

 58 Int. J. Web and Grid Services, Vol. 6, No. 1, 2010

 Copyright © 2010 Inderscience Enterprises Ltd.

Using semantics for XPath query transformation

Dung Xuan Thi Le*
Department of Computer Science and Computer Engineering,
La Trobe University,
Bundoora, Victoria 3083, Australia
E-mail: dx1le@students.latrobe.edu.au
*Corresponding author

Stephane Bressan
School of Computing,
Law Link National University of Singapore,
117590, Republic of Singapore
E-mail: steph@nus.edu.sg

David Taniar
Clayton School of Information Technology,
Monash University,
Clayton, Victoria 3800, Australia
E-mail: David.Taniar@infotech.monash.edu.au

Wenny Rahayu and Eric Pardede
Department of Computer Science and Computer Engineering,
La Trobe University,
Bundoora, Victoria 3083, Australia
E-mail: w.rahayu@latrobe.edu.au
E-mail: e.pardede@latrobe.edu.au

Abstract: In this paper, we propose a typology of the semantic transformations
for XPath queries. We focus on two main areas. The first is structural
transformation for XPath query, which can be semantically contracted,
expanded or complemented using structural constraints. The second is semantic
qualifier transformation where the predicates, specified by [], in an XPath
query can be eliminated or transformed. We design a set of algorithms
and implement a prototype system for evaluation. We adopt two representative
off-the-shelf XML data management systems to validate the effectiveness of
the semantic transformations.

Keywords: XPath; semantic transformation.

Reference to this paper should be made as follows: Le, D., Bressan, S.,
Taniar, D., Rahayu, W. and Pardede, E. (2010) ‘Using semantics for XPath
query transformation’, Int. J. Web and Grid Services, Vol. 6, No. 1, pp.58–94.

 Using semantics for XPath query transformation 59

Biographical notes: Dung Xuan Thi Le graduated with a Degree in Computer
Science from Swinburne University of Technology in 1993. She received
her Master Degree from Latrobe University in 2006 and currently is a PhD
candidate, at the same University. Her research interests include object-oriented
data modelling, data warehousing and XML query performance. She has had
publications in international conference proceedings and journals.

Stéphane Bressan is an Associate Professor in the Computer Science
Department at the National University of Singapore and Principal Investigator
at the Centre for Maritime Studies. He received his PhD in Computer Science
in 1992 from the University of Lille. In 1990, he joined the European
Computer-industry Research Centre (ECRC). From 1996 to 1998, he was
Research Associate at the Sloan School of Management of the Massachusetts
Institute of Technology (MIT). His research interest is the integration and
management of information

David Taniar holds Bachelor, Master, and PhD Degrees – all in Computer
Science, with a particular specialty in databases. His current research interests
include mobile/spatial databases, parallel/grid databases, and XML databases.
He recently released a book: High Performance Parallel Database Processing
and Grid Databases (John Wiley & Sons, 2008). His list of publications
can be viewed at the DBLP server (http://www.informatik.uni-trier.de/~ley/
db/indices/a-tree/t/Taniar:David.html). He is a founding Editor-in-Chief
of Mobile Information Systems, IOS Press, The Netherlands. He is currently
an Associate Professor at the Faculty of Information Technology,
Monash University, Australia.

Wenny Rahayu is an Associate Professor at the Department of Computer
Science and Computer Engineering LaTrobe University. Her research areas
cover a wide range of advanced databases topics including XML databases,
spatial and temporal databases and data warehousing, and semantic web
and ontology. She is currently the Head of Data Engineering and Knowledge
Management Laboratory at La Trobe University.

Eric Pardede completed his Doctor of Philosophy in Computer Science and
Master of Information Technology from La Trobe University. He has published
his research works in various books, international journals and conference
proceedings. Currently, he is a Lecturer in Software Engineering and Database
at La Trobe University, Melbourne, Australia.

1 Introduction, motivation, contribution and framework

Semantic query transformation (Hammer and Jdondik, 1980; King, 1981; Shenoy and
Ozsoyoglu, 1987; Deutsch et al., 2006) is the process of rewriting, with the knowledge of
some integrity constraints, a query into an equivalent one. While the transformed query
under semantic query optimisation aims to achieve a better performance – such as more
efficient processing – the transformed query under semantic query transformation aims
to achieve a better query structure and may provide some opportunities for optimisation.
The concepts have been popularised for relational, object-oriented, deductive and even
object-relational databases; hence, it is also useful for XML databases, especially with the
current availability of rich semantics in XML schema. This has renewed interest in the
study of semantic query transformation and optimisation for XML query languages such

 60 D. Le et al.

as XPath, XQuery and possibly the optimisation of programs in XML languages such
as XSL.

Semantic query optimisation for XML queries has been studied by Deutsch et al.
(2006), Su et al. (2004, 2005) and Sun and Liu (2006). The Chase and Back (C&B)
algorithm (Deutsch et al., 2006) was suggested for reformulating XPath query by using
the relational encoding and constraints in a Document Data Type (DTD) schema.
The second contribution (Su et al., 2004, 2005) was concerned with XQuery for stream
databases where a pruning tree was proposed for structural rewriting.

Earlier work on XML query optimisation focused extensively on pruning and
minimisation (Amer-Yahia et al., 2001; Su et al., 2004, 2005; Sun and Liu, 2006;
Wood, 2001, 2003) using tree patterns. A tree pattern that presents an XPath query is
known as a query tree pattern (Al-Khalifa et al., 2002). One of the most popular
and efficient techniques for processing a query tree pattern is known as pattern matching
(Smiljanic et al., 2005). Certain structural constraints such as edges representing
relationships between tree nodes are applicable.

XPath queries also allow predicates (Gupta and Suciu, 2003). However, predicates
(Le and Pardede, 2009) in XPath queries are more complex than predicates in relational
queries. They not only allow relationships between the tree data nodes, but also they
allow values to restrict the content of elements. Very often, users specify XPath queries
that unintentionally create redundancies, which could lead to a performance issue.

The motivation behind our work is the importance of tree pattern and rich data
semantics available in the XML schemas, which have renewed rewriting opportunities.
The XPath expressions can be, for instance, contracted or expanded with the knowledge
of the structural constraints of XML schema. For example, the XPath query “a/b/c”
can be contracted to “//c” if a schema indicates that c is always immediately preceded
by a/b or vice versa; that allows the path “//c” to be expanded into “a/b/c” using the same
knowledge.

With the knowledge of structural and occurrence (Biron et al., 2004) constraint, for
example, the XPath query “a/b[c/d]/f” can be contracted to a path “a/b/f”. That is, only
when a schema indicates that c and f are always immediately preceded by a/b and the
minimal occurrence of c under b must be at least 1, the same as the minimal occurrence
of d under c. Such constraints allow the elimination of [c/d] to produce “a/b/f”.
In any XML schema (XSD), apart from structural or identity constraints (Biron et al.,
2004), other constraints are considered very useful for semantic transformation
categorised as the faceting constraints (Biron et al., 2004). This is a type of constraint
applicable to leaf-node elements. For instance, an XPath query “/a/b[. =‘valueA’ or .
=‘valueB’]”; this XPath query has a predicate [. =“valueA” or .=“valueB”].
This predicate can be removed if the values {valueA, valueB”} are the exact matched
values of element b specified in the associated schema (XSD) within an XML document.

Another interesting study we discover for semantic transformation is when an XPath
query uses a context sensitive function (Berglund et al., 2007) such as position(), last(),
first(). We find that certain constraints can be useful for transforming XPath expressions
where a context-sensitive function in an XPath query is eliminated to boost the
performance. For instance, an XPath query ‘a/b[//d[position()>=1]]/f’ indicates a nested
predicate [position()>=1] with the outer predicate being [//d]. This XPath query simply
lists all the ‘f’ information where each ‘b’ is the ancestor and it must have at least one ‘d’
as descendant. To transform this type of query, we first look at the path ‘//d’ in the outer

 Using semantics for XPath query transformation 61

predicate to determine whether the path is valid and therefore it would be better to use
‘//’, or whether ‘//’ can be transformed to a full conditional path ‘c/d’.

To transform both predicates, we must employ the structural constraint as well as the
occurrence constraint between ‘b’ and ‘c’, as well as between ‘d’ and ‘f’. If verification
indicates that the constraints in the schema conform to the constraints used in XPath
query for those mentioned elements, and if the minimal occurrence of ‘d’ under ‘c’ and
‘c’ under ‘b’ is 1, then a possible semantic XPath query is ‘a/b/f’.

To the best of our knowledge, the techniques for semantic transformation described
above have not as yet been addressed for XPath query. Although our literature survey
indicates that numerous works have tackled XML query optimisation (refer to Table 1)
with the presence of schema, none of the existing works overlaps our techniques.

Table 1 Summary of semantic query transformation/optimisation

Author(s) Approach Schema constraints
Amer-Yahia et al. (2001) Minimisation of Tree

Pattern Query (TQP)
Subtype, required child and required
descendants

Ramanan (2002) MinimiseChase Subtype, required child and required
descendants

Chen and Chan (2008) Minimisation of Tree
Pattern Query (TQP)

Subtype, required child, required
descendant, required parent, required
ancestor and sibling constraint

Sun and Liu (2006) Ontology
conceptualisation

Object Oriented semantics in the
XML schema

Su et al. (2004, 2006)
and Li et al. (2008)

Tree query technique Structural constraints apply to the
traversal of the Tree Pattern Query to
determine predicates that does not
contribute to the final result

Coen et al. (2004)
and Wang et al. (2003)

Path complementing and
path shortening

Use schema labelling to derive
schema paths

Our contribution is as follows:

1 We derive a typology of semantic path transformations (Le et al., 2007) including
semantic path expansion, semantic path contraction and semantic path complement
to transform an XPath query that has no predicate.

2 We introduce another typology of semantic predicate transformation that consists
of semantic content-based predicate1 and semantic index ordinal predicate2
to transform the predicates in an XPath query.

3 We then design two algorithms for semantics pre-processing preparation
and our proposed semantic transformation typologies.

4 The evaluation of these proposed transformations will be carried out
by comparatively evaluating the performance of the workload of XPath queries
and their transformations. We use two systems representative of the state-of-the-art
XML database management and query processing systems: a Native XML Database
System (referred to as XMS) and an XML-Enabled Relational Database System
(referred to as XDB). Finally, we discuss and analyse the results and outline the
future work.

 62 D. Le et al.

Below is the summary of our framework to achieve the contribution described above.

• First, as a criteria for structural query information, we study the path fragment
[/, //, …, *].

• Second, as criteria for structural query expression, we revisit the notion of pattern
matching (Al-Khalifa et al., 2002) alignment with structural constraints, which
makes a significant impact on our semantic transformations.

• Third, we look into a series of constraints from the XML schema (Biron et al., 2004)
to select the most useful constraints that are imperatively suitable for our semantic
transformations. For transforming an explicit structural expression, the semantic path
transformation, constraints/semantics (‘/’ parent-child, ‘//’ ancestor-descendant) are
used. To optimise the performance of the semantic path transformation typology,
we integrate the notions of pattern matching and canonical rewriting with semantic
path expansion, semantic path contraction and semantic path complement.
For transforming predicates, we study the facet constraints (Biron et al., 2004) for
data element to support our proposed semantic qualifier transformation typology
including semantic content-based predicate that holds the leaf-node with values
for filtering; and a semantic index ordinal predicate for predicates that hold the
position(), last() or an index.

• Four, we provide two main algorithms. The first algorithm plays an important role
in preparation such as pre-processing the schema information and efficiently storing
it in well-designed data structures so that information can be easily obtained and
used by the second main algorithm. This second algorithm is central to the work
of this paper. Not only are all the proposed semantic transformations implemented
in this algorithm, but also the algorithm is able to determine whether the XPath query
returns an answer well before it is transformed or even sent to the database for query.
Such a query indicates a conflict in semantics, such problem also studied by
satisfiablity (Groppe and Groppe, 2006), either in structural expression or data
content. The success of the semantic transformations of queries depends
considerably on the derivation of such an algorithm.

• We evaluate the potential of these transformations by comparatively evaluating
the performance of the workload of XPath queries and their transformations.
To achieve better confidence in comparative results, we use two systems
representative of the state-of-the-art XML database management and query
processing: a Native XML Database system (we refer this to as XMS through out
this paper) and an XML-Enabled Relational Database system (we refer this as XDB).

• Finally, we present the conclusion and the future roadmap for this work.

The semantic transformation work is considered to be a studied and traced path to
semantic optimisation for query processing dealing with XML databases. Its main goal
is not immediate optimisation, but rather to achieve an alternative way of writing the
XPath query. Some transformations may produce very promising improvement, thereby
providing opportunities for semantic query optimisation.

This paper significantly extends the existing work (Le et al., 2007), which was
introduced to address only semantic path transformation using a unique path, by more
than 90%. The remainder of this paper is organised as follows: Section 2 is an overview

 Using semantics for XPath query transformation 63

of related work on semantic query optimisation in general and of semantic query
optimisation for XML query. Section 3 sheds light on the terminologies, problems and
notions of query pattern; Section 4 defines the typology of semantic transformations;
Section 5 describes the implementation and evaluation system including the algorithms;
Section 6 discusses the results and analyses the comparative empirical performance
evaluation. Lastly, we summarise our findings and outline future work in Section 7.

2 Related work

While semantic transformation is the process of rewriting all given queries despite the
presence of data in the database, the status of performance of the transformed query is not
determined before the query is transformed. Unlike semantic transformation, semantic
optimisation is the process of selectively rewriting a query, which is undertaken only
if the status of the performance can be determined before the query is transformed.
The earlier contribution to this area was not able to clarify the difference between the
two concepts, thereby producing misinterpretation.

Semantic notation proposed for processing queries made an initial contribution to the
research area of semantic query optimisation (Hammer and Jdondik, 1980; King, 1981).
Although these contributions are the conceptual frameworks for semantic query
optimisation, they were extended to the design of a broader range of methodology
and rules that have grown and developed quickly as a result of later works. A typology
for semantic query rewriting (Charkravarthy et al., 1990) has been dispersed including
literal insertion, literal elimination, and range modification (modification of a condition).
The work has acknowledged the important role of semantic query rewriting. That is,
some queries can be answered without having to access the database (typically when a
contradiction is exposed in the query, which, consequently, denotes an empty answer).

Literal insertion and elimination techniques have become more common practice.
Queries are formed with some simple predicates; therefore, they are easily determined
for the removal of redundant checking conditions or to introduce more restrictions
to avoid the use of disproportionate search space. On the other hand, range modification
is an exhausting process, which may become a recursive problem. Due to this reason,
we propose to study the literal insertion and literal elimination and apply them in XML
queries.

Minimisation of tree pattern queries was introduced by Wood (2001) and
Amer-Yahia et al. (2001). Although their work did not utilise any integrity constraints
in its minimisation technique, it later drew the interest of, and was further investigated
by Ramanan (2002). These works introduced integrity constraints to improve query
run-time of tree pattern queries.

Two different proposed techniques including Minimisation and MinimisChase used
the same integrity constraints. Minimisation (Amer-Yahia et al., 2001) of Tree Pattern
Query (TPQ) was proposed to improve the query run-time and included integrity
constraints. Subtype, child or descendants were utilised in this technique. With respect to
the number n nodes regarded as a query size, their algorithm produced a run-time O(n6).

The later work proposed the MinimiseChase technique (Ramanan, 2002) which
improved the run-time, achieving O(n4) in the presence of the same set of integrity
constraints. Further to Ramanan’s (2002) investigation, this work took the additional
step of eliminating the subtype constraint from the algorithm. This left only what was

 64 D. Le et al.

considered the required child or required descendant, and their algorithm achieved a
better run-time of O(n4). However, both techniques (Amer-Yahia et al., 2001; Ramanan,
2002) had shortcomings. Firstly, they considered integrity constraints in optimisation,
which is only part of the whole optimisation. Secondly, they focused on structural
constraints and thirdly, even with their consideration of structural constraints, neither
technique was able to handle any constraints other than three: subtype, required child and
required descendants.

To overcome the problem of integrity constraints limitation in the minimisation
of TPQ (Chen and Chan, 2008) explored the minimisation problem of TPQ further
for a class of FBST-constraints including forward (required child, required descendant),
backward (required ancestor and required parent), subtype and sibling constraints.
To deal with the backward and sibling constraint, their ChaseMinimiseFBST algorithm
computes a single minimal query of an input query Q with respect to a set of
FBST-constraints and it achieved a run time of O(n3|Σ|) where n is query size and Σ is a
set of distinct element types in the constraints. Although this work has increased the
number of structural integrity constraints to be considered for the minimisation of TPQ,
and the run-time was better than that of earlier works (Amer-Yahia et al., 2001;
Ramanan, 2002), the obvious shortcoming is the inability to support anything more than
those integrity constraints that are already listed. Their limitation of constraints, which
recognised those distinct element types, means no recursive type support.

Optimising XQuery using Semantic query optimisation was part of the proposed
optimisation work for RainDrop (Su et al., 2006; Li et al., 2008) and R-SOX (Wang
et al., 2006). Their goal was to use schema constraints to deal with query pattern in
predicates, which they believe do not contribute to the final result. The problem with this
work is that the technique is tight-coupled DTD schema. Other than structural constraints,
constraints of data elements are not part of their semantic optimisation work.

Let us consider a query ‘//auction[reserve or bidder/zipcode contains “9000”]’.

This existing work provides no discussion about the constraint (for example a zipcode
must be between 1000–6000) that can determine how such a given value in the predicate
can cause a null result set. This would contribute to the performance if the query has to
access a large database in order to receive the result. This is due to their focus mainly on
structural constraints to expedite the traversal of the steam to avoid unnecessary
computation of the final result. Providing support for constraints of data elements is not
within the scope of their work.

In addition to the aforementioned limitations of this work, although it proposed
to deal with semantic optimisation, the rules/techniques for rewriting queries were not
clearly discussed, apart from the rules for making decisions about the parts of XQuery to
be executed in order to achieve a better performance.

As a result of our survey, we summarise the outstanding issues as follows:

• The utilisation of XML schemas constraints (Su et al., 2004, 2005; Che et al., 2006;
Sun and Liu, 2006) in either semantic query optimisation or transformation,
as previous works focused mainly on structural constraints for tree expression.
Rewriting of predicates was not significantly addressed.

 Using semantics for XPath query transformation 65

• Our work is different from the existing work in that we consider the semantic
transformation from two perspectives: the first is the semantic transformation for a
structural (tree expression) model; the second is the content data model.
The technique for the content data model is inherited from the semantic
transformations proposed for relational databases. Some common and obvious
transformations performed earlier such as range modification, literal insertion, and
elimination (Charkravarthy et al., 1990; Shenoy and Ozsoyoglu, 1987; King, 1981;
Hammer and Jdondik, 1980) have been found to be very useful for our work.
We adopted some of these as they provide the capability to deal with data values
in predicates. Although not all can be adopted, we consider and apply selective
techniques to our transformations. XPath query can be semantically transformed
when the constraint is detected and matched. We show that even with the process
of checking existing constraints, some transformed queries perform better than the
original ones.

3 Terminologies, studied problems and notions of query tree pattern

Though although information about XML documents, schema(s) and constraints is
generally available and can be found in any general XML materials, the type of
information required for our work needs to be streamlined. Therefore, in this section
we simplify the information including XML schema, XML document and related
information that is required for our work. We then describe how the XML document
or database must comply with an associated XML schema. We define several important
terms and notions that play key roles in our semantic transformations proposed in
Section 4. One of the important roles of path expression is the query tree pattern in which
pattern matching is fundamental to processing a TPQ. For this reason, the notion of
pattern matching is also revisited; we present a problem and discuss examples in detail
in order to illustrate its importance, since it is required by our later work.

3.1 XML schema, XML data documents and semantics/constraints

For convenience and a wider variety of semantics, we use XML schema type (XSD);
this does not mean that we restrict the schema type (DTD).

Definition 1 (XML Schema): An XML schema is a directed graph G that is represented
by {V, E, C, ϕ } where:

• V is a non-empty finite set of vertices

• E ⊂ V × V × I × (I ∪ {∞}), is a finite set of edges with a multiplicity (j, k) associated
with each edge where j and k are integers such that j ≤ k, j ∈ I
and k ∈ I ∪ {∞}

• ∈ V is the root.

 66 D. Le et al.

The examples (but not all) below illustrate the notations based on Figure 1.

• V = {company, depart, name, location, @id}

• E = {(company, depart, 1, ∞), (depart, name, 1, 1), (depart, staffList, 1, ∞),
(company, name, 1, 1), (company, location, 1, 3)}

• = company.

When the minimal and maximal occurrences, denoted by (minOccur, maxOccur), of an
element are not defined in the schema; the default values are 1. For example,
each contract staff member can have only one occurrence of the ‘age’ element.

Figure 1 Company XML schema

Definition 2 (XML Document) XML document is a tree T where

• Every vertex is labelled as element or attribute or text content (labels and text
content – can be empty)

• Edges E are pairs of V.

An XML document T is valid with respect to an XML schema G if and only if:

• the root of the XML document tree T is a unique node in V such that root
of G is also root of T

• there exists a total mapping M of nodes V in T to nodes V in G that holds the
following conditions:

• a node v ∈ V in T is mapped to v ∈ V in G; if v has some children then v must be a
complex type; or

 Using semantics for XPath query transformation 67

• a node v ∈V in T is mapped to v ∈V in G if v has no children and v is a simple type
then it is either an attribute or a leaf-node

• for each edge, in schema directed graph G, between two vertices (vh, vi) if j and K are
the minimum and maximum occurrences of child element vi then the number of
edges for this pair of nodes is k times in XML document T where 0 ≤ j and j ≤ k

• for node v ∈V if u found within a complex type v then u is called a
sub-element of v and for any r ∈V if r, as an attribute to itself, is found within v then r
is an attribute element, there is a certain parent-child,
an essential structural constraint, edge from v to u; v to r

• for any element v ∈ V if z is found to be a value v with then v is called
a leaf element; z is the context content of v. Each v may be assigned with some
content-based constraint1 c ∈C.

3.2 Path and path expression

A schema path specifies the selection of vertices. The structural paths are expressed
based on the XML schema and XML document. Hence, we define the class of path
expression as:

Definition 3 (Path in schema G): A path in the XML schema G is a sequence of vertices
(Vx, …, Vz) s.t. Vz must occur under Vx via Vy where x ≤ y ≤ z.

Definition 4 (Path expression): A path expression in an XML schema G is a path that has
elements represented by ‘*’, ‘..’ or ‘.’. Elements are separated by ‘/’ or ‘//’.

• // represents ancestor and descendants

• / represents parent and child

• * represents a union of vertices/elements

• . represents the vertices/elements

• .. represents the parent.

The following are (some, not all) path expressions in the XML schema:

{company//name; company//location; //depart; company/*/@id; company/*/name;
company/depart; company/depart/@id; company/depart /name; company/depart/staffList,
//depart/staffList /perm/../contract; */*; *//*; */*/*; etc…}.

Definition 5 (A Path in XML Document): A path query over an XML document tree
is a path expression if and only if

• A path and path expression are identical

• Or we replace‘*’ with some vertex and the path matches the new path expression

• Or we replace ‘.’ with the current vertex then the path matches the new path
expression

 68 D. Le et al.

• Or we replace // with a sequence of nodes separated by / the path matches the new
path expression

• Or we replace ‘..’ with ‘[]’ where [] contains a vertex or a path that matches the new
path expression.

Motivation example: with reference to Figure 1 XML company schema, it can be
explained as follows:

The root is the ‘company’ where there must be at least one department, valid location,
and address. There is no limit to the number of departments but the company can be
located in two locations attached to two different addresses respectively. Every
department ‘depart’ occurs under the ‘company’ and must have at least one immediate
department name ‘dname’ and a list of staff ‘StaffList’. Every staff list contains
information about at least one staff of permanent and contract type with no restriction
 on the number of staff in each list. The record of every permanent and contract staff
member contains the following information: identification, name that includes first name
and last name, age, address, city, email, status and phone number and employment
date. Every contract staff member has, in addition, a record of duration of tenure.
Staff Identification is modelled as the unique attribute ‘id’ in both ‘perm’ and ‘contract’
elements. The ‘name’, ‘age’, ‘status’, ‘employment date’, ‘address’, ‘city’, ‘email’ and
‘phone’ elements are child elements in both ‘perm’ and ‘contract’. ‘Age’ of staff must be
between 23 and 55. A staff member can be a supervisor who will have a supervision id
that is restricted to an alphanumeric pattern. The company’s locations are restricted
to ‘Bundoora’ or ‘Melbourne’. Every employee is assigned with a status ‘Active’ or
‘Inactive’.

3.3 Notion of query tree patterns

Prior to presenting our proposed semantic path transformation, we revisit the theory
of query tree pattern that represents a structure of an XML query, specific to XPath
query. The processing of a query tree is called pattern matching which we have also
described.

Definition 6 (Query Tree Pattern): A query tree pattern QT is a tree where every
node is labelled with a vertex u ∪ ∗; a wildcard * represents any tag. The semantics
between two vertices u in the QT is represented by ‘/’ or ‘//’ where ‘/’ represents
a structural semantic of a parent-child and ‘//’ represents a structural semantic of
ancestor-descendant.

A query tree pattern QT corresponds to an XPath query P. See the running examples
of XPath queries a, b and c and unique paths (Le et al., 2007) d, e and f below for tree
pattern representations in Figure 2:

XPath queries: (a) company/*/name; (b) company[depart]/location; (c) *//depart

Unique paths: (d) company; (e) company/name; (f) company/depart/staffList.

 Using semantics for XPath query transformation 69

Figure 2 Tree paterns for XPath queries and Unique paths

Each of these query tree patterns exhibits only two types of structural relationship.
While the former one ‘|’ is called a parent-child relationship which is represented by the
path operator ‘/’, the latter one ‘||’ is known as an ancestor-descendant relationship.

In our running example of XPath query b, a query tree pattern shows that it has
outgoing branches at a degree greater than 0 at the branching node ‘company’.

Definition 7 (Branching node): is a node that has at least two child nodes.

The node selection by a query tree pattern (QT,) returns a non-empty valid result if,
and only if, QT is matched to a whole or portion of the XML schema graph G. This notion
is known as pattern matching.

The pattern matching (Al-Khalifa et al., 2002) notion has been studied for a query
tree pattern QT in XML database T. However, due to the nature of our research, the XML
schema is the main asset and therefore it does not access the XML database in order to
decide whether the query pattern is valid; instead it depends on the schema to decide
the valid ability of the query pattern. Hence, we match QT to the paths in the schema.
We revise a pattern matching definition based on our work content as below.

Definition 8 (Pattern matching): A matching of a pattern query QT is a mapping δ from
QT1 (u) to QT1 (v) such that δ:

• For each u in QT, the predicate node label of u is matched by δ (v) in G

• For each edge (u, ω) in QT, δ(ω) is a child or descendant of δ (u) in G

• For each edge (u, ω) in QT , if δ (u) is branching node then it must also is a
branching node in G.

We have revisited comprehensive material, information and background of query tree
and pattern matching for XML query, schema and path structures, which we believe are
useful for the readers to follow our proposed semantic query transformation. The section
below presents the main work of this paper.

4 Semantic transformation typology

The concept of our unique path introduced in Le et al. (2007) is a schema labelling
concept (Wang et al., 2003). For this particular work, we consider that the schema nodes
are uniquely labelled among themselves. This means that a child node is recursively
under multiple parents; however, a parent is restricted to not having two different
children with the same label name.

 70 D. Le et al.

Definition 9 (Unique path): Unique paths Q is a set of all possible paths Qu that are
expressed over an XML schema, that contains a sequence of elements (ex, …, ez), s.t.
ex must be the root r of schema, ez must occur under ex via ey (where x ≤ y ≤ z), and
hierarchical relationships ‘/’ parent-child expresses the relationships among the elements.

In the running example of XML company schema (Figure 1), the possible (but not all)
unique paths are:

{company; company/name; company/location; company/depart; company/depart/name;
company/depart/staffList; company/depart/staffList/perm; company/depart/staffList/
perm/@id; etc..}

Each unique path is represented by a query tree pattern where the tree pattern strictly
has no branches. A series of unique paths goes through a normalisation process, similar to
the BCNF technique, to form a new query tree pattern that may allow some branches.
We define such a query pattern as follows:

Definition 10 (Normalised Pattern): A normalised pattern results from multiple unique
paths, which are needed to produce a required answer, being replaced with ‘//’.

For example, we have identified two unique paths Qu1 and Qu2 which are
‘company/depart/staffList/perm’ and ‘company/depart/staffList/contract’. A new query
pattern can be formed as we can normalise these two query patterns to derive a single
query tree pattern. We can remove ‘company/depart’ from Qu1 or Qu2 and allow the
branching out on ‘staffList’ node that has two children ‘contract’ and ‘perm’. This means
either ‘contract’ or ‘perm’ is a conditional element in the predicate.

Not all the required answer needs multiple unique paths to produce it. A unique path
is sometimes an XPath query; in which case, it has the following unique characteristics
– it is based on the structure of the schema, it must start with the root vertex, and it allows
only the parent-child ‘/’ relationship. A unique path is therefore also a query tree pattern.

Any node or vertex in the XML schema can be a target3 node. The distinct property
of the unique paths is that the target node in multiple unique paths may have the same tag
name; however, path structures are uniquely different in terms of parents and ancestor
although they must start from the root.

4.1 Semantic path expansion transformation

The difference between the earlier semantic path expansion (Le et al., 2007) and this
semantic path expansion is that while the former adopted the unique path concept, in the
latter we continue using the unique path concept and ensure the accuracy of this
transformation by integrating the notion of query tree pattern matching from an XPath
query to one or more unique path(s). The normalisation will be applicable for semantic
path contraction and semantic path complement.

Definition 11 (Semantic path expansion): A semantic path expansion P’ is an XPath
query that is transformed from an XPath query P and matches a unique path, which
produces the same result set as P does.

 Using semantics for XPath query transformation 71

Proposition: P’ is a semantic expanded path if and only if P’ is an exact match to one and
only one unique path; hence, there exists only a parent-child relationship between each
pair of elements in the path.

Given a valid XML schema graph G, we derive a set of unique paths Q = {Qu1, Qu2,
Qu3, …, Qun} where n > 1. Each Qu has a query tree pattern (VQ, EQ) where EQ is a set of
edges ‘/’ separating set of nodes VQ in Qu.

The ‘if’ direction in the proposition says for an XPath query P that has a set of
elements and edges where elements labelled with l or ‘*’ or ‘.’ and edges expressed by
‘|’ or ‘||’. If all elements in a Qu are a superset of all elements in P; ‘*’ or ‘.’ in P can be
mapped to elements in Qu and edge trees ‘||’ (if there exists any) can be replaced by a
sequence of elements labelled l separated by ‘/’ in Qu then Qu patterns P, hence Qu is P’.

Rule 1: XPath P is semantically expanded only if the following required criteria are met:

• Start from the target element vj ∈ P mapped to target element vj ∈ Qu

• Map all nodes vi ∈ P → vi ∈ Qu where vi is the parent or ancestor of vj

• Replace all ‘*’ and ‘.’ in P with ∃vi ∈ Qu

• If ‘//’ exists in P, replace it with a fragment in Qu, that has an ancestor
and a descendant enclosed ‘//’ in P .

Let us consider an example of XPath query P = company/*//perm. (1)

Referring to Figure 1, a unique path Qu that leads to ‘perm’ element is
‘company/depart/staffList/perm’.

By applying Rule 1 to P, we explain the derivation of P’ from P, as depicted in
Figure 3. The matching elements of P to elements in Qu can be summarised such
that target node ‘perm’ ∈ VP → ‘perm’ ∈ VQu and VQu ⊆ VP; ‘∗’ ∈VP → ‘depart’ ∈ VQu .
The tree edge ‘/’ represents a parent-child relationship between ‘company’ and ‘*’ in
P or ‘company’ and ‘depart’ in Qu. As the result, we can replace ‘*’ with ‘depart’,
which makes up a new path ‘company/depart//perm’. The tree edge ‘//’ in P
represents an ancestor-descendant where ‘perm’ is descendant and ‘depart’ is ancestor.
If ‘depart//’perm’ can be mapped to a path fragment in Qu where only a parent-child
relationship exists between the pair of elements, then P can semantically be replaced by
Qu, hence, Qu is automatically P’.

Figure 3 P, Qu & P’

In this section, we show how an XPath query is semantically transformed using the
semantic path expansion rule that employs the parent-child constraint to eliminate the

 72 D. Le et al.

ancestor-descendant representative in the XPath query. The next semantic transformation
rule is the semantic path contraction.

4.2 Semantic path contraction transformation

Path contraction is applicable only when we deal with query answers that need multiple
unique paths to produce them.

Definition 12 (Semantic path contraction): A semantic path contraction P′ is transformed
from an XPath query P. P matches with multiple unique paths Qu, which are required to
produce the same result as P does.

Proposition: Some path fragments in P’ are semantically contracted if and only if P’ does
not match a single unique path Qu, Multiple identified unique paths Qu are normalised
where different path fragments in all Qu are replaced with ‘//’. Same path fragment in all
Qu are retained in P’. This same path fragment has only some parent-child ‘/’ between the
pair of elements.

Given a valid XML schema graph G, we derive a set of unique paths Q = {Qu1, Qu2,
Qu3, …, Qnn}. Each Qu has a query tree pattern (VQ, EQ) where EQ is a set of edges ‘/’ and
set of elements VQ in each Qu.

The “iff” direction in the Proposition indicates that an XPath query P has a set
of elements and edges where elements are labelled with l or ‘*’ or ‘.’ and edges are
expressed by ‘|’ or ‘||’. If all elements in some Qu are a superset of all elements in P,
and ‘*’ or ‘.’ in P can be mapped to elements in same set of Qu and edge trees ‘||’
(if there exists any) cannot be replaced by a sequence of elements labelled l separated by
‘/’ in Qu then set Qu some different path fragments and same path fragment. The pattern
normalisation would produce P’ that has a sequence of elements separated only by ‘/’
(repeated path fragment in set Qu and ‘//’(different path fragment in set Qu).

Rule 2 (Semantic path contraction): XPath query P is semantically contracted if it meets
the following requirements:

• Seek the target element of P to target element in each unique path Qu to identify the
number of possible Qu.

• For all unmatched elements in P, match each of them to those in identified possible
Qu to ensure that tag name is conflict free.

• Detect “//” in P and match it back to a path fragment in each identified Qu, ‘//’.

• Detect all ‘..’, ‘*’ and ‘.’ in P and replace them with matched elements
in each Qu.

• Normalise all identified Qu where the repeated path fragment in all Qu
is retained and the different path fragments in all Qu are contracted to ‘//’.

• P’ is the semantic contracted XPath query that is derived in the form of set
of valid elements separate by ‘/’ and ‘//’.

 Using semantics for XPath query transformation 73

Let us consider an example of XPath query P = //staffList//name. (2)

Using the schema information from Figure 1, Figure 4 depicts P, set of identified Qu
and P′ in tree patterns.

Figure 4 P, Qu & P′

By applying Rule 2 to P, the target element ‘name’ ∈ VP → ‘name’ ∈ VQu where i = 2,
element ‘staffList’ in P can also be mapped to element ‘staffList’ in both Qu1 and Qu2.
Edge ‘//’ is detected between ‘staffList’ and ‘name’ elements in P means the target
element ‘name’ is traversing back to element ‘staffList’ on two different path fragments
‘staffList/perm/name’ and ‘staffList/contract/name’ respectively. The difference in
path fragment from ‘statffList’ to ‘name’ appears Qu1 and Qu2. Figure 4 depicts a
query pattern during a normalisation of Qu1 and Qu2 denoted Nor4(Qu1, Qu2) where
‘company/depart/staffList’ are the repeating nodes or path fragments in both Qu1 and Qu2
from the root to the ‘staffList’ element. According to the semantic path contraction rule,
we would replace the different fragments in Qu1 and Qu2 with ‘||’ as shown in the P’ tree
pattern in Figure 4.

As the example demonstrates, the semantic path contraction is applied to an XPath
query only when it matches multiple unique paths after undergoing the pattern matching
process.

4.3 Semantic path complement transformation

Without the use of a predicate [] in an XPath query, it can still have a condition
represented by ‘..’. Although the ‘..’ operator. Due to the users’ nature, they may choose
to use ‘..’ instead of []. Therefore, our semantic path transformation provides a complete
solution to transform such an XPath query. The proposed semantic complement
transformation allows us to complement a new XPath query by collaborating with both
the semantic path contraction and semantic path expansion. In doing so, we can eliminate

 74 D. Le et al.

the ‘..’ based on the occurrence constraint of the conditional5 element; or we could
transform ‘..’ to [] if elimination is not applicable.

Definition 13 (Semantic path complement): A semantic path complement P′ is a
transformation from the XPath query P where P′ is a unique path that may or may not
contain a condition enclosed by [].

Proposition: P’ is a semantic complementary of P if there exists branching elements (s)
(..) in P and P’ may be enclosed with predicate [] if a conditional element cannot be
eliminated.

Given a valid XML schema graph G, we derive a set of unique paths Q = {Qu1, Qu2,
Qu3, … Qnn}. Each Qu has a query tree pattern (VQ, EQ) where EQ is a set of edges ‘/’ and
set of elements VQ in each Qu.

The “iff” direction in the Proposition is for a given XPath query that has a set of
elements labelled with l,’*’, ‘.’, ‘..’ and edges are ‘|’ or ‘||’. All elements in some unique
paths Qu are a superset of all element in P; ‘..’ indicates an existence of parent element in
P. The edge trees ‘||’ in query tree pattern P can be replaced by a sequence of elements
labelled by l and edge ‘|’. The ‘iff’ direction also ensures that ’..’ and conditional element
are eligible to be removed from P when the parent of the target element is also the parent
of the conditional element and its occurrence (or multiplicity) constraint must be greater
than or equal to 1. In some classic cases, both ‘..’ and conditional element cannot be
removed as the occurrence constraint of the conditional element equals to 0, then ‘..’ is
replaced and the conditional element is enclosed by [].

Rule 3 (Semantic path complement): XPath query P is semantically complemented
by the following requirement criteria:

• Seek the target element of P to target element in each unique path Qu to identify the
number of possible Qu.

• For all unmatched elements in P, match each of them to those in identified possible
Qu to ensure that the tag name is conflict free.

• Detect ‘..’ in P and determine the number of branching nodes based on the m
occurrences of ‘..’ in P . Each path expression that traverses from the root
of the schema to each child element (used by a predicate or for a conditional
requirement) of the branching element must match with one unique patch Qu,
otherwise a conflict in structural semantic will be detected.

• Normalise all identified Qu where the repeating path fragment in all Qu
is retained. The conditional element is removed only when its occurrence
is 1 or above.

• There may exist [] in semantic path P’ iff the minimal occurrence
of a conditional element is 0.

Let us consider an example of XPath query P = //depart/dname/../staffList/perm. (3)

Using the schema information from Figure 1, Figure 5 shows P, Qu and P’ expressed
in tree patterns.

 Using semantics for XPath query transformation 75

Figure 5 P, Qu, Nor(Qu1, Qu2) & P’

By applying Rule 3, the query tree pattern depicted in Figure 5, ‘..’ is detected and as
children under the branching node ‘depart’ is ‘dname’ and ‘staffList’ in P. Two unique
paths Qu ‘company/depart/dname’ and ‘company/depart/staffList/perm’ are associated
with a path expression from ‘company’ element to ‘dname’ and a path expression from
‘company’ element to ‘perm’ element. By applying Nor(Qu1, Qu2) with the occurrence
constraint of ‘dname’ element (based on XML schema information in Figure 1) is 1,
‘dname’ can be removed from ‘company/depart/dname’ which left ‘company/depart’.
However, ‘company/depart’ is the subset of unique path ‘company/depart/staffList/perm’.
This means P’ is the unique path ‘company/depart/staffList/perm’.

This illustrates a transformed XPath query P’ without []. Our running example 3
demonstrates the use of the semantic path complement rule.

4.4 Semantic qualifier transformation

Semantic qualifier (predicate) transformation is the transformation dealing with a
predicate enclosed by []. An element used for conditioning in a predicate [] can be
a leaf-node or element type. In the case where the element is a leaf-node, it may or may
not have values. Acceptance values defined for a leaf-node, rather than atomic type,
in the schema are known as constraint values or acceptance content. In the case where an
element or a fragment of XPath being enclosed by the predicate [] is a type, it shows no
values for conditioning, which normally relies on the last element in the path fragment.
Another exceptional scenario is where there is only a value or a context sensitive
(Berglund et al., 2007) function such as last() or position() with a value enclosed in [],
this is known as index ordinary value on the current element.

Let us consider or an example of XPath query ‘company/deparment[//perm
[position()>=1]]/dname. To transform this type of query, we first look at the
condition in the predicate whether the condition should be left of using ‘//’ or possibly
to expand it to a full conditional path such as ‘staffList/perm’. To achieve this type
of transformation, we first employ the semantic path expansion transformation. The next
constraint we also need is the occurrence constraint of ‘contract’, which determines

 76 D. Le et al.

whether there is an occurrence constraint between ‘dname’ and ‘contract’ employee.
Suppose we apply some transformation rules, which can produce an equivalent query
such as ‘company/depart/dname’.

The question we face is which one of these constraints to use first. Conflict constraint
will produce an empty returned result set, but most importantly, if the query is satisfied,
would the decision on processing steps of transformation provide an opportunity for an
increased performance?

Before we provide the transformations, we discuss the terminologies that support
our semantic qualifier transformations.

Definition 14 (Full-qualifier): A full-qualifier is a predicate [] of which all values of the
elements enclosed by [] must be equivalent to all the values of the same element defined
in the schema.

For instance, a predicate [location = ‘Bundoora’ or location ‘Melbourne’] appears in an
XPath. Referring to the schema definition, an element ‘location’ is defined with two
restricted values {‘Bundoora’, ‘Melbourne’}, and in this case the predicate satisfies a
full-qualifier. However, a predicate [location = ‘Bundoora’ and location ‘Melbourne’]
or a predicate [location = ‘Bundoora’] is not a full-qualifier due to the AND used in the
first case and restricted value is only partially validated for the ‘Bundoora’ value in the
second case, which leads to the next definition.

Definition 15 (Partial-qualifier): A partial-qualifier is a predicate [] of which all values
of the element enclosed by predicated [] are equivalent or matched to some but not all
values of the same element defined in the schema.

For instance, a predicate [location = ‘Bundoora’] appears in an XPath. Referring to the
schema definition, an element ‘location’ is defined with two restricted values
“Bundoora”, “Melbourne”; in this case the predicate satisfies the condition of being
a partial-qualifier. However, a predicate [location = ‘Bundoora’ and location
‘Melbourne’] is not a semi-qualifier.

We now introduce a set of formal notations accompanied by a brief description of each
as these will be used repeatedly throughout the definitions and rules being presented in
this section:

• Fn is a series of context functions such as last(), position(), etc…

• Op is a series of comparative operators {!=,=, <, >,>=, <=}

• θ is the restricted values of an element

• N is a series of index values, restricted element with or without a restricted value,
or restricted path fragment. In general N is referred to as an inner focus of [].

In this section, we introduce two semantic qualifier transformations:

• Semantic ordinal index transformation allows the transformation of an XPath query
in the presence of the ordinal index predicate. We utilise the Occurrence constraint
of the element for which the index value is l and greater than 1.

 Using semantics for XPath query transformation 77

• Semantic Content-based Transformation allows the transformation of an XPath
query in the presence of values of a conditional element specified in the predicate.
This has been addressed earlier in the work of Su et al. (2004, 2005) in the semantic
optimisation context. The difference between our work and earlier works is that we
introduce more constraints on the leaf-node and combine this with the semantic path
transformation to provide a complete transformation.

A Semantic ordinal index transformation

We apply the multiplicity (also known as occurrence) constraint to transform the ordinal
index predicate. To the best of our knowledge, none of the earlier works has addressed
this type of predicate.

The function position() is used to return the context position. The context position
is the position of the context item within the sequence of items currently being processed.
When this function is used with a value in the predicate, it returns the context node or
item based on a given position value. When the position() function is used without a
given value in the predicate, all nodes of the current item being processed are returned.
A predicate may contain only an integer value, which denotes the position value of the
current element. For example, a query ‘company/depart[position() = 1] is equivalent to
‘company/depart[1]’.

The function last() is used to return the context size. The context size is the number
of the items or context nodes in the sequence of items being processed. When the last()
function is used without a given value in the predicate, it takes the default value as the
last item in the sequence returned.

In an ordinal index predicate, if a fn such as position() or last() is an operator op w.r.t
op ∈ OP, a value θ or a fn is expected; if one of these is missing, then a semantic conflict
is immediately detected.

Definition 16 (Semantic ordinal index predicate): A semantic Ordinal Index predicate is
a transformed predicate that may or may not have an enclosed [] in a semantic XPath
query P’.

Proposition: P’ is a valid transformed XPath query where the ordinal index predicate
possibly can be eliminated or retained iff the predicate is a full-qualifier or
partial-qualifier respectively.

Given a valid XML schema graph G, we derive a set of unique paths Q = {Qu1, Qu2,
Qu3, …, Qnn}. Each Qu has a query tree pattern formed by a set of elements VQ and edges
EQ where EQ is a set of edges ‘/’.

The ‘iff’ direction in the proposition states that for a given query tree pattern of
an XPath query that has a set of elements labelled with l,‘*’,‘.’,‘..’ and edges ‘|’ or ‘||’.
For each valid element l, there may be a predicate [] which contains some context
functions fn with or without a value following the operator op or index value with no
function and operator used. The transformation P’ would:

• eliminate the condition only when the current element being processed has an index
value θ for the filtering such that θ = σ; θ = ∂; or θ = σ >θ = ∂ where
(∂, σ) → (minOccur, maxOccur) represent the minimal and maximal values
of occurrence constraint on the current element such that ∂ = 1, σ = 1; or ∂ = σ
that. Both ∂ and σ are integers greater than 0;

 78 D. Le et al.

• retain the predicate only when the current element being processed has an index
value θ for filtering such that θ ≤ σ or θ ≥ ∂ where (∂, σ) → (minOccur, maxOccur)
represent the minimal and maximal values of occurrence constraint on the current
element such that ∂ ≥ 1, σ = ∝; or ∂ ≠ σ. Both ∂ and σ are greater than or equals 0.

Rule 4 (Semantic ordinal index): An ordinal index predicate in an XPath query P is
semantically transformed by the following necessary requirements:

• Detect [] in the path where the condition N expressed in the form
of N = ∃fn ∪ ∃op ∪ ∃θ or only θ.

• Identify a unique path Qu that matches the structure of P excluding predicate [].

• For each condition in predicate [], verifying value against the constraint value of
the branching element.

• Condition N is removed iff the value is 1 for position(),last(), position() = last() or
self-index when the minimal and maximal values of the branching element are 1 as
defined in the schema.

• Condition N is retained iff the value is not 1 for position(),last(), position() = last()
or self-index when the minimal and maximal values
of the branching element are not 1 as defined in the schema.

• Semantically expand, contract complement the whole path if possible.

Let us consider XPath query P =//depart/dname[position()=last()]. (4)

When a context function is used in the predicate, the branching node in this case is the
context node itself. Therefore, the content of predicate [] presented on the tree pattern
is not applicable.

By applying Rule 4, as depicted in Figure 6, [] is detected in P where the inner
focus is an ordinal index of N = [position() = last()]. The outer focus ‘dname’ is the valid
node, but also a self-branching node as ‘dname’ is restricted itself, which is indicated
by an arrow dot-line. Referring to Figure 1, there exists only one unique path
Qu = company/depart/dname, that leads to ‘dname’ from the root. Element ‘dname’ has a
multiplicity or occurrence constraint of (minOccur,maxOccur) = (1,1); this allows []
to be removed from P; that makes P’ = company/depart/dname.

Figure 6 P, Qu & P’

We can also demonstrate the conflict of semantic/constraint in XPath query
P = //depart/dname[position() = 2]. As the maximal occurrence of ‘dname’ in the

 Using semantics for XPath query transformation 79

schema is 1, it allows each ‘depart’ to carry only one name, so there would not be a
second name for a ‘depart’ element in the XML database. This type of XPath query can
immediately be determined by a semantic conflict.

B Semantic content-based transformation

We study specific constraints such as enumeration, primary key, foreign key, pattern,
inclusive and exclusive for this content-based transformation. This semantic
transformation adopts the transformed concepts such as elimination or introduction of
range values, space or acceptance values proposed in a relational database. King (1981),
Hammer and Jdondik (1980), Shenoy and Ozsoyoglu (1987) dealt mainly with predicates
that contain record fields that are defined as simple or atomic data type. In a similar
manner, we adopt them to deal with a transformation for predicates containing
a leaf-node that could be an atomic element or attribute whose content is used for
restriction.

First let us categorise the abovementioned constraints into two categories:
Space/Acceptance value and Range value, and describe how each is used in our proposed
techniques. The categorisation is:

1 Space/Acceptance value: Constraints such as enumeration, primary key,
foreign key and pattern belong to this category, as validation of values requires the
exact matching values. The eligible comparison operators would be ‘=’
or ‘!=’ and content-join6 Π between the values.

For example, refer to Figure 1 where ‘enumeration’ constraint on ‘location’ element
is enumerated with “‘Bundoora’, ‘Melbourne’”, ‘Status’ is enumerated with
“‘Active’, ‘Inactive’” and pattern restriction for ‘supervisor’ element is
“[A–Z]{0–999}–[a–z]”.

2 Range value: Constraints such as inclusive and exclusive belong to this category.
Validation of values used by elements in a predicate requires the range matching.
The suitable comparison operators would be ‘>’, ‘>=’, ‘<’, or ‘<=’; content-Join
Πwould also be used in this category but not compulsory.

For example, referring to Figure 1, the ‘age’ element has a range value
for employees that is greater than 22 and 55. For the range value restriction,
it provides more flexibility on the expression of the condition. Element ‘age’ used by
[] can be removed if it is a full-qualifier; this means that the content
of the predicate [] under the various scenarios can be specified.

Under this category, [] becomes a partial-qualifier if the join-content Π is used with
the ‘=’ or ‘!=’ operator to perform the comparison. An out-of-range value used by an
element in the predicate would result in a semantic conflict.

Let [M] is a content-based predicate; M is a set of condition, Π be a content-join;
op be a comparison operator op ∈ OP and OP = {!=, =, <, >, >=, <=}; l be a tag name
of an element; θ be a value. M = n1Πn2 … Πn2 (Π and ni can be null) s.t.
ni = ∃(l|‘.’) ∪ ∃op ∪ ∃θ where (l|‘.’).

 80 D. Le et al.

Rule 5 (Semantic content-based): Content based predicate in an XPath query P is
semantically transformed in the order of the following steps:

• Detect [] in the path that has N.

• Identify the unique path Qu that matches P; P may match as single unique path,
if this is the case then the conditional element is the target element and
condition in the predicate is the value of the target element. P may match
a series of Qu; if this is true then the conditional element in a predicate is the
rightmost element in one of the associate unique path Qu.

• For each ni in N, ni is confirmed for a defined constraint value.

• N is removed iff N is a full-qualifier or N is retained if some ni or all ni of N are
partial-qualifier.

Let us consider an example of XPath query

P = //depart/location[. = ‘Bundoora’ or . = ‘Melbourne’]. (5)

We apply Rule 5 where [. = ‘Bundoora’ or . = ‘Melbourne’] is detected in P. ‘location’ is
a self-branching node. There is a matching Qu = company/depart/location. A verification
of self-branching node ‘location’ is a valid element in Qu. For each ni ‘.’ is ‘location’ and
its constraint is enumeration, belongs to acceptance value category. Since [. = ‘Bundoora’
or . = ‘Melbourne’] has a content-join Π is ‘OR’ and all values of ‘location’ in []
matched all restricted values of ‘location’ defined in the schema, this confirms a
full-qualifier for N, hence it can be removed.

Figure 7 depicts the outer focus [] as a self-branching ‘location’ node and the content
of predicate [] is the acceptance values. Reference to Figure 1, only one unique path Qu
Qu = company/depart/location that traverse from ‘company’ to ‘location’. We show the
restriction values on the branching node in P but not Qu in Figure 7.

Figure 7 P, Qu & P’

Let us consider another example of XPath query

P = //depart[location=’Bandore’ or location=‘Melbourne’]/dname. (6)

We apply Rule 5 where [location = ‘Bandore’ or location = ‘Melbourne’] is detected in P.
There are two matching unique paths Qu1 = company/depart/location, Qu2 = company/
depart/dname. The normalisation process derives a normalised path where ‘depart’ is an
element and also is the branching node in P.

 Using semantics for XPath query transformation 81

As shown in Figure 1, ‘location’ is the child of ‘depart’ and its constraint (motivation
example) is enumeration that has acceptance-values {‘Bundoora’, ‘Melbourne’}.
The predicate [location = ‘Bundoora’ or location = ‘Melbourne’] has a content-join
Π ‘OR’ and all values of ‘location’ in predicate [] matched all values of ‘location’ in the
schema. This confirms a full-qualifier for N. The occurrence constraint defined in the
schema for ‘location’ is (minOccur, maxOccur) = (1, 2) means that for each department
there is at least one valid location, either ‘Bundoora’ or ‘Melbourne’. The occurrence
constraint defined in the schema for ‘depart’ is (minOccur, maxOccur) has been
left empty. By default, (minOccur, maxOccur) = (1,1) for any element if the element
has no assigned value. Predicate [location = ‘Bundoora’ or location = ‘Melbourne’]
can be eliminated based on the minimal occurrence value of ‘location’ under ‘depart’.
Hence, P’ = //depart/dname. We further apply semantic path expansion to optimise the
transformation of P′ = company/depart/dname.

Figure 8 depicts a query tree patterns of P, Q1, Q2 and P’. Notice the difference of tree
pattern of P in Figures 7 and 8. We also show how the pattern is matched from P to
Q = (Q1, Q2) and Q to P’. The normalisation process Nor (Qu1 Qu2) produces P’.

In this main section of our work, we propose a series of transformations ranging
from path transformation to the predicate transformation in which a predicate is further
addressed with different transformations to handle the ordinal index and content-based
semantic predicates. Although we do not claim that this is a complete work of
transformation, we do have to acknowledge that our transformations have the ability to
deliver solutions for different types of XPath. By doing this, we are approaching the end
of this whole search, which provides a complete, novel transformations technique using
semantic information.

Figure 8 P, Qu, Nor (Qu1, Qu2)& P’

In the next section, we detail the two mains algorithms and describe the process
of implementation including two phases. The first phase involves the pre-processing
of the semantics in the schema and storing them so that they can be extracted and used

 82 D. Le et al.

by the transformation; the second phase is the transformation of an XPath query where
the component is kept alive and ready to transform any input XPath query at any time.

5 Implementation and evaluation

This section describes the detailed implementation including the framework overview,
algorithms and evaluation of test results.

5.1 Overview of framework

The implementation overview of our semantic transformation is designed and shown
in Figure 9.

Figure 9 Implementation overview of semantic transformation (see online version for colours)

On the start-up, the pre-processing schema (Le et al., 2007) system component
is called first so that all the constraints/semantics defined in the given schemas are
pre-processed. This module is shown by a dash-line rectangle labelled ‘Pre-processing
schema module’. The processed semantics then are housed in the system memory;
the pre-processing schema module is no longer needed it self-terminates (without human
intervention).

The pre-processing schema component is restarted only if the schemas are
changed/modified). The semantic transformation module takes over, which is invoked
by the system if it detects a termination from the pre-processing schema module.

 Using semantics for XPath query transformation 83

The semantic transformation module is a real-time module. Its functionality is to continue
to accept the input XPath, to verify the constraints and transform the XPath if the
constraints encounter no conflict. The semantic transformation sends the semantic XPath
to the XED for performing the task. Otherwise, the XPath detects conflict in the semantic
and a message is returned to inform the user. This whole semantic transformation module
is shown as a thick-line rectangular box and is labelled ‘Semantic transformation
module’.

Notice that in Figure 9, information enclosed by the dot rectangular box labelled
‘EXD’ is not part of our work. We use this same XML schema only for obtaining the
constraints and related information to support our transformations. The XML schemas
attached to the database and schema provided by the user must be the same, hence they
are marked by ‘*’. The XML schema attached to the database simply means the data has
been verified for consistency before the data is inserted into the database.

As we can see from the framework, our methodology will have a very minimal
interaction with the database. In fact, the interaction with the database occurs only if the
returned semantic XPath is a valid one. It proves that our transformation has an advanced
ability to determine whether or not the query needs to access the database during the
transformation phase.

5.2 Proposed algorithms

In Figure 9, we show two main tasks: task 1 is the pre-processing of schema and task 2
is the transformation of the XPath queries. The main program used to drive these two
algorithms is excluded from this work. However, a brief description of the program
functionality is to call the pre-processing schema module and semantic transformation
module respectively.

The pre-processing schema algorithm is Algorithm 1. It accepts two input parameters
including the XML schema and the name of the schema root. From these provided valid
inputs, the schema is processed and three data structure lists S, C and Y are built
respectively (Lines 5–7).

The first list S (Line 15) is a two-dimensional type to store the sequence elements in
the form of [parent type][child] extracted from the schema. The very first item [root][R]
is inserted in S list (Line 9), the etype stores those detected as type (Lines 10–11).
The subsequence items in the S list would be the root type and the children of root R;
those children are not the leaf-node.

The list C (Line 17) stores the semantics/constraints of all leaf-elements. The
constraints are cardinality, inclusive, exclusive, enumeration, primary key, foreign key,
occurrence and pattern. This list C is a three-dimensional type to store the semantic
information in the form of [element name][constraint name][Val], where Val is a set of
values, separated by a space, of a constraint. Otherwise, if a type is detected that is not a
leaf-node, it is inserted into eType list (Line 18). The list Y (Line 21) is the unique path list
that stores all the derived unique paths in the form of a sequence of elements such as e.g.,
e1/e2/e3/en, where e is the element, by calling on function list unique_paths.

The unique_paths accepts the S, Y lists and root name. It builds the unique paths
by matching the last element of the current unique path to each item in S (until end of S)
where the parent type and child can be found. Once the child is found, it immediately
builds the new unique path (Lines 1–10). Since efficiency is of concern when building
this list of unique paths, the search for any given path from S list can be eliminated from

 84 D. Le et al.

the beginning if the given XPath query is a full path, in which case there is no need to
perform the pattern matching.

The pre-processing schema information can take some time to complete, but bear in mind
that it is done only once and we can reuse the processed information over and
over again.

The semantic_transformation algorithm (Algorithm 2) is called right after the
“pre-processing schema” module is terminated. Information such as the three structural
list S, C, and Y is passed to this module by the pre-processing schema algorithm (Line 2).

 Using semantics for XPath query transformation 85

Each XPath is received from the user, and the algorithm performs task. The appropriate
function, based on the XPath query structure) is then called to accomplish each desired
task (Lines 10–12).

 86 D. Le et al.

Assume that function semantic_predicate_transform is called first. This function
accepts an XPath query Q & P, which is the result of Q being transformed. If Q is detected
with a constraint conflict, then P is encoded with an error message and no further
transformation needed. As mentioned earlier in this paper, we propose the transformation
of a predicate that is divided into two main categories.

Handling the first category for index ordinal predicate, which has an index value,
with or without the integration of position() or last() function, of the self-branching node.
The predicate [] is removed if the minimal, maximal occurrence, context functions and
the index value (with or without the presence of context functions such as position
()/last()) are equivalent and much greater than 0 (Line 5). Otherwise, the index ordinal
predicate is retained– not all are equivalent [Line 6]. Constraint conflicts occur if the
index in the predicate is not within the occurrence range, or if the self-branching node is
not valid (Lines 7–9).

Handling the second category for value-based predicate (Line 1), which has the
leaf-node and restricted values inside []. This particular predicate handles two types
of restrictions: while the former is the constraint with acceptance/spaces values, the latter
is the type that has range-restricted values. The range values predicate (Line 11–12) is
rather simple compared with the rest of the other predicate types. The removal rule
is applied only if the required information retrieved is between the minimal and maximal
values (apply to inclusive or inclusive constraint) of the leaf-node. The join ‘AND/OR’ is
valid as long as it has a join between the lower bound and the upper bound values.
Space/acceptance values (Line 13) used for restriction on an element in []. Predicate []
is qualified for being removed from Q if it is a ‘full-qualifier’. If a constraint of an
element in the predicate is defined with a series of values; the join required between the
different values of the same element is ‘OR’. The join ‘AND/OR’ between a pair of two
different elements is also verified (Line 14).

Predicate [] is retained if some values of the element’s constraint are not present in
the []; this includes join ‘OR/AND’ between the values of the same element or different
values of different elements (Line 15). Constraint conflicts occur if the element in the
predicate is not valid; that is, it does not exist in the C list; or the element is not the child
of the branching node; or the join is ‘AND’ of the different values on the same element
(Line 16). The validation is returned with a ‘conflict’ status when the predicate is
detected as a content-based one and restricted elements (including values) do not exist in
the schema (Lines 17–18).

As the transformation is no longer needed, the control is returned to the beginning
to wait for the new XPath query. The predicate can be a structure type where the
condition in predicate is a sequence of elements or just one element. The removal rule
applies only when the inner focus is valid and the minimal value of the child element
(if the predicate contains a sub-path, then the child element in this case is the first
element) of the branching node must be at least one (Lines 19–21). Q can be further
contracted, expanded or complemented (Line 22).

We now discuss the function Semantic_path_transform called by the
“semantic_transformation” algorithm. It accepts an input XPath query Q and returns a
semantic XPath query P. Line 1 sets an array of path operators that are handled in the
function. The function first checks if Q exists in the list of unique paths Y and assigns
Q to P immediately and return P to the user; otherwise P is returned with a ‘conflict’
if Q does not exist in Y. This applies only when Q appears to be in the expression of a
sequence of elements which are separated by operator ‘/’ (Lines 2–3). If operator ‘..’ is

 Using semantics for XPath query transformation 87

detected (Line 4) then function semantic_path_complement is called on to complement Q.
Otherwise, the function process_path is called on to process other operators such as ‘//’,
‘*’ and ‘.’, and to determine whether the path should be semantically expanded or
contracted (Line 5).

If the function process_path is called on, it first accepts XPath queries q and a
dynamic array of path operator J. The returned semantic xpath P as the result of q has
been processed. The function first detects the existence of the target element in q as well
as in one or more unique paths in Y. q is conflicted if the target element does not exist
in list Y (Lines 1–3). Otherwise, the function backtracks from the target node in q
processing all operator ‘//’ (Lines 5–19). If ‘//’ in q is valid, then it can be replaced by a
sequence set of element in S. The validity of ‘//’ is determined by two valid elements
that lead and end ‘//’. This pair of elements is then passed on to the sub-path function
(Line 20) for deriving the sub-paths from list S to replace ‘//’ by calling the
propagate_path (Line 22). Finally, the operator such as ‘*’ or ‘.’ is individually processed
in each pt (Lines 23–30). Finally, each pt in the list should contain only a sequence of
elements in which each pair is separated by ‘/’. When pt list contains only one pt then q
has semantically expanded (Lines 31–32) to pt which is also P. If there is more than one pt

in the list, then P is semantically contracted (Lines 33–34) from the list pt.
The propagate_path function propagates ps to ‘//’ in q and returns a set of XPath

query pt based on the current number of ps. which results from ‘//’. There may be more
than one path fragments that traverse from branching and descending elements of ‘//’
(Lines 1–6).

Function sub-path processes list S based on the pair of elements that leads and ends
current ‘//’, and returns a list type ps. This list contains a sub-path or multiple sub-paths
(Lines 1–8).

Function semantic_path_contraction derives a contracted path from pt list; from the
target element of all pt traversing back to the root, which is also the branching node of
each pt. The function normalises the common elements in all pt and replace those are not
matched ‘//’. The contracted path P contains a sequence of elements separated by ‘/’ as
long as each element being found in all processed paths and replace the branches by ‘//’
(Lines 1–6).

Function semantic_path_complement performs a number of XPath queries q from
user input XPath query Q. For each q, it is stored in list Z (Line 1). The branching node b
(Line 2) is also identified. When any q in Z is detected with operators other than ‘/’, it is
processed further by calling on the process_operator (Lines 3–4) function. The returned
expression q is either a valid path that contains only elements which are separated by
operator ‘/’ and/or ‘//’ only; no other operators should exist. If the elements in q are not
matched elements as defined in the schema (Lines 5–6), the whole transformation for Q is
no longer valid, and the control returns to waiting state for a new Q. Removal applies
when the conditional element has a minimal occurrence whose value is 1 and above;
the semantic complemented path P is q left in Z excluding restricted q (Lines 7–8).
When restricted q cannot be removed; the ‘..’ operator is replaced by [] and inner focus
would be the sequence of descendants of the branching node b (Line 9). Line 10 returns
the semantic complemented path P to the main control for accessing the database.

 88 D. Le et al.

6 Empirical performance evaluation

The above algorithm has been implemented and a test bed has been built. We now
evaluate the potential for optimisation produced by the proposed Semantic
transformations using the results collected in the test bed system.

6.1 Performance evaluation strategy and experimental set-up

There exist essentially two practical approaches to the management of XML data and
to the processing of queries to XML data: a Native XML database system and an
XML-enabled database system. We therefore compare the performance of queries and
transformed queries in our workload for two representative systems: a Native XML
Database system (referred to as XMS) and a commercial XML Enabled Database system
(referred to as XDB). The analysis of the results is twofold:

1 an evaluation ascertains the potential for optimisation (whether a transformed query
can be evaluated more efficiently)

2 a comparison is carried out on the relative performance of the two systems.

XMLSpy7 data generator generates XML documents conforming to a company.xsd
schema as depicted in Figure 1. We use six data sets (compliant with this schema) of
varying sizes: 15, 20, 25, 30, 35 and 40 mega bytes.

Table 2 consists of the queries and their transformed equivalent queries. The time
response measurements are made using the profiling tools of the respective systems
and are averaged (outer layers are eliminated) over several attempts in order to cater
for possible interferences from the operating system and other system processes.
The experiments are performed on a PC AMD64 (989) 3200+ with 2.0 GB of RAM
disconnected from the network.

Table 2 XPath and Semantic Counterparts

No. XPath queries (Q) Semantic XPath queries (SQ)
1 //depart/staffList/*/email company/depart/staffList//email
2 /*//perm/ages company/depart/staffList/perm/ages
3 /*/depart/*/perm company/depart/staffList/perm
4 //@location company/depart/@location
5 //depart/staffList/perm/../contract company/depart/staffList/contract
6 /*/depart/staffList//name company/deparment/staffList//name
7 company/depart/staffList/perm[name/lastname] company/depart/staffList/perm
8 company/depart/staffList/contract

[city = "Bundoora" or city = “Altona”]
company/depart/staffList/contract
[city = ‘Bundoor’]

9 company/depart/staffList[position()>=1]
/perm/name[lastname=‘Smith’]

company/depart/staffList/perm/name
[lastname=’Smith’]

10 company/depart/staffList/contract
[ages > 22 and ages < 56]/name

company/depart/staffList/contract/na me

 Using semantics for XPath query transformation 89

6.2 Results and analyses

The XPath queries are grouped and studied under each proposed semantic transformation.
A reminder here that XDB means XML-Enabled Relational Database and XMS

means XML Native Database.

i Semantic Path Expansion Transformation for XPath queries Q2, Q3 and Q4, which
refer to Table 2 and Figure 10 for result evaluation.

Figure 10 Semantic path expansion transformation

XPath query Q2 is specified with elements, a wildcard selection ‘*’, a ‘//’
ancestor-descendant and ‘/’ parent-child operators. XPath query (SQ2) is semantically
expanded from Q2, which includes only a set of valid elements and ‘/’. Referring to
Figure 11, the result shows a significant improvement in response time by about 90%
SQ2 in XDB database. In XMS database, SQ2 shows a sound reduction of more than
50% in response time. This significantly improved performance is mainly due to the use
of ‘//’ leading the XPath query, as the ‘*’ operator represents a valid element root
‘company’, which does not contribute much to this improvement.

Figure 11 Semantic path contraction transformation

 90 D. Le et al.

XPath query Q3 is specified with only a set of valid elements, ‘/’ parent-child operators
and ‘*’ operators. In this XPath query, each ‘*’ operator (refer to Figure 1), represents
‘company’ and ‘staffList’ respectively. Similar to the use of ‘*’ in Xpath query Q2,
we can see the performance of Xpath query SQ3 in both XDB and XMS databases
is improved by about 5%; it shows a very minor improvement in the transformed XPath
queries. Operator ‘*’ does not contribute much to the deterioration of performance.

On the other hand, XPath query Q4 demonstrates the use of an ID and ‘//’ operator
leading the XPath query. After undergoing the transformation process, the performance
of SQ4 shows a significant improvement by about 90% in XDB database and sound
reduction of response time by about 8% in the XMS database.

ii Semantic Path Contraction Transformation for XPath queries Q1 and Q6,
which refer to Table 2 and Figure 11 for result evaluation.

Apart from the use of ‘/’ and valid elements, XPath query Q1 is also specified with ‘//’
ancestor-descendant operator leading the XPath query, ‘*’ unidentified element operator.
After undergoing the transformation process, ‘//’ can be expanded from ‘depart’ to root
‘company’. However, ‘*’ represents ‘perm’ and ‘contract’ elements. This shows that
there are multiple unique paths that traverse from the root to ‘email’ via ‘staffList’ in
order to produce the same result as of Q1. By applying our proposed transformation for
contraction, as a result, the transformation has replaced ‘/*/’ with ‘//’. The performance
of SQ1 in XDB database shows a significant improvement by about 95% and less than
9% for the SQ2 in XMS database.

In XPath query Q6, which is specified with ‘*’ as the leading element in the XPath
query and ancestor-descendant ‘//’. After undergoing the transformation process, ‘*’ is
replaced with a valid element ‘company’ and the rest remain the same. As a result,
the SQ6 in both XDB and XMS databases shows only minor improvement; this is due to
the contribution of ‘*’ in the original query.

iii Semantic Path Complement for XPath query Q5, which refer to Table 2 and
Figure 12 for result evaluation.

XPath query Q5 is specified with ‘//’ ancestor-descendant, ‘/’ parent-child and ‘..’
parent and set of valid elements. After going through our semantic path complement
transformation process, in XPath query SQ5, ‘..’ has been removed and ‘//’ is replaced
with a root ‘company’ element. There is a significant optimisation by about 95% for SQ5
in XDB and a slight improvement for SQ5 in XMS.

Figure 12 Semantic path complement

 Using semantics for XPath query transformation 91

iv Semantic Qualifier Transformation (Semantic Ordinal Index transformation and
semantic content-based transformation) for XPath queries Q7, Q8, Q9 and Q10,
which refer to Table 2 and Figure 13.

The XPath queries Q7 and Q10 demonstrate the content-based transformation where
predicates are restricted by range values (ages are between 22 and 55) and acceptance
values (city is Bundoora or Melbourne}.

Figure 13 Semantic qualifier transformation

In addition to this, we also demonstrate the use of conjunctive join in the predicate
in Q10. Both XPath queries Q7 and Q10 are successfully transformed. As a result, the
predicates in these XPath queries depict a full-qualifier. The predicates are therefore
eligible for elimination. As a result, the SQ7 and SQ10 in XDB database show a great
improvement in performance of between 50% and 78%; however, the performance of
these semantic XPath queries in the XMS database shows very little improvement.

In XPath query Q8, we demonstrates the use content-join of values
“city = ‘Bundoora’ or ‘Altona’”. Even though ‘Altona’ is not an acceptance value defined
for City in the schema, however, the join-content for values of ‘City’ is an OR operator.
The predicate [city = ‘Bundoora’ or city = ‘Altona’] is identified as a partial-qualifier
as “Altona” is regarded useless and can be removed. We found that there is a significant
improvement by about 50% for SQ8 in XDB and about 18% for SQ8 in XMS. The result
indicates that there is a great optimisation opportunity for the removal of values in the
predicate.

XPath query Q9, we demonstrate the use of the context-sensitive node function and a
join content-based. The first predicate uses the context function [position()>=1] on
‘staffList’ element which can be easily removed as, according to the occurrence
‘staffList’ set in the schema, there should be at least 1 staffList or multiple staffList in the
database. This predicate [position()>=1] is identified as a full-qualifier. The second
predicate uses [lastname = ‘Smith’] on the ‘name’ element. This predicate is identified
as a partial-qualifier as there maybe other ‘lastname’ in the database. After going

 92 D. Le et al.

through the transformation process, [position()>=1] predicate is removed and
[lastname = ‘Smith’] is retained.

Performance wise, there is not much improvement for SQ9 in XMS database with the
small data size; nevertheless, the improvement picks up as data size increases. However,
there is a huge improvement for SQ9 in XDB database (not only with the small data size)
and this increases in big portions as the database size increases.

7 Conclusion and future work

We have proposed a family of semantic transformations of XPath queries including
semantic path transformation and semantic qualifier transformation. The semantic path
transformation is further divided into semantic path expansion, semantic path contraction
and semantic path complement. The semantic qualifier transformation is further divided
into two types of transformations. The former is the semantic ordinal index and the
semantic content-based. Our semantic transformations utilise XML schema constraints
as the main source.

The semantic path transformation is for transforming XPath queries that strictly
exclude predicates. We focus on eliminating the use of operators such as ‘..’, ‘.’, ‘//’, ‘*’
as much as possible. Hence, we replace those with valid full XPath query or as many
valid elements as we can.

The qualifier transformation is for transforming predicates in XPath queries. For this
particular typology, we apply the elimination concept to the whole predicate or part of the
predicate.

For completeness, we also devised a set of algorithms and implemented them for
evaluation. Upon the completion of our implementation, we quantified empirically
the potential of these transformations in two systems representative of the existing
options for the management of XML data and for the processing of queries to XML
databases. The results highlight potential opportunities in performance improvement,
which although comparatively different, exist in both systems.

Our ongoing work focuses on fine tuning the algorithm and evaluating its cost
(which is to be added to the response time in the case of ad hoc queries). Our preliminary
observations suggest that pre-processing of the schema and appropriate data structures
yields significant increase in performance even in the case of ad hoc queries.

References
Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M., Srivastava, D. and Yuqing, W. (2002)

‘Structural joins: a primitive for efficient XML query pattern matching’, 18th Proceeding of
International Conference Data Engineering, IDCE, San Jose, CA, USA, pp.141–152.

Amer-Yahia, S., Cho, S., Lakshmanan, L.V. and Srivastava, D. (2001) ‘Minimization of tree
pattern queries’, Proceedings of the 2001 ACM SIGMOD International Conference on
Management of Data, Santa Barbara, California, USA, pp.497–508.

Berglund, A., Boag, S., Chamberlin, D., Fernándezark, M., Kay, M., Robie, J. and Siméon, J.
(2007) Axes in XML Path Language (XPath 2.0), http://www.w3.org/TR/xpath20

Biron, P., Permanente, K. and Malhotra, A. (2004) XML Schema Part 1 & 2, http://www.w3.org/
standards/techs/xmlschema#w3c_all

 Using semantics for XPath query transformation 93

Charkravarthy, U.S., Grant, J. and Minker, J. (1990) ‘Logic–based approach to semantic query
optimization’, ACM Transactions on Database Systems, Vol. 15, No. 2, pp.162–207.

Che, D., Aberer, K. and Özsu, M.T. (2006) ‘Query optimization in XML structured-document
Databases’, The VLDB Journal – The International Journal on Very Large Data Bases,
Vol. 15, No. 3, pp.263–289.

Chen, D. and Chan, C. (2008) ‘Minimization of tree pattern queries with constraints’,
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data,
Vancouver, Canada, pp.609–622.

Coen, C.S., Marinelli, P. and Vitali, F. (2004) ‘Schema path, a minimal extension to XML
schema for conditional constraints’, Proceedings of the 13th International Conference on
World Wide Web, New York, NY, USA, pp.164–174.

Deutsch, A., Popa, L. and Tannen, V. (2006) ‘Query reformulation with constraints’,
SIGMOD Rec., New York, NY, USA, Vol. 35, No. 1, pp.65–73.

Groppe, S. and Groppe, J. (2006) ‘A prototype of a schema-based XPath satisfiability tester’,
Proceedings of 17th International Conference on Database and Expert Systems Applications,
Krakow, Poland, pp.93–103.

Gupta, K.A. and Suciu, D. (2003) ‘Stream processing of XPath queries with predicates’,
Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data,
San Diego, California, USA, pp.419–430.

Hammer, M. and Jdondik, S.B. (1980) ‘Knowledge-based query processing’, Proceedings of the
6th Very Large Databases (VLDB) Conference, Montreal, Quebec, Canada, pp.137–146.

King, J. (1981) ‘Quist: a system for semantic query optimization in relational databases’,
Very Large Database (VLDB), IEEE Computer Society, Cannes, France, pp.510–517.

Le, D. and Pardede, E. (2009) ‘On using semantic transformation algorithms for XML safe update’,
8th ISTA International Conference on Information Systems Technology and its Applications,
Sydney, Australia, pp.367–378.

Le, D., Bressan, S., Taniar, D. and Rahayu, W. (2007) ‘Semantic XPath query transformation:
opportunities and performance’, 12th International Conference on Database Systems for
Advanced Applications DASFAA, Bangkok, Thailand, pp.994–1104.

Li, M., Mani, M. and Rundensteiner, E. (2008) ‘ELF: a constraint-aware XQuery engine for
processing XML streams with minimized memory footprint’, ICSC 2nd International
Conference on Semantic Computing, Santa Clara, CA, USA, pp.494–495.

Ramanan, P. (2002) ‘Efficient algorithms for minimizing tree pattern queries’, Proceedings of the
2002 ACM SIGMOD International Conference on Management of Data, Madison, Wisconsin,
pp.299–309.

Shenoy, S.T. and Ozsoyoglu, Z.M. (1987) ‘Design and implementation of a semantic query
optimizer’, IEEE Transactions on Knowledge and Data Engineering (1987), Vol. 1, No. 3,
pp.344–361.

Smiljanic, M., Keulen, M. and Jonker, W. (2005) ‘Formalizing the XML schema matching problem
as a constraint optimization problem’, 16th Conference on Database and Expert Systems
Applications, Copenhagen, Denmark, pp.333–342.

Su, H., Murali, M. and Rundensteiner, E. (2004) ‘Semantic query optimization in an automata
algebra combined XQuery engine over XML streams’, Proceedings of the 30th Very Large
Data Bases (VLDB) Conference, Toronto, Canada, pp.1293–1296.

Su, H., Rundensteiner, E. and Mani, M. (2005) ‘Semantic query optimization for XQuery over
XML streams’, Proceedings of the 31st Intl Conference on Very Large Data Bases,
Trondheim, Norway, pp.277–282.

Sun, W. and Liu, D. (2006) ‘Using ontologies for semantic query optimization of XML databases’,
Knowledge Discovery from XML Documents: First International Workshop on Knowledge
Discovery from XML Documents (KDXD), Singapore, pp.64–73.

 94 D. Le et al.

Wang, G., Liu, M. and Yu, J. (2003) ‘Effective schema-based XML query optimization
techniques’, Proceedings of the 7th Intl Database Engineering and Application Symposium,
IDEAS, Hong Kong, pp.1–6.

Wang, S., Su, H., Li, M., Wei, M., Yang, S., Ditto, D., Rundensteiner, E.A. and Mani, M. (2006)
‘R-SOX: runtime semantic query optimization over XML streams’, Proceedings of the 32nd
International Conference on Very Large Data Bases, Seoul, Korea, pp.1207–1210.

Wood, P.T. (2001) ‘Minimizing simple XPath expressions’, Proceedings of the Fourth
International Workshop on the Web and Databases, Santa Barbara, California, USA,
pp.13–18.

Wood, P.T. (2003) ‘Containment for XPath fragments under DTD constraints’, The 9th
International Conference on Database Theory, Paris, France, pp.300–314.

Notes
1Content-based predicate is a predicate that has a leaf-node and restricted value for data filtering.
e.g., //employee[age > 22] where ‘age’ is an element in the predicate and 22 is the value of ‘age’.
Semantic content-based predicate is the transformation of content-based predicate, which will be
defined later.

2Index ordinal predicate is a predicate that contains only a value (denoted as θ) or a context
sensitive (Biron et al., 2004) function last() or position(). Semantic Index ordinal predicate is the
transformation of Index ordinal predicate, which will be defined later.

3The target node is the most important element in an XPath query. E.g., we have a unique path
‘company/name’ where element ‘name’ is the target node under the parent element ‘company’.

4Nor is a function used to perform a normalisation task.
5A conditional element is an element used in predicate to filter information.
6Content-join is a join represented by ‘OR’ or ‘AND’ between the element with different values
or different element with different values.

7XMLSpy is an XML editor and integrated development environment (IDE) from
www.Altova.com

