the existing XML document change detection tools are not a 
practical option because they are expensive and may yield semantically incorrect or non-
optimal changes. As the XML Schema format is different from that of a DTD, the 
proposed changes between the old and the new versions are different from the ones that 
occur in DTD versions. As a matter of fact, XML Schema has a richer variety of changes 
compared to DTD. For example, in XML Schema, a complexType is used to define 
the content type of the element. The complex type definition can migrate (by changing its 
scope) from the top level of the schema tree to be locally defined under its element. 

2.4 XML schema evolution 

Apart from the change detection tools discussed above, XML Schema change detection 
cannot be handled without the investigation of XML Schema evolution. The concept of 
evolution is important because our proposed change operations are based on the 
evolution primitives introduced by the evolution techniques. For example, Guerrini et al. 
(2005a) studied the impact of XML Schema updates on the validity of related documents. 
The authors first devised a set of atomic evolution primitives to be applied to the basic 
components of the schema. Then, they presented some high-level evolution primitives 
that are a composite of the atomic primitives. The evolution primitives suggested by this 
work have been classified into three main categories: insertion, modification and  
deletion of the main XML Schema components (element, simpleType and 
complexType). We enhance the proposed classification by considering changes for 
other XML Schema components, such as attribute, model group (i.e. sequence, 
choice and all), as we will see in the next section. 

3 XML Schema model 

XML Schemas and their components can be better described by using XML Schema 
Object Model (XSOM). XSOM is a Java library (https://xsom.java.net/) used to parse 
XSDs and retrieve information inside them. The library is a straightforward 
implementation of XML Schema components defined by W3C (2004b). In this section, 
we begin by showing the most important components and define XML Schema tree 
model based on XSOM. 

3.1 XML schema components 

According to W3C (2004b), there are 13 kinds of components divided into primary, 
secondary and helper components. The primary components include attributes 
(attribute), elements (element), simple types (simpleType) and complex types 
(complexType). Components in this category are most likely to be used by the 
common XML Schemas. The secondary components are used but less than the  
primary ones. Components that fall in this category are attribute group definitions 
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(attributeGroup), model group definitions (group), identity-constraint definitions 
(i.e. ID/IDREF and key/keyref) and notation declarations (notation). The third 
category refers to the helper components, which include annotations (annotation), 
model groups (sequence, choice and all), particles, wildcards (any and 
anyAttribute) and attribute uses. They are called helpers because they do not stand 
by themselves but as child nodes of other components. Since most of the previous 
components are not an integral part of every schema, we only consider the dominant 
ones: attribute, element, simpleType, complexType, attributeGroup, 
group and model group as sequence, choice or all. We also consider facets as 
important nodes that are commonly used to restrict simple types and the simple content 
of the complex type. Examples of facets are minInclusive, maxInclusive, 
length, pattern and enumeration. Note that the terms ‘component’ and ‘node’ 
are used interchangeably throughout this paper and both relates to one of the dominant 
components listed above. 

3.2 XML schema tree representation 

In this section, we formally define the XML Schema tree in order to use it during the 
parsing and change detection phases. 

Definition 1 (XSD Tree): An XSD is a tree T = (AD, ED, ST, CT, AG, GD, MG, F) that 
has different types of nodes, where: 

1 AD is a set of attribute declaration nodes of the form ad = (adn, adt, adf, add, adu), 
where adn is the name of the node, adt is the data type of the node (i.e. built-in or 
user-derived simple type), adf, add and adu are values of fixed, default and use 
attributes of the attribute declaration node, respectively; 

2 ED is a set of element declaration nodes of the form ed = (edn, edt, edmno, edmxo, edo), 
where edn is the name of the node, edt is the data type of the node (elements may 
have simple or complex types), edmno and edmxo are values of the minOccurs and 
maxOccurs attributes representing the cardinality of the element declaration node, 
respectively, and edo is the order of the element node among its siblings; 

3 ST is a set of simple type definition nodes of the form st = (stn,std,stb), where stn is the 
name (if defined globally) of the simple type node, std = {restriction,list,union} is the 
derivation type of the node and stb is the value of either the base, itemType or 
memberTypes attribute; 

4 CT is a set of complex type definition nodes of the form ct = (ctn,ctc,ctd,ctb),  
where ctn is the name (if defined globally) of the complex type node, ctc = 
{complexContent,simpleContent,θ}, ctd = {restriction,extension,θ} and ctb are the 
content type, the derivation type and the base type of the complex type node, 
respectively; 

5 AG is a set of attribute group definition nodes of the form ag = (agn), where agn is 
the name of the node; 

6 GD is a set of model group definition nodes of the form gd = (gdn,gdmno,gdmxo,gdo), 
where gdn is the name of the node, gdmno and gdmxo represent the minOccurs and 
maxOccurs attributes of the model group definition, respectively, and gdo is the 
order of the referenced node; 
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7 MG is a set of model group nodes of the form mg = (mgc,mgmno,mgmxo,mgo), where 
mgc = {sequence,choice,all} is the compositor of the model group defined under a 
particular complex type or group definition node, mgmno and mgmxo, respectively, are 
the minOccurs and maxOccurs attributes of the model group node and mgo is 
the order of the model group node among its siblings; 

8 F is a set of restriction facet nodes of the form f = (fn,fv), where fn = {minExclusive, 
minInclusive, maxExclusive, maxInclusive, length, minLength, maxLength, totalDigits, 
fractionDigits, enumeration, pattern, whitespace, explicitTimezone} is the name of 
the facet and fv is the value assigned to the facet. 

Based on Definition 1, the two input XSD versions S1 and S2 in Table 1 are translated 
into their respective tree representations T1 and T2 in Figure 1. As a preparatory step for 
the change detection process, we match identical nodes. To identify nodes in the tree, 
there are several techniques such as XPath expressions and XID signatures. W3C (1999) 
recommend XPath as a language for addressing XML document parts (i.e. used to 
navigate through elements and attributes in an XML document). To select nodes and 
node-sets, XPath uses ‘path expressions’. In our XML Schema context, we cannot use 
path expressions because they return a set of nodes. Thus, identifying one node through 
different schema versions is not possible. XIDs is an alternative solution introduced by 
Marian et al. (2001) to identify XML document nodes in the context of Xyleme project. 
The technique solves the previous problem of XPath for identifying a single node 
through a set of XML versions. However, it is still not a perfect method since the system 
has to maintain the assignment of XIDs to nodes through a function called ‘XID-map’. 

To identify node paths that best fit our requirements, we use a ‘node signature’, 
which has the same spirit of path expressions in XPath language. The unique path in our 
XSD tree model is defined as follows: 

Definition 2 (XSD unique path): Given an XML Schema with a tree representation T, the 
unique path for each node in the tree is a concatenation of node tags starting from the 
root node (schema) that ends with one of the following node variations: 

• If the node type is one of the components AD, ED, ST, CT, AG or GD (listed in 
Definition 1) and the attribute name of the component is known (e.g. adn ≠ θ, where 
adn ∈�AD), the path ends by the node type followed by the value of the attribute 
name of the node between two brackets ([]), otherwise the path ends by the node 
type only. 

• If the node type is MG and is a child of a sequence model group node, then the 
child order is embedded instead of the attribute name. 

• If the node type is F, then the path ends by the facet name followed by facet value 
between two brackets ([]). 

Examples (from Figure 1) illustrating the idea of identifying schema nodes based on 
Definition 2 are the following: 

#/schema#/attribute[A1], 

#/schema#/CT[E1T]#/sequence[]#/element[E2] and 

#/schema#/CT[E4T]#/sequence[]#/element[E5]#/CT[]. 
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In these examples, the first line represents the unique path for the global attribute 
declaration named A1. The second line represents E2 element declaration, whereas the 
final line represents the anonymous complex type under E5 element declaration. 

To easily maintain node paths during the example in this paper, we assign a  
unique ID for each node in the compared trees (appears above each node in Figure 1). 

Figure 1 XML Schema trees T1 and T2 of the schema versions in Table 1 (T1 represents S1 and T2 
represents S2) 

1
schema

2
A1

3
E1

4
E1T

5
seq

6
E2

7
E3

8
E4

9
ref=A1

10
E4T

11
seq
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13
[CT]

14
seq

15
E6
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[ST]
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maxExclusive
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seq

24
E2
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E3
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seq
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13
[CT]
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ref=E6

16
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[ST]
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maxExclusive

0 1

1 0

0 1

T1 T2
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[CT]
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seq

26
minInclusive

Legend

          migrated/moved node              deleted node              inserted node              updated node              migration type

global to local
Local to global

 

3.3 Matching schema versions 

Matching identical nodes between trees is an essential part of any change detection 
procedure. In the XML Schema context, the schema component nodes, which fall in the 
same type and with the same unique path between the two compared tree versions, are 
considered identical. For example, node 3 in both T1 and T2 in Figure 1, representing 
element declaration node E1, shares the same unique path: #/schema#/element[E1]. 
Similarly, node 12 in both T1 and T2 represents element declaration node E5 and shares 
the same unique path: #/schema#/CT[E4T]#/sequence[]#/element[E5]. 
Observe that the uniqueness of the node path between the two versions does not 
necessarily require its attributes to be the same. For example, although the path of  
node 12 is unique between the two trees T1 and T2, the node is considered updated 
because the value of its attribute maxOccurs changes from 5 to 10 as seen in the 
corresponding S1 and S2 in line 14 Table 1(a) and line 20 Table 1(b), respectively. 
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Table 1 Two versions of XML Schema S1 and S2 (changes are highlighted) 

(a) S1 (b) S2 
01 <xs:schema ...> 
02  <xs:attribute name="A1" type="xs:string"/> 
03  <xs:element name="E1" type="E1T"/> 
04  <xs:complexType name="E1T"> 
05   <xs:sequence> 
06    <xs:element name="E2" type="xs:string"/>
07    <xs:element name="E3" type="xs:string"/>
08    <xs:element name="E4" type="E4T"/> 
09   </xs:sequence> 
10   <xs:attribute ref="A1" use="required"/> 
11  </xs:complexType> 
12  <xs:complexType name="E4T"> 
13   <xs:sequence> 
14    <xs:element name="E5" maxOccurs="5"> 
15     <xs:complexType> 
16      <xs:sequence> 
17       <xs:element name="E6" 
type="xs:string"/> 
18       <xs:element name="E7"> 
19        <xs:simpleType> 
20         <xs:restriction base="xs:integer"> 
21          <xs:maxExclusive value="100"/> 
22         </xs:restriction> 
23        </xs:simpleType> 
24       </xs:element> 
25      </xs:sequence> 
26      <xs:attribute name="A2" 
type="xs:string"/> 
27     </xs:complexType> 
28    </xs:element> 
29   </xs:sequence> 
30  </xs:complexType> 
31 </xs:schema> 

01 <xs:schema ...> 
02  <xs:element name="E6" type="xs:string"/> 
03  <xs:element name="E1" type="E1T"/> 
04  <xs:complexType name="E1T"> 
05   <xs:sequence> 
06    <xs:element name="E8"> 
07     <xs:complexType> 
08      <xs:sequence> 
09       <xs:element name="E2" 
type="xs:string"/> 
10       <xs:element name="E3" 
type="xs:string"/> 
11      </xs:sequence> 
12     </xs:complexType> 
13    </xs:element> 
14    <xs:element name="E4" type="E4T"/> 
15   </xs:sequence> 
16   <xs:attribute name="A1" type="xs:string"/> 
17  </xs:complexType> 
18  <xs:complexType name="E4T"> 
19   <xs:sequence> 
20    <xs:element name="E5" maxOccurs="10"> 
21     <xs:complexType> 
22      <xs:sequence> 
23       <xs:element ref="E6"/> 
24       <xs:element name="E7"> 
25        <xs:simpleType> 
26         <xs:restriction base="xs:integer"> 
27          <xs:maxExclusive value="100"/> 
28          <xs:minInclusive value="1"/> 
29         </xs:restriction> 
30        </xs:simpleType> 
31       </xs:element> 
32      </xs:sequence> 
33     </xs:complexType> 
34    </xs:element> 
35   </xs:sequence> 
36  </xs:complexType> 
37 </xs:schema> 
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4 XML schema storage in relational model 

The design of the relational database schemas used by the XS-Diff algorithm plays a key 
role in the change detection process. In this section, we build our relational model XS-
Rel based on a scalable technique XRel (Yoshikawa et al., 2001) to store and retrieve 
XML documents using relational databases. We show how XRel model can be used to 
accommodate XML Schema components considered in this work. 

XML documents can be stored in relational databases using two approaches: 
structure-mapping and model-mapping. In the structure-mapping approach, a database 
schema is created for each XML document structure XSD or DTD (e.g. a relational table 
is created for each element type in the XML document). Therefore, it is more suitable for 
storing a large number of documents that conform to a limited number of XML Schemas 
or DTDs. On the other hand, in the model-mapping approach, there is no need to have an 
XSD or DTD in order to design the relational schemas. Instead, we create database 
schemas based on the constructs of the XML document model. We select the model-
mapping approach because there is no schema attached to XSD versions. 

As stated earlier, we adopt XRel technique to store XML paths. Unfortunately, this 
technique, which uses path expressions as a unit of decomposition of XML trees, may 
not be suitable for storing XML Schema trees. For example, given a schema S1 in  
Table 1(a), when we apply the XRel approach, the path from the root node schema to 
the first element node tagged attribute (from XML document perspective) can be 
denoted as #/schema#/attribute. Similarly, the path from the root node schema to 
the first attribute node tagged name is #/schema#/attribute#/@name. As can be 
seen here, the previous paths are more appropriate for describing traditional XML 
document nodes: elements, attributes and text nodes. In the XML Schema language, there 
exists a set of rules (syntax) to write the XML Schema component definitions and 
declarations (e.g. only element, attribute, simpleType, complexType, 
group and attributeGroup nodes may exist at a top level of the schema tree). 
Based on the previous observation, we alter the XRel storage technique to our relational 
model called XS-Rel (for XML Schema to Relational Storage) to fulfil our requirements 
of storing and later querying XML Schema components. For example, unlike XRel 
where tables are created on the basis of the type of XML document nodes (i.e. element, 
attribute or text node), XS-Rel creates tables based on the most popular schema 
components emphasised in Definition 1. 

4.1 XS-Rel relational schema 

To detect changes in XML Schema, we redesign XS-Rel schema to include basic tables, 
temporary tables and delta tables. Basic tables represent the eight XML Schema 
components introduced in the previous section. Each table in this category stores all 
information about the two parsed versions of the schema. As we intend to maintain XML 
Schema versions and their respective repositories (as a future extension of this work), 
version and repository tables are also created. This group also includes path 
table that stores all the unique paths from the root node schema to every node in the 
tree. Figure 2(a) shows an excerpt of XML Schema running examples stored in XS-Rel 
basic tables. 

Temporary tables are used to store the matched components between the two schema 
versions and will be used at later stages to speed up the change detection process. As the 
basic tables group, eight temporary tables correspond to the schema components discussed 
earlier. For example, the element components have a temporary table named tmp_ 
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element with the properties of pathid, name, type1, type2, minO1, minO2, 
maxO1, maxO2, locO1, locO2, isRef1, isRef2, isGlob1, isGlob2. We explain 
SQL queries used with the temporary tables in the next section (XS-Diff algorithm). 

Delta tables are a set of XML Schema change operations stored as records in the 
relational tables. The purpose of delta tables is obvious; they are mainly designed to store 
XML Schema changes (XS-Rel delta) in the form of a ‘completed delta’ (Marian et al., 
2001). The completed delta has the advantage of reversing change operations so that we 
can use the same delta record to retrieve either the old schema version or the new one. 
For instance, delta records containing deleted and inserted elements in Figure 1 are stored 
in del_ins_element table as shown in Figure 2(b). Due to space limitation in this 
paper, we have attached the relational schema for all XS-Rel tables and queries to a 
public domain in the ‘XS-Diff google docs’ page (https://drive.google.com/file/d/ 
0By77KsJuXVdcRjg1N0p6WDVNVlU/edit?usp=sharing). We now define the relational 
delta (XS-Rel delta) that is used throughout this paper. 

Figure 2 XS-Rel basic and delta tables populated by XML Schema versions S1 and S2 in  
Table 1. (a) Basic tables including element and attribute tables as examples for schema 
components; (b) delta tables including insertion and deletion of element and attribute as 
examples 

  repository  
rid rname  active  initVer currV noVs
1 S  1  S1.xsd S2.xsd 2

 

version
vid vn vpn vdoc date rid 
1 1 0 S1.xsd 2‐4 1
2 2 1 S2.xsd 2‐5 1

path
pathid  pathexp rid

2 #/schema#/attribute[A1] 1
3 #/schema#/element[E1] 1
… …  …

7 #/schema#/CT[E1T]#/sequence#/element[E3] 1
8 #/schema#/CT[E1T]#/sequence#/element[E4] 1
9 #/schema#/CT[E1T]#/attribute[A1] 1
… …  …

19 #/schema#/CT[E4T]#/sequence#/element[E5]#/CT[]#/attribute[A2] 1
21 #/schema#/CT[E1T]#/sequence#/element[E8] 1
22 #/schema#/CT[E1T]#/sequence#/element[E8]#/CT[] 1
23 #/schema#/CT[E1T]#/sequence#/element[E8]#/CT[]#/sequence 1

 

attribute  
vid pathid  pPathid  name type fixedV defaultV useV isRef isGlob
1 2  1  A1 string Null Null Null 0 1
1 9  4  A1 Null Null Null required 1 0
1 19  13  A2 string Null Null Null 0 0
… …  …  …  … … … … … …

2 9  4  A1 string Null Null Null 0 0
 

element  
vid pathid  pPathid  name type minO maxO locO isRef isGlob
1 3  1  E1 E1T Null Null 0 0 1
1 7  5  E3 string Null Null 1 0 0
1 12  11  E5 Null Null 5 0 0 0
… …  …  …  … … … … … …

2 3  1  E1 E1T Null Null 0 0 1
2 12  11  E5 Null Null 10 0 0 0
2 20  1  E6 string Null Null 0 1 1
2 21  5  E8 Null Null Null 0 0 0

 

 

(a) 

del_ins_attribute 
id  pathid  path  cType name type fixed default use isRef isGlob vid
1  19  #/schema...#/attribute[A2] del A2 string null null null 0 0 1

 

del_ins_element 
id  pathid  path  cType name type minO maxO locO isRef isGlob vid
1  7 #/schema...#/element[E3] del E3 string Null Null 1 0 0 1
2  21  #/schema...#/element[E8] ins E8 Null Null Null 0 0 0 2

(b)   
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Definition 3 (XS-RelDelta): Given any two successive versions S1 and S2 of an XML 
Schema S, where S1 ≠ S2, XS-RelDelta is a set of relational tables that record the changes 
of the schema from one version to another. XS-RelDelta consists of a set of operations O 
{migrate, move, delete, insert, update}, which, upon execution on the schema version S1, 
will produce the schema version S2. 

Note that the terms ‘delta’ and ‘XS-RelDelta’ share the same concept defined as per 
Definition 3 and are used interchangeably throughout this paper. 

5 XS-Diff algorithm 

In the previous section, we described and defined the relational model (XS-Rel) used to 
store XML Schema changes. In this section, we present XS-Diff, the algorithm to detect 
changes between the XSD versions and store the changes in the relational delta XS-
RelDelta. For simplicity and better understanding, the algorithm is split into four 
different phases: (i) matching schema components, (ii) detecting migrated and moved 
components, (iii) detecting deleted and inserted components and (iv) detecting updated 
components. Each phase of the proposed algorithm is discussed in detail in this section 
using examples where appropriate. The pseudo-code of the XS-Diff algorithm is 
presented in Table 2. 
Table 2 XS-Diff algorithm 

01  Input: XSDs s1 and s2 

02  Output: DELTA tables (mig_X, mov_X, del_ins_X, upd_X), where 
X is 

            a node type according to Definition 1 

03  /* Phase 1: find matching components */  

04  For each node n in s1 and s2 parsed schemas, do 

05      If ((class(n) == class(n)) and (path(n) == path(n))), 
then 

06          tmp_n = find_unique_n_path(); 

07  /* Phase 2: find migrated and moved components */ 

08  For each node n in s1 and s2, do {  

09      If (isElement(n)), then { 

10          mig_ed = find_gtl_ed() + find_ltg_ed(); //gtl: global 
to local 

11      } Else if (isAttribute(n)), then {          //ltg: local 
to global 

12          mig_ad = find_gtl_ad() + find_ltg_ad(); 

13      } Else if (isComplexType(n)), then { 

14          mig_ct = find_gtl_ct() + find_ltg_ct(); 

15      } Else if (isSimpletype(n)), then { 

16          mig_st = find_gtl_st() + find_ltg_st(); 

17      } } 
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Table 2 XS-Diff algorithm (continued) 

18  For each node n in s1 and s2, do { 

19      If (isComplexType(n)), then mov_ct = find_moved_ct(); 

20      Else if (isModelgroup(n)), then mov_mg = find_moved_mg(); 

21      Else if (isElement(n)), then mov_ed = find_moved_ed();   

22      Else if (isAttribute(n)), then mov_ad = find_moved_ad(); 

23      Else if (isSimpletype(n)), then mov_st = find_moved_st(); 

24      Else if (isFacet(n)), then mov_f = find_moved_f(); 

25      Else if (isAttributeGroup(n)), then mov_ag = 
find_moved_ag(); 

26      Else if (isGroup(n)), then mov_g = find_moved_g(); } 

27  /* Phase 3: find deleted and inserted components */ 

28  For each node n in s1 and not in s2, do { 

29      If (isElement(n)), then del_ins_ed = find_deleted_ed(); 

30      Else if (isAttribute(n)), then del_ins_ad = 
find_deleted_ad(); 

31      Else if (isComplextype(n)), then del_ins_ct = 
find_deleted_ct(); 

32      Else if (isSimpletype(n)), then del_ins_st = 
find_deleted_st(); 

33      Else if (isModelgroup(n)), then del_ins_mg = 
find_deleted_mg(); 

34      Else if (isFacet(n)), then del_ins_f = find_deleted_f(); 

35      Else if (isAttributeGroup(n)), then del_ins_ag = 
find_deleted_ag(); 

36      Else if (isGroup(n)), then del_ins_g = find_deleted_ 
g(); } 

37  For each node n in s2 and not in s1, do { 

38      If (isElement(n)), then del_ins_ed = find_inserted_ed(); 

39      Else if (isAttribute(n)), then del_ins_ad = 
find_inserted_ad(); 

40      Else if (isComplextype(n)), then del_ins_ct = 
find_inserted_ct(); 

41      Else if (isSimpletype(n)), then del_ins_st = 
find_inserted_st(); 

42      Else if (isModelgroup(n)), then del_ins_mg = 
find_inserted_mg(); 

43      Else if (isFacet(n)), then del_ins_f = find_inserted_f(); 

44      Else if (isAttributeGroup(n)), then del_ins_ag = 
find_inserted_ag(); 

45      Else if (isGroup(n)), then del_ins_g = find_inserted_ 
g(); } 
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Table 2 XS-Diff algorithm (continued) 

46  /* Phase 4: find updated components */ 

47  For each node n in s1 and s2, do { 

48      If (n  tmp_n table), then {                // n is 
populated by Phase 1 

49          If (isElement(n)), then upd_ed = find_updated_ed();  

50          Else if (isAttribute(n)), then upd_ad = 
find_updated_ad(); 

51          Else if (isComplextype(n)), then upd_ct = 
find_updated_ct(); 

52          Else if (isSimpletype(n)), then upd_st = 
find_updated_st(); 

53          Else if (isModelgroup(n)), then upd_mg = 
find_updated_mg(); 

54          Else if (isGroup(n)), then upd_g = find_updated_g(); 

55      } } 

For the reader’s convenience, a number of SQL queries used during the XS-Diff 
algorithm are mentioned as examples to show how the schema versions and delta 
changes are stored in XS-Rel relational tables. 

5.1 Phase 1: matching schema components 

In the first phase, we parse two XML Schema trees and match their respective 
components one by one. The matched components (pairs with the same unique path) are 
then stored in a corresponding temporary table introduced in Section 4.1. In addition, the 
system generates an id for the unique (shared) path and stores it along with its unique 
path (as per Definition 2) in the path table. This step is necessary to improve the 
efficiency and speed of the algorithm. The temporary tables are also used later by SQL 
queries to find moved, inserted, deleted and updated components. 

In what follows, we formally define the first phase of the change detection algorithm. 

Definition 4 (find matching components): Let N1 and N2 be two identical sets of nodes in 
the first and second trees, T1 and T2, of XML Schema, respectively. ni ∈ N1 and nj ∈ N2 
are matching components iff ni and nj have the same unique path [i.e. path(ni) = 
path(nj)]. 

Example: The unique path for the element E5 (node 12 in Figure 1), shared between the 
two trees T1 and T2, is #/schema#/CT[E4T]#/sequence#/element[E5]. 

Hence, we store the resulting match in a temporary table corresponding to the type of the 
matched components (in this example, tmp_element is the temporary table for the 
matched element nodes). Simultaneously, we store the unique path and the path id for the 
matched nodes in the path table. For parsing and matching the components, the 
algorithm runs a loop (from line 4 to line 6 of the algorithm in Table 2) that inspects the 
component type and, based on the type, invokes an appropriate SQL query. For instance, 
the query for matching element components is 
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INSERT INTO tmp_element  
SELECT e1.pathid, e1.name, e1.type, e2.type, e1.minO, 
e2.minO, e1.maxO, e2.maxO, e1.locO, e2.locO, e1.isRef, 
e2.isRef, e1.isGlob, e2.isGlob  
FROM element AS e1, element AS e2  
WHERE e1.vid = <vi> AND e2.vid = <vj> AND e1.pathid = 
e2.pathid 

where vi and vj represent the first and second versions, respectively, of the matched 
schema. After parsing the two schemas, storing components information and their 
matching paths, we proceed to the detection of migration and move phase. 

5.2 Phase 2: detection of migrated and moved components 

In this phase, migrated components are classified into (i) declaration components 
including element and attribute and (ii) type components including complexType 
and simpleType. For each category, migration occurs in two directions: global-to-
local and local-to-global. Then, all schema components (under study) are subject to 
move from their old positions in the first tree to new positions in the second, thus 
requiring move operations. As a result, this phase consists of 12 operations maintained in 
lines 8–26 of the algorithm in Table 2. 

5.2.1 Migration changes 
In XML Schema, if a component (e.g. element) moves from the top level of the 
schema to be locally defined under a content model (or vice versa), then it changes its 
scope. A migrate change does not exist between traditional XML document versions. 
Therefore, we devise it as a new type of change. 

Migration changes can be captured in element and attribute declarations (lines 9–12 
in the algorithm). For the global-to-local change, the element/attribute node declared at a 
top level of the schema tree is deleted and all its information (attributes such as name 
and type) will be mapped to the relevant local element/attribute node. On the contrary, 
the local (reference) of the component is not deleted in the local-to-global change  
of the element/attribute node. Instead, its name attribute will be replaced with the  
ref attribute, which refers to the name of the globally declared component. Formal 
definitions of declaration components are given in Definitions 5 and 6. 

Definition 5 (detect global-to-local migration of declaration component): Let DC1 and 
DC2 be two sets of declaration component nodes (element or attribute) from the 
first and second trees T1 and T2, respectively. Node dc ∈ DC1 is migrated from a global 
to a local definition iff dc has the same name and ref attributes in both T1 and T2, and 
it is global in T1 and local in T2. 

Example (attribute migration): An attribute A1 [node 2 in Figure 1(T1)] is migrated  
from a global definition to a local definition at node 9 in T2. To detect global-to-local 
migration of the previous attribute node, we execute the following SQL query. 
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INSERT INTO mig_attribute  
SELECT a1.pathid, a2.pathid, p1.pathexp, p2.pathexp, 
a1.name, a1.type, a2.type, a1.fixedV, a2.fixedV, 
a1.defaultV, a2.defaultV, a1.useV, a2.useV, a1.isGlob, 
a2.isGlob, a2.vid  
FROM attribute AS a1, attribute AS a2, path AS p1, path  
AS p2  
WHERE a1.vid = <vi> AND a2.vid = <vj> AND a1.name = a2.name  
AND a1.isGlob = 1 AND a2.isGlob = 0 AND a1.isRef = a2.isRef  
AND p1.pathexp IN (SELECT pathexp FROM path WHERE pathid = 
a1.pathid)  
AND p2.pathexp IN (SELECT pathexp FROM path WHERE pathid = 
a2.pathid) 

Definition 6 (detect local-to-global migration of declaration component): Let DC1 and 
DC2 be two sets of declaration component nodes (element or attribute) from the 
first and second trees T1 and T2, respectively. Node dc ∈ DC1 is migrated from a local to 
a global definition iff dc has the same name and ref attributes in both T1 and T2, and it 
is local in T1 and global in T2. 

Example (element migration): An element E6 [node 15 in Figure 1(T1)] is migrated  
from a local definition (under a complex type at node 13) to a global definition at  
node 20 in T2. 

Migration changes can also be identified for simple and complex type nodes (lines 13–
16 in the algorithm). For instance, to detect global-to-local type of migration, we find a 
type that is defined globally in the first tree and locally (as anonymous type) under 
element or attribute in the second tree. Generally, a formal definition of global-to-local 
type is as follows: 

Definition 7 (detect global-to-local migration of type component): Let TC1 and TC2 be 
two sets of type component nodes (simpleType or complexType) from the first and second 
trees T1 and T2, respectively. Let ED be a set of element nodes from T2, AD be a set of 
attribute nodes from T2, EDM be a set of temporary matched elements and ADM be a set 
of temporary matched attributes. Node tc ∈ TC1 is migrated from a global definition to 
local as a child of ed ∈ ED iff: 

• tc is global in T1 and local in T2; 

• its name in T1 is equal to the type definition of at least one element in ED [i.e. 
name(tc) = type(ed)]; 

• its parent node in T2 exists in the set of matched element nodes EDM [i.e. pPath(tc) = 
path(edm) where edm ∈ EDM]. 

Similarly, node tc ∈ TC1 is migrated from a global to a local definition as a child of  
ad ∈ AD iff: 

• tc is global in T1 and local in T2; 

• its name in T1 is equal to the type definition of at least one attribute in T2 (i.e. 
name(tc) = type(ad)]; 
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• its parent node in T2 exists in the set of matched element nodes ADM [i.e. pPath(tc) = 
path(adm), where adm ∈ ADM]. 

Example (simpleType migration): Consider T1 and T2 schema tree versions as depicted in 
Figure 3(a). Nodes S1 and S2 are simple types migrated from the global definitions in T1 
to be locally defined under E1 element and A1 attribute in T2, respectively. 

Figure 3 Examples of (a) simple type and (b) complex type migrations 
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Detecting the opposite migration changes (i.e. local-to-global migration) to types 
components is also possible. This time, the detection is done by reversing the previous 
definition as follows. 

Definition 8 (detect local-to-global migration of type component): Let TC1 and TC2 be 
two sets of type component nodes (simpleType or complexType) from the first and second 
trees T1 and T2, respectively. Let ED be a set of element nodes from T1, AD be a set of 
attribute nodes from T1, EDM be a set of temporary matched elements and ADM be a set 
of temporary matched attributes. Node tc ∈ TC1 is migrated from a local definition as a 
child of ed ∈ ED to a global definition iff: 

• tc is local in T1 and global in T2; 

• its name in T2 is equal to the type definition of at least one element in ED [i.e. 
name(tc) = type(ed)]; 

• its parent node in T1 exists in the set of matched element nodes EDM [i.e. pPath(tc) = 
path(edm), where edm ∈ EDM]. 

Similarly, node tc ∈ TC1 is migrated from a local definition as a child of ad ∈ AD to 
global definition iff: 

• tc is local in T1 and global in T2; 

• its name in T2 is equal to the type definition of at least one attribute in AD [i.e. 
name(tc) = type(ad)]; 

• its parent node in T1 exists in the set of matched attribute nodes ADM [i.e. pPath(tc) 
= path(adm), where adm ∈ ADM]. 
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Example (complexType migration): Consider node C2 depicted in Figure 3(b). This node 
is a complex type migrated from the local definition (as anonymous type under E1 
element) in T1 to become a global definition in T2 (node 6). 

5.2.2 Move changes 

Move is a critical operation in the majority of XML change detection methods. In our 
context, it can be classified into: (i) move among siblings under the same parent node 
(also named order change) and (ii) move to different parent nodes. Here, we study the 
second type and postpone the first one to the last phase of the algorithm. Note that the 
move to different parent nodes does not include the move from/to the top level of the 
schema tree because these changes are considered as migration changes discussed earlier. 

Any component of XML Schema can be moved either by itself or as a result of its 
parents moving. Table 3 shows the affected children nodes from a component 
migration/move. This observation is based on XML Schema syntax. As seen in this table, 
all components, except facet, are possibly internal nodes, so their child nodes are affected 
by the component change. 
Table 3 Affected children components from a component migration/move 

  Direct affected child components 
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element   √ √       
attribute   √        

simpleType          √ 

complexType  √   √ √ √ √ √ √ 

group       √ √ √  

attributeGroup  √    √     

sequence √    √  √ √   

choice √    √  √ √   

all √    √      M
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<facet>           

The idea behind the move operation, in general, is to check that the nodes (of the same 
type) being tested satisfy the following conditions: 

1 They are located in different positions. 

2 They have the same name. 

3 None of them falls in the migrated set. 

4 The parent path of the old one is part of the migrated/moved operation set of possible 
main components, listed in Table 3. 
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Based on the above conditions, we generically define the component move detection, 
then give one example for element component move with its SQL query. 

Definition 9 (detect moved component): Let C1 and C2 be two sets of nodes of the same 
component type (e.g. element or attribute) from the first and second trees T1 and T2, 
respectively. Let M be a set of migrated nodes of the same component type between T1 
and T2, MP be a set of possible migrated parent nodes of c1 ∈ C1 or c2 ∈ C2 (based on 
Table 3) and MVP be a set of possible moved parent nodes of c1 ∈ C1 or c2 ∈ C2 (based 
on Table 3). Node c1 is moved from an old position in T1 to a new one in T2 iff: 

• c1 and c2 have different paths [i.e. path(c1) ≠ path(c2)]; 

• c1 and c2 have the same name; 

• c1 and c2 do not exist in M [i.e. c1 ∉ M and c2 ∉ M]; 

• parent node of either c1 or c2 does not exist in MP; 

• parent node of either c1 or c2 does not exist in MVP. 

Example: Figure 4 demonstrates the element move operation as an example of the 
component move. As seen in the figure, elements E2 and E3 moved from nodes 5 and 6 
in T1 into 10 and 11 in T2, respectively. These two move operations are the results of the 
model group sequence (node 4) move operation. Note that sequence, in this example, 
is considered as an immediate parent node (which represents MVP in Definition 9) of the 
moved elements E2 and E3. 

Figure 4 Example of element move 
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5.3 Phase 3: detection of deleted and inserted components 
Intuitively, the deleted components are only available in the old tree version T1, whereas 
inserted components are only available in the new one T2. Based on the types of schema 
components introduced in Section 3.1, there are 12 types of operations for deleted  
and inserted components. Therefore, generic definitions for deleting or inserting  
the XML Schema components are provided. Deletions and insertions are maintained in 
lines 28–45 of the algorithm in Table 2. 

5.3.1 Deletion changes 
The idea behind detecting deletion changes for schema components is to eliminate the set 
of components existing in the old version T1 from three sets: matched nodes, migrated 
nodes and moved nodes. All components in this paper are considered deleted. 

We formally define a generic detecting of deleted components as follows. 

Definition 10 (detect deleted component): Let C1 and C2 be two sets of nodes of the same 
component type (e.g. element or attribute) from the first and second trees T1 and T2, 
respectively. Let MT be a set of matched nodes of the same component type between T1 
and T2, MG be a set of migrated nodes of the same component type between T1 and T2, 
and MV be a set of moved nodes of the same component type between T1 and T2. Node c1 
∈ C1 is deleted from T1 iff: 

• c1 does not have a matched node in C2 (i.e. c1 ∉ MT); 

• c1 does not exist in the set of migrated components MG (i.e. c1 ∉ MG); 

• c1 does not exist in the set of moved components MV (i.e. c1 ∉ MV). 

Example: Element E2 with node id 6 in Figure 1 is a deleted element node from T1 tree, 
since all deletion conditions are satisfied. 

Note that we store both delete and insert operations for the same component in one 
delta table as seen in Figure 2(b) (e.g. for elements, it is called del_ins_element) 
since both delete and insert operations share the same table structure. That is, it holds all 
information of the deleted/inserted component including the path where the node should 
be deleted from/inserted to, the type of an operation (del denotes to a deleted operation 
and ins means inserted one) and the second version id <vj> (of the compared schema 
versions) representing delta id. 

5.3.2 Insertion changes 
We can think of the insertion changes as the reverse of deletion operations. Inserted 
components are only available in the new version of the schema tree T2; therefore, the 
same technique is used here to find inserted components. We formally define the 
detection of insertion as follows. 

Definition 11 (detect inserted component): Let C1 and C2 be two sets of nodes of the same 
component type (e.g. element or attribute) from the first and second trees T1 and T2, 
respectively, MT be a set of matched nodes of the same component type between T1 and 
T2, MG be a set of migrated nodes of the same component type between T1 and T2, and MV 
be a set of moved nodes of the same component type between T1 and T2. Node c2 ∈ C2 is 
inserted to T2 iff: 
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• c2 does not have a matched node in C1 (i.e. c2 ∈ MT); 

• c2 does not exist in the set of migrated components MG (i.e. c2 ∉ MG); 

• c2 does not exist in the set of moved components MV (i.e. c2 ∉ MV). 

Example: Nodes 21, 22, 23 and 26 in T2 in Figure 1 are examples of element, 
complexType, sequence and facet insertions, respectively. 

5.4 Phase 4: detection of updated components 

The concept of an updated component in XML Schema has some similarities to an 
updated element in XML document. Some XML document change differencing methods 
consider the update operation for attributes and text nodes only because they are leaf 
nodes (Wang et al., 2003). For instance, attributes from both old and new versions are 
considered updated if their values are modified, meaning that the update operation is only 
measured on the attribute level. In our context of XML Schema, we define the update 
operation based on the node paths located in the path table. In other words, the path for 
the updated node should be available in both the old and the new versions of the schema 
tree, but here one or more of the node properties (XML Schema component attributes) 
might also have changed. 

To detect the update changes for any type of schema components, we check its 
corresponding temporary table (e.g. tmp_element is the temporary matching table for 
the element component) to see if there are any changes to its properties. Note that 
properties in this check do not include the node’s name since it is considered as a pair of 
insertion and deletion. We detect updated components in lines 47–55 of the algorithm in 
Table 2. 

The following definition is for detecting the updated components. 

Definition 12 (detect updated component): Let M be a set of matched nodes of the same 
component type given by Definition 4, P1 be a set of properties (e.g. type, minOccurs, 
maxOccurs or use) for each node in the schema tree T1 and P2 be a set of properties 
for each node in the schema tree T2. Node m ∈ M is updated iff ∀ pi ∈ P1 and pj ∈ P2,  
pi ≠ pj. 

Example: As a cardinality of E5 element changes, the value of its attribute maxOccurs 
at line 14 in Table 1(a) is updated from ‘5’ to become ‘10’ in the same node in  
Table 1(b). 

5.4.1 Order changes as updates 
As stated earlier, order change for schema components under the sequence model 
group can be captured in this phase. We simply compare (using the tree information 
generated by the XSOM parser) the position of the old component (e.g. element) with 
the position of the new one. If the positions are different, we report this as a component 
update. 
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6 Experimental results 

In this section, we evaluate XS-Diff algorithm by measuring three different factors: 
correctness, performance and result quality. The criterion of correctness means that the 
proposed algorithm can detect all the expected changes and generate the delta operations 
that are sufficient to transform the old tree into the new one. In other words, we  
measure how far the XS-Diff algorithm can capture XML Schema changes. Next, in the 
performance test, we measure the speed of the algorithm compared to the other available 
approaches. Finally, in the result quality, we test the minimality and the semantic 
correctness of the generated delta. 

We compare our approach to the Java version of XyDiff (called jxydiff; www.github. 
com/tanob/jxydiff) (Cobena et al., 2002b), X-Diff (www.cs.wisc.edu/~yuanwang/ 
xdiff.html) (Wang et al., 2003) and DeltaXML commercial tool (www.deltaxml.com/ 
products/core/demo.html). The selection of these methods is based on the availability of 
the source/tool, the similarity of the input format (XML in our case) and the aim of the 
resulting delta (to translate one version of XML into another). Although methods for 
XML schema differencing, such as DTD-Diff (Leonardi et al., 2007) and DiffDog 
(AltovaDiffDog; Altova.com, 2014), are available, we do not compare the algorithm with 
them for the following reasons. In the case of the DTD-Diff algorithm, the types of 
changes of DTD are different from the ones in XML Schema, while in DiffDog, the 
output file (XSLT) that is produced by the tool cannot be compared to our resulting delta. 
XSLT file can only be used to update the related XML data files, which is the main 
purpose of the tool. 

6.1 Experimental settings and data sets 

We implement the XS-Diff algorithm using SQL queries on MySQL 5.5.24-log RDBMS. 
XS-Rel tables are created to store both XML Schemas and their delta changes. We use 
the Java programming language with an XSOM parser (https://xsom.java.net) to parse 
and store the input schemas. We conduct all experiments on a computer running an Intel 
Core i7 2.30 GHz processor with 8 GB of memory and Windows 7 Professional as the 
operating system. 

We divide the data sets into synthetic and real-world XSDs. The synthetic XSDs 
listed in Figure 5 are modified from the ones available on W3C (www.w3.org/ 
TR/xmlschema-0) and DATYPIC (www.datypic.com/books/defxmlschema/examples. 
html) websites. The second versions of synthetic XSDs are generated manually since we 
are not aware of any publicly available XML Schema generator tools. It is quite difficult 
to find two XSD versions that represent all types of XML Schema changes. For this 
reason, we select samples that cover all XML Schema changes produced in this work. 
We also consider different schema design patterns (e.g. Garden of Eden or Venetian 
Blind) to examine the performance when XSD transforms from one pattern into another. 
For real-world data sets, seven XSDs with their second versions are downloaded from 
online open standards (www.oasis-open.org, www.idealliance.org, and www.oagi.org) 
and their characteristics are listed in Figure 6. 
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Figure 5 Synthetic data sets 

Dataset 
Number of components

Focus area 
ED  AD CT ST MG F GD AG

C01  18  6 4 2 4 2 0 0 ED and AD
C02  6  1 0 6 0 9 0 0 ST and F
C03  15  9 9 0 7 2 0 0 CT and MG
C04  14  1 3 0 4 0 0 0 MG and ED
C05  23  8 5 0 4 0 0 0 ED and AD
C06  8  6 2 0 5 0 6 4 GD and AG

(a) Different focus of changes 

Dataset 
Number of components File size 

(kb) 
# of 
nodes 

% of 
changes ED  AD  CT ST

MAILS01  84  47  36 14 19 274 0.00 
MAILS02  84  46  36 14 20 273 5.48 
MAILS03  87  45  35 13 23 275 16.39 
MAILS04  86  44  35 15 26 277 31.22 
MAILS05  70  41  29 12 28 247 44.15 
MAILS06  72  45  27 12 30 247 56.81 
MAILS07  67  41  28 14 33 251 77.14 
MAILS08  129  55  35 17 46 398 90.03 

(b) Different percentage of changes (the scalability test) 

Dataset  Design pattern Number of components File size 
(kb) 

# of 
nodes ED AD CT ST

LIB01  Garden of Eden 121 48 25 12 14 267 
LIB02  Venetian Blind 65 28 25 12 12 191 
LIB03  Salami Slice 121 48 25 12 13 267 
LIB04  Russian Doll 65 28 25 12 21 191 

( ) iff d i
 

Figure 6 Real-world data sets. (a) Real XSD characteristics; (b) execution time (sec) 

 
Dataset  Version 

Number of components File 
size 
(kb) 

AVG 
nodesED  AD  CT  ST 

3gpp 
1  30  0  9  5 6

86
2  33  0  10  6 7

mismo  1  16  71  16  15 43 870
2  177  1  23  21 59

pidx 
1  1133  62  153  73 112

2332
2  1150  93  164  83 127

AML 
1  1432  46  343  123 311

5098
2  1381  46  346  126 309

OAGi 
1  4543  208  964  377 455

82052  4551  208  965  379 457

papinet 
1  5687  617  926  433 710

15042
2  5863  658  965  448 737

TXLife  1  12526  1732  1144  598 1149 18525
2  12680  1753  1158  606 1164

 

Dataset XS‐Diff X‐Diff XyDiff 
3gpp 0.055 0.016 0.112 
mismo 0.126 0.88 2.289 
pidx 0.3 0.107 3.739 
AML 0.447 0.538 10.192 
OAGi 0.961 0.588 8.418 
papinet 4.17 2.274 14.522 
TXLife 2.49 5.167 19.932 

(a)   (b) 
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Table 4 Proposed edit operations (grouped by component) and their application on data sets 
(C: covered change, EO: expected occurrences, DO: detected occurrences) 
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Table 4 Proposed edit operations (grouped by component) and their application on data sets 
(C: covered change, EO: expected occurrences, DO: detected occurrences) (continued) 
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6.2 Correctness analysis 

Correctness, as suggested by Cobena et al. (2002a), can be defined as a property which 
ensures that the differencing algorithm can find a set of operations that is sufficient to 
transform the old version into the new version of the XML document. This definition 
holds true in the XS-Diff algorithm because the inputs (XML Schemas) are mainly in 
XML document format. In order to verify the correctness of our algorithm, we run the 
experiments on the data sets (https://drive.google.com/file/d/0By77KsJuXVdcRjg1 
N0p6WDVNVlU/edit?usp=sharing) listed in Figure 5(a). On each data set, we target a 
particular segment of XML Schema components and simulate the relevant changes. The 
list of change operations grouped by the schema component is introduced in Table 4. 

In C01 and C05 data sets, we focus on element and attributes changes. C01 uses the 
schema versions S1 and S2 in Table 1. The test contains 14 kinds of change operations 
with the expected occurrences of those operations at 31. As can be seen in column 
C01(DO) in Table 4 (DO denotes to detected changes), XS-Diff detects all expected 
changes ( )EO DO=∑ ∑ . Thus, XS-Diff succeeds in finding changes to this particular 

part of the schema. C05, on the other hand, demonstrates element and attribute changes 
with the existence of references. Again, the algorithm finds all the changes and reports 
them correctly. 

In the C02 data set, we demonstrate simple type and restriction facet changes. The 
results here were also promising since XS-Diff was able to detect all targeted changes 
and report 24 total occurrences of these changes [see column C02(DO)]. 

We focus on complex type and model group changes in the C03 data set. As shown in 
column C03, the total amount of 25 expected changes (EO) are detected in addition to six 
more operations. This is because move operations in certain element and attribute nodes 
are counted as a pair of insertion and deletion operations. Although this will reduce the 
optimality of the algorithm, it will not affect the correctness of the algorithm, meaning 
that the resulting changes can still be used to generate a new version. 

The C04 data set is dedicated to detect changes in a specific model group nesting 
structure. The consequences on other operations, such as element order change, are also 
tested. It mainly studies the situation where the model group (i.e. sequence or 
choice) is inserted as a child under another model group in the second version of the 
schema. The possibility of detecting deleted nested groups is also studied. It can be seen 
in column C04 in Table 4 that the XS-Diff algorithm detects 12 change occurrences 
correctly. 

Attribute group and model group definitions are considered in the C06 data set. In 
this case, we test the ability of XS-Diff to find changes to attributeGroup and group 
nodes and their related components. As seen in column C06, the system clearly detects 
all the related changes in the groups. 

6.3 Performance 

6.3.1 Execution time vs. percentage of changes 

In this set of experiments, we study the effects of the percentage of changes on the 
execution time of XS-Diff, XyDiff and X-Diff. We do not compare this with DeltaXML 
since the source code and the algorithm are not available. The MAILS01 data set (shown 
in Figure 5b) is used as a first version of the XSD. We vary the percentage of changes 
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from ‘5.48%’ to ‘90.03%’. Figure 7(a) depicts the performances of the compared 
algorithms. Recall that in XS-Diff, we use relational tables to store the parsed XML 
Schema components. The storage can be achieved by using different database systems; 
therefore, it is not affected by the database performance itself. For this reason, we 
exclude the time for the parsing phase from all compared approaches. We notice that XS-
Diff is faster than XyDiff during this test. XS-Diff is slower than X-Diff for the first four 
data sets when the percentage of changes are ‘5.48%’, ‘16.39%’, ‘31.22%’ and 
‘44.15%’. When ‘56.81%’ of XSD is changed, XS-Diff is nearly similar to the X-Diff 
approach. After this, XS-Diff outperforms X-Diff in the remaining data sets. 

6.3.2 Execution time vs. pattern switch 

XML Schema can be designed using four different patterns: Garden of Eden, Venetian 
Blind, Salami Slice and Russian Doll. The aim of this test is to study the performance of 
XS-Diff, X-Diff and XyDiff when the same XSD is transformed from one design pattern 
to another. The synthetic data sets ‘LIB01’ to ‘LIB04’ depicted in Figure 5(c) are used 
for this purpose, where only migration and move of type definitions and element/attribute 
declarations are applicable. The performance of this test is plotted in Figure 7(b). Note 
that ‘1-2’ in the horizontal axis represents the switch from ‘LIB01’ to ‘LIB02’ and so 
forth. Again, XS-Diff outperforms XyDiff along all data set switches but is not as fast as 
X-Diff. 

Figure 7 Experimental results. (a) Time vs. percentage of changes; (b) time vs. pattern switch; 
(c) time vs. number of nodes; (d) result quality 

    
                                 (a)                                                              (b) 

    
                                   (c)                                                       (d)  
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We observe that the performance of XS-Diff and X-Diff is quite similar at the ‘1-2’ 
pattern switch, i.e. when XSD is transformed from the Garden of Eden to Venetian Blind 
fashion. As we mentioned before (in the literature survey chapter), X-Diff supports seven 
types of operations. In the pattern switch test, the main operations detected by X-Diff are 
sub-tree delete followed by sub-tree insert, which group a set of atomic operations  
(e.g. possible internal name, type or minOccurs attribute changes). As a result, the 
number of operations is small compared to XS-Diff, which goes further and explore more 
types of changes convenient to XML Schemas. For example, in the ‘1-4’ case (Garden 
of Eden to Russian Doll), all global definitions and declarations of the schema change to 
local. X-Diff records changes as 114 sub-tree element deletions followed by 1 sub-tree 
element insertion of the root element containing all changes. Thus, X-Diff is much faster 
but less expressive than XS-Diff (in terms of providing more detailed delta). 

6.3.3 Execution time vs. number of nodes 

The performance of XS-Diff and other algorithms is also studied using real-world XSDs. 
Figure 6(a) depicts the characteristics of seven real-world data sets. For each data set,  
we download two successive versions 1 and 2. To measure the performance against the 
number of nodes, the average number of nodes from the two versions is taken. The 
results of this test are given in Figure 7(c). 

Figure 7(c) shows the performance of XS-Diff compared to X-Diff and XyDiff. At 
the beginning, all the algorithms display almost the same level of performance. This is 
because XSDs in this data set have few nodes (less than 100), so they do not need much 
time to be processed. At the ‘mismo’ data set (see row 2 in Figure 6b), XS-Diff 
outperforms X-Diff and XyDiff. The number of inserted elements and restriction facets 
in that data set is relatively high. XS-Diff treats these insertions as an atomic operation, 
whereas X-Diff handles it as sub-tree insertions for both elements and facets. Thus, XS-
Diff requires less time to execute. For up to 5000 nodes, XS-Diff and X-Diff show the 
same performance, but after this, X-Diff becomes better than XS-Diff. Surprisingly, in 
the last data set, ‘TXLife’, with an average of 18,525 nodes, XS-Diff outperforms X-
Diff with less execution time by around 2.5 seconds. Again, this is mainly because of the 
characteristics of the XSD versions being compared. For instance, the majority of 
elements and attributes are defined globally with no built-in types in the TXLife data 
set. For the XS-Diff algorithm, it is easy to store and match nodes of the same class, 
especially if they do not have sub-tree nodes. In contrast, the X-Diff algorithm handles 
each element declaration change as a sub-tree insertion and deletion. Given this fact,  
X-Diff is best suited to detect changes occurring at the leaf nodes (the content) of the 
trees but not the internal nodes (the structure). 

6.4 Result quality 

In this set of experiments, we study the result quality of the delta generated by XS-Diff 
from two different perspectives: minimality and semantic correctness of the generated 
operations. Minimality can be defined by the minimum number of edit operations versus 
the optimal number. Semantic correctness, on the other hand, is the property that ensures 
that the algorithm can generate delta relevant or close to XML Schema changes. 
Although the notion of minimality is important in some applications to save space 
required for storing changes, it becomes less significant if the generated changes are 
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semantically incorrect, especially in our context of XML Schemas. Therefore, both 
minimality and semantic correctness are discussed in the following subsections to 
analyse result quality. 

6.4.1 Minimality 

With the previous definition of minimality in mind, we calculate the result quality from 
the ratio between the number of change operations found by XS-Diff and the optimal 
number. In order to count the optimal operations for each test, we propose a set of 
minimal operations in Table 5, based on the basic operations of insert, delete, update and 
move that are supported by the majority of previous works on XML change detection. 
These operations are not only applicable on XML Schema changes but also on XML 
documents in general. Therefore, we use it as a guideline for introducing the optimal 
operations for the schema. In other words, the set of optimal operations guarantees the 
ideal number of operations required to perform each change. Based on this, we test the 
result quality of the generated operations through the synthetic data sets in Figure 5(a) 
and the ratio is plotted in Figure 7(d). 
Table 5 Minimal operations required for XML schema changes (abbreviations ED, AD, CT, 

ST, MG, F, GD, AG are based on Definition 1) 

No. XML Schema  
operation 

Basic  
operation/s Description 

1 ED or AD global-to-local 
migration 

1 delete and 
1 update 

Global node is deleted and local node is 
updated 

2 ED or AD local-to-global 
migration 

1 insert and 
1 update 

Global node is inserted and local node is 
updated 

3 CT or ST global-to-local 
migration 

1 move and 
1 update 

Global node is moved to be under another 
node in the tree and local parent node 
property is updated 

4 CT or ST local-to-global 
migration 

1 move and 
1 update 

Local node is moved to the top level in the 
schema tree and the property of the parent  
of the local node is updated 

5 ED, AD, CT, ST, F, MG, GD, 
or AG move 1 move 

Node is moved from the old position to  
the new position between the schema tree 
versions 

6 
ED, AD, CT, ST, F, MG, GD, 
or AG deletion (does not 
include deleted nodes in no. 1)

1 delete Node is deleted from the old schema tree 
version 

7 

ED, AD, CT, ST, F, MG, GD, 
or AG insertion (does not 
include inserted nodes in  
no. 2) 

1 insert Node is inserted to the new schema tree 
version 

8 

ED, AD, CT, ST, MG, GD, or 
AG update (does not include 
updated nodes in no. 1, 2, 3, 
or 4) 

1 update Node is updated at the new schema tree 
version 

We observe that XS-Diff is capable of detecting optimal or near-optimal delta changes. 
The ratio of X-Diff ranges from 0.4 to 1.0. This is because X-Diff supports two 
composite operations on non-leaf nodes: insert sub-tree and delete sub-tree. Although 
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composite operations can clearly minimise the delta by combining atomic operations, 
such as insert and delete, it may lead to deltas that are semantically incorrect. Semantic 
correctness is further discussed in the next section. In XS-Diff, such operations are not 
supported since the proposed changes are limited to schema component nodes. The ratio 
of XS-Diff resembles the optimal one in the C01, C02, C04 and C05 cases, and slightly 
above the optimal one in C03 and C06. This can be explained by generating a move  
(in certain situations) as a sequence of deletion and insertion operations. At the time of 
writing, XS-Diff supports a move operation when there is no copy of the same node at 
the target schema or the node still has the same parent at the target schema. 

6.4.2 Semantic correctness 

We provide an explanation of the semantic correctness using the following example. 
Consider the two element declarations E2 and E3 at nodes 6 and 7, respectively, in T1 
in Figure 1. They are joined together under the new element named E8 at node 21 in T2.  
X-Diff does not perform any particular investigation for this part of the tree. Instead, it 
deletes the sub-tree rooted at node 4 (E1T complex type) affected by these changes from 
the old version T1 and inserts the updated sub-tree to the new version T2. Similarly, 
DeltaXML updates the name of the first element E2 in the old version to the new value 
E8 in the new one and inserts the complex type sub-tree rooted at node 22 to the new 
version. However, the changes detected by these methods are semantically incorrect. 
More meaningful operations (with respect to XML Schema) would have been able to 
accomplish a host of other functions, such as insert the element declaration E8 at node 
21, insert its complex type at node 22, insert the sequence model group at node 23, 
insert both elements E2 and E3 into their new positions 24 and 25, respectively, and 
finally, remove E2 and E3 from their old positions 6 and 7 in T1. 

7 Conclusion 

Since existing tools for differencing general trees or XML documents are not designed 
for detecting changes to XML Schemas, they do not take the semantic and structural 
issues of such input schemas into account. In this paper, we present an approach for 
detecting meaningful changes to XML Schemas (XSDs) using relational databases. Our 
method is based on building an efficient relational model (XS-Rel) to store and compare 
XML Schemas. We also propose the XS-Diff algorithm as a new technique for XML 
Schema differencing. The algorithm is shown to be useful in several applications 
including (i) the revalidation of XML documents when their schema evolves, (ii) the 
incremental maintenance of relational schema generated by schema-conscious approach 
for storing XML data and (iii) the traditional support of XML versioning. XS-Diff takes 
two XSDs representing the old and the new version as input and generates a set of 
changes (stored in delta tables) containing the differences between the two versions. The 
key feature of XS-Diff is that it computes the changes by considering the tree structure of 
XML Schema. 

In this study, we have proved the correctness of the proposed algorithm by testing it 
on both synthetic and real-world XSDs. In addition, we examined the performance and 
result quality in comparison to other XML document change detection tools, such as  
X-Diff, XyDiff and DeltaXML. We observed that the performance of XS-Diff is 
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comparable to X-Diff and much better than XyDiff. This can be illustrated by the new 
suggested operations (global-to-local and local-to-global migrations) that aggregate the 
atomic move and update operations. We also noticed that both X-Diff and DeltaXML 
produce deltas that fall below the optimal mark. This is because both tools are mainly 
designed for XML documents but not for schemas. On the other hand, XS-Diff produces 
optimal or near-optimal deltas and the resulting deltas allow the description of XML 
Schema changes in a more meaningful way. 

As a future work, we aim to investigate the problem of XML Schema versioning. We 
will use the change detection method produced in this paper to develop a more robust 
versioning model for XML Schemas. We also aim to solve related issues of schema 
merging and conflict resolution. 
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