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Abstract: In this paper, we propose a typology of the semantic transformations 
for XPath queries. We focus on two main areas.  The first is structural 
transformation for XPath query, which can be semantically contracted, 
expanded or complemented using structural constraints. The second is semantic 
qualifier transformation where the predicates, specified by [ ], in an XPath 
query can be eliminated or transformed. We design a set of algorithms  
and implement a prototype system for evaluation. We adopt two representative 
off-the-shelf XML data management systems to validate the effectiveness of 
the semantic transformations. 
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1 Introduction, motivation, contribution and framework 

Semantic query transformation (Hammer and Jdondik, 1980; King, 1981; Shenoy and 
Ozsoyoglu, 1987; Deutsch et al., 2006) is the process of rewriting, with the knowledge of 
some integrity constraints, a query into an equivalent one. While the transformed query 
under semantic query optimisation aims to achieve a better performance – such as more 
efficient processing – the transformed query under semantic query transformation aims  
to achieve a better query structure and may provide some opportunities for optimisation. 
The concepts have been popularised for relational, object-oriented, deductive and even 
object-relational databases; hence, it is also useful for XML databases, especially with the 
current availability of rich semantics in XML schema. This has renewed interest in the 
study of semantic query transformation and optimisation for XML query languages such 
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as XPath, XQuery and possibly the optimisation of programs in XML languages such  
as XSL. 

Semantic query optimisation for XML queries has been studied by Deutsch et al. 
(2006), Su et al. (2004, 2005) and Sun and Liu (2006). The Chase and Back (C&B) 
algorithm (Deutsch et al., 2006) was suggested for reformulating XPath query by using 
the relational encoding and constraints in a Document Data Type (DTD) schema.  
The second contribution (Su et al., 2004, 2005) was concerned with XQuery for stream 
databases where a pruning tree was proposed for structural rewriting.  

Earlier work on XML query optimisation focused extensively on pruning and 
minimisation (Amer-Yahia et al., 2001; Su et al., 2004, 2005; Sun and Liu, 2006;  
Wood, 2001, 2003) using tree patterns. A tree pattern that presents an XPath query is 
known as a query tree pattern (Al-Khalifa et al., 2002). One of the most popular  
and efficient techniques for processing a query tree pattern is known as pattern matching 
(Smiljanic et al., 2005). Certain structural constraints such as edges representing 
relationships between tree nodes are applicable. 

XPath queries also allow predicates (Gupta and Suciu, 2003). However, predicates 
(Le and Pardede, 2009) in XPath queries are more complex than predicates in relational 
queries. They not only allow relationships between the tree data nodes, but also they 
allow values to restrict the content of elements. Very often, users specify XPath queries 
that unintentionally create redundancies, which could lead to a performance issue. 

The motivation behind our work is the importance of tree pattern and rich data 
semantics available in the XML schemas, which have renewed rewriting opportunities. 
The XPath expressions can be, for instance, contracted or expanded with the knowledge 
of the structural constraints of XML schema. For example, the XPath query “a/b/c”  
can be contracted to “//c” if a schema indicates that c is always immediately preceded  
by a/b or vice versa; that allows the path “//c” to be expanded into “a/b/c” using the same 
knowledge. 

With the knowledge of structural and occurrence (Biron et al., 2004) constraint, for 
example, the XPath query “a/b[c/d]/f” can be contracted to a path “a/b/f”. That is, only 
when a schema indicates that c and f are always immediately preceded by a/b and the 
minimal occurrence of c under b must be at least 1, the same as the minimal occurrence 
of d under c. Such constraints allow the elimination of [c/d] to produce “a/b/f”.  
In any XML schema (XSD), apart from structural or identity constraints (Biron et al., 
2004), other constraints are considered very useful for semantic transformation 
categorised as the faceting constraints (Biron et al., 2004). This is a type of constraint 
applicable to leaf-node elements. For instance, an XPath query “/a/b[. =‘valueA’ or . 
=‘valueB’]”; this XPath query has a predicate [. =“valueA” or .=“valueB”].  
This predicate can be removed if the values {valueA, valueB”} are the exact matched 
values of element b specified in the associated schema (XSD) within an XML document. 

Another interesting study we discover for semantic transformation is when an XPath 
query uses a context sensitive function (Berglund et al., 2007) such as position(), last(), 
first(). We find that certain constraints can be useful for transforming XPath expressions 
where a context-sensitive function in an XPath query is eliminated to boost the 
performance. For instance, an XPath query ‘a/b[//d[position()>=1]]/f’ indicates a nested 
predicate [position()>=1] with the outer predicate being [//d]. This XPath query simply 
lists all the ‘f’ information where each ‘b’ is the ancestor and it must have at least one ‘d’ 
as descendant. To transform this type of query, we first look at the path ‘//d’ in the outer 
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predicate to determine whether the path is valid and therefore it would be better to use 
‘//’, or whether ‘//’ can be transformed to a full conditional path ‘c/d’.  

To transform both predicates, we must employ the structural constraint as well as the 
occurrence constraint between ‘b’ and ‘c’, as well as between ‘d’ and ‘f’. If verification 
indicates that the constraints in the schema conform to the constraints used in XPath 
query for those mentioned elements, and if the minimal occurrence of ‘d’ under ‘c’ and 
‘c’ under ‘b’ is 1, then a possible semantic XPath query is ‘a/b/f’.  

To the best of our knowledge, the techniques for semantic transformation described 
above have not as yet been addressed for XPath query. Although our literature survey 
indicates that numerous works have tackled XML query optimisation (refer to Table 1) 
with the presence of schema, none of the existing works overlaps our techniques. 

Table 1 Summary of semantic query transformation/optimisation 

Author(s) Approach Schema constraints 
Amer-Yahia et al. (2001) Minimisation of Tree 

Pattern Query (TQP) 
Subtype, required child and required 
descendants 

Ramanan (2002) MinimiseChase Subtype, required child and required 
descendants 

Chen and Chan (2008) Minimisation of Tree 
Pattern Query (TQP) 

Subtype, required child, required 
descendant, required parent, required 
ancestor and sibling constraint 

Sun and Liu (2006) Ontology 
conceptualisation 

Object Oriented semantics in the 
XML schema 

Su et al. (2004, 2006) 
and Li et al. (2008) 

Tree query technique Structural constraints apply to the 
traversal of the Tree Pattern Query to 
determine predicates that does not 
contribute to the final result 

Coen et al. (2004)  
and Wang et al. (2003) 

Path complementing and 
path shortening 

Use schema labelling to derive 
schema paths 

Our contribution is as follows:  

1 We derive a typology of semantic path transformations (Le et al., 2007) including 
semantic path expansion, semantic path contraction and semantic path complement 
to transform an XPath query that has no predicate. 

2 We introduce another typology of semantic predicate transformation that consists  
of semantic content-based predicate1 and semantic index ordinal predicate2  
to transform the predicates in an XPath query. 

3 We then design two algorithms for semantics pre-processing preparation  
and our proposed semantic transformation typologies. 

4 The evaluation of these proposed transformations will be carried out  
by comparatively evaluating the performance of the workload of XPath queries  
and their transformations. We use two systems representative of the state-of-the-art 
XML database management and query processing systems: a Native XML Database 
System (referred to as XMS) and an XML-Enabled Relational Database System 
(referred to as XDB). Finally, we discuss and analyse the results and outline the 
future work.  
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Below is the summary of our framework to achieve the contribution described above. 

• First, as a criteria for structural query information, we study the path fragment 
[/, //, …, *]. 

• Second, as criteria for structural query expression, we revisit the notion of pattern 
matching (Al-Khalifa et al., 2002) alignment with structural constraints, which 
makes a significant impact on our semantic transformations. 

• Third, we look into a series of constraints from the XML schema (Biron et al., 2004)  
to select the most useful constraints that are imperatively suitable for our semantic 
transformations. For transforming an explicit structural expression, the semantic path 
transformation, constraints/semantics (‘/’ parent-child, ‘//’ ancestor-descendant) are 
used. To optimise the performance of the semantic path transformation typology,  
we integrate the notions of pattern matching and canonical rewriting with semantic 
path expansion, semantic path contraction and semantic path complement.  
For transforming predicates, we study the facet constraints (Biron et al., 2004) for 
data element to support our proposed semantic qualifier transformation typology 
including semantic content-based predicate that holds the leaf-node with values  
for filtering; and a semantic index ordinal predicate for predicates that hold the 
position(), last() or an index. 

• Four, we provide two main algorithms. The first algorithm plays an important role  
in preparation such as pre-processing the schema information and efficiently storing 
it in well-designed data structures so that information can be easily obtained and 
used by the second main algorithm. This second algorithm is central to the work  
of this paper. Not only are all the proposed semantic transformations implemented  
in this algorithm, but also the algorithm is able to determine whether the XPath query 
returns an answer well before it is transformed or even sent to the database for query. 
Such a query indicates a conflict in semantics, such problem also studied by 
satisfiablity (Groppe and Groppe, 2006), either in structural expression or data 
content. The success of the semantic transformations of queries depends 
considerably on the derivation of such an algorithm. 

• We evaluate the potential of these transformations by comparatively evaluating  
the performance of the workload of XPath queries and their transformations.  
To achieve better confidence in comparative results, we use two systems 
representative of the state-of-the-art XML database management and query 
processing: a Native XML Database system (we refer this to as XMS through out  
this paper) and an XML-Enabled Relational Database system (we refer this as XDB). 

• Finally, we present the conclusion and the future roadmap for this work. 

The semantic transformation work is considered to be a studied and traced path to 
semantic optimisation for query processing dealing with XML databases. Its main goal  
is not immediate optimisation, but rather to achieve an alternative way of writing the 
XPath query. Some transformations may produce very promising improvement, thereby 
providing opportunities for semantic query optimisation. 

This paper significantly extends the existing work (Le et al., 2007), which was 
introduced to address only semantic path transformation using a unique path, by more 
than 90%. The remainder of this paper is organised as follows: Section 2 is an overview 
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of related work on semantic query optimisation in general and of semantic query 
optimisation for XML query. Section 3 sheds light on the terminologies, problems and 
notions of query pattern; Section 4 defines the typology of semantic transformations; 
Section 5 describes the implementation and evaluation system including the algorithms; 
Section 6 discusses the results and analyses the comparative empirical performance 
evaluation. Lastly, we summarise our findings and outline future work in Section 7. 

2 Related work 

While semantic transformation is the process of rewriting all given queries despite the 
presence of data in the database, the status of performance of the transformed query is not 
determined before the query is transformed. Unlike semantic transformation, semantic 
optimisation is the process of selectively rewriting a query, which is undertaken only  
if the status of the performance can be determined before the query is transformed.  
The earlier contribution to this area was not able to clarify the difference between the  
two concepts, thereby producing misinterpretation. 

Semantic notation proposed for processing queries made an initial contribution to the 
research area of semantic query optimisation (Hammer and Jdondik, 1980; King, 1981). 
Although these contributions are the conceptual frameworks for semantic query 
optimisation, they were extended to the design of a broader range of methodology  
and rules that have grown and developed quickly as a result of later works. A typology 
for semantic query rewriting (Charkravarthy et al., 1990) has been dispersed including 
literal insertion, literal elimination, and range modification (modification of a condition). 
The work has acknowledged the important role of semantic query rewriting. That is, 
some queries can be answered without having to access the database (typically when a 
contradiction is exposed in the query, which, consequently, denotes an empty answer). 

Literal insertion and elimination techniques have become more common practice. 
Queries are formed with some simple predicates; therefore, they are easily determined  
for the removal of redundant checking conditions or to introduce more restrictions  
to avoid the use of disproportionate search space. On the other hand, range modification 
is an exhausting process, which may become a recursive problem. Due to this reason,  
we propose to study the literal insertion and literal elimination and apply them in XML 
queries. 

Minimisation of tree pattern queries was introduced by Wood (2001) and  
Amer-Yahia et al. (2001). Although their work did not utilise any integrity constraints  
in its minimisation technique, it later drew the interest of, and was further investigated  
by Ramanan (2002). These works introduced integrity constraints to improve query  
run-time of tree pattern queries. 

Two different proposed techniques including Minimisation and MinimisChase used 
the same integrity constraints. Minimisation (Amer-Yahia et al., 2001) of Tree Pattern 
Query (TPQ) was proposed to improve the query run-time and included integrity 
constraints. Subtype, child or descendants were utilised in this technique. With respect to 
the number n nodes regarded as a query size, their algorithm produced a run-time O(n6). 

The later work proposed the MinimiseChase technique (Ramanan, 2002) which 
improved the run-time, achieving O(n4) in the presence of the same set of integrity 
constraints. Further to Ramanan’s (2002) investigation, this work took the additional  
step of eliminating the subtype constraint from the algorithm. This left only what was 
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considered the required child or required descendant, and their algorithm achieved a 
better run-time of O(n4). However, both techniques (Amer-Yahia et al., 2001; Ramanan, 
2002) had shortcomings. Firstly, they considered integrity constraints in optimisation, 
which is only part of the whole optimisation. Secondly, they focused on structural 
constraints and thirdly, even with their consideration of structural constraints, neither 
technique was able to handle any constraints other than three: subtype, required child and 
required descendants.  

To overcome the problem of integrity constraints limitation in the minimisation  
of TPQ (Chen and Chan, 2008) explored the minimisation problem of TPQ further  
for a class of FBST-constraints including forward (required child, required descendant), 
backward (required ancestor and required parent), subtype and sibling constraints.  
To deal with the backward and sibling constraint, their ChaseMinimiseFBST algorithm 
computes a single minimal query of an input query Q with respect to a set of  
FBST-constraints and it achieved a run time of O(n3|Σ|) where n is query size and Σ is a 
set of distinct element types in the constraints. Although this work has increased the 
number of structural integrity constraints to be considered for the minimisation of TPQ, 
and the run-time was better than that of earlier works (Amer-Yahia et al., 2001; 
Ramanan, 2002), the obvious shortcoming is the inability to support anything more than 
those integrity constraints that are already listed. Their limitation of constraints, which 
recognised those distinct element types, means no recursive type support. 

Optimising XQuery using Semantic query optimisation was part of the proposed 
optimisation work for RainDrop (Su et al., 2006; Li et al., 2008) and R-SOX (Wang  
et al., 2006). Their goal was to use schema constraints to deal with query pattern in 
predicates, which they believe do not contribute to the final result. The problem with this 
work is that the technique is tight-coupled DTD schema. Other than structural constraints, 
constraints of data elements are not part of their semantic optimisation work. 

Let us consider a query ‘//auction[reserve or bidder/zipcode contains “9000”]’. 

This existing work provides no discussion about the constraint (for example a zipcode 
must be between 1000–6000) that can determine how such a given value in the predicate 
can cause a null result set. This would contribute to the performance if the query has to 
access a large database in order to receive the result. This is due to their focus mainly on 
structural constraints to expedite the traversal of the steam to avoid unnecessary 
computation of the final result. Providing support for constraints of data elements is not 
within the scope of their work. 

In addition to the aforementioned limitations of this work, although it proposed  
to deal with semantic optimisation, the rules/techniques for rewriting queries were not 
clearly discussed, apart from the rules for making decisions about the parts of XQuery to 
be executed in order to achieve a better performance. 

As a result of our survey, we summarise the outstanding issues as follows: 

• The utilisation of XML schemas constraints (Su et al., 2004, 2005; Che et al., 2006; 
Sun and Liu, 2006) in either semantic query optimisation or transformation,  
as previous works focused mainly on structural constraints for tree expression. 
Rewriting of predicates was not significantly addressed. 
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• Our work is different from the existing work in that we consider the semantic 
transformation from two perspectives: the first is the semantic transformation for a 
structural (tree expression) model; the second is the content data model.  
The technique for the content data model is inherited from the semantic 
transformations proposed for relational databases. Some common and obvious 
transformations performed earlier such as range modification, literal insertion, and 
elimination (Charkravarthy et al., 1990; Shenoy and Ozsoyoglu, 1987; King, 1981; 
Hammer and Jdondik, 1980) have been found to be very useful for our work.  
We adopted some of these as they provide the capability to deal with data values  
in predicates. Although not all can be adopted, we consider and apply selective 
techniques to our transformations. XPath query can be semantically transformed 
when the constraint is detected and matched. We show that even with the process  
of checking existing constraints, some transformed queries perform better than the 
original ones. 

3 Terminologies, studied problems and notions of query tree pattern 

Though although information about XML documents, schema(s) and constraints is 
generally available and can be found in any general XML materials, the type of 
information required for our work needs to be streamlined. Therefore, in this section  
we simplify the information including XML schema, XML document and related 
information that is required for our work. We then describe how the XML document  
or database must comply with an associated XML schema. We define several important 
terms and notions that play key roles in our semantic transformations proposed in  
Section 4. One of the important roles of path expression is the query tree pattern in which 
pattern matching is fundamental to processing a TPQ. For this reason, the notion of 
pattern matching is also revisited; we present a problem and discuss examples in detail  
in order to illustrate its importance, since it is required by our later work.  

3.1 XML schema, XML data documents and semantics/constraints 

For convenience and a wider variety of semantics, we use XML schema type (XSD);  
this does not mean that we restrict the schema type (DTD). 

Definition 1 (XML Schema): An XML schema is a directed graph G that is represented 
by {V, E, C, ϕ } where: 

• V is a non-empty finite set of vertices 

• E ⊂ V × V × I × (I ∪ {∞}), is a finite set of edges with a multiplicity (j, k) associated 
with each edge where j and k are integers such that j ≤ k, j ∈ I  
and k ∈ I ∪ {∞} 

•  ∈ V is the root. 
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The examples (but not all) below illustrate the notations based on Figure 1.  

• V = {company, depart, name, location, @id} 

• E = {(company, depart, 1, ∞), (depart, name, 1, 1), (depart, staffList, 1, ∞), 
(company, name, 1, 1), (company, location, 1, 3)} 

•  = company. 

When the minimal and maximal occurrences, denoted by (minOccur, maxOccur), of an 
element are not defined in the schema; the default values are 1. For example,  
each contract staff member can have only one occurrence of the ‘age’ element. 

Figure 1 Company XML schema 

 

Definition 2 (XML Document) XML document is a tree T where  

• Every vertex is labelled as element or attribute or text content (labels and text 
content – can be empty) 

• Edges E are pairs of V. 

An XML document T is valid with respect to an XML schema G if and only if: 

• the root of the XML document tree T is a unique node in V such that root   
of G is also root  of T 

• there exists a total mapping M of nodes V in T to nodes V in G that holds the 
following conditions: 

• a node v ∈ V in T is mapped to v ∈ V in G; if v has some children then v must be a 
complex type; or  
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• a node v ∈V in T is mapped to v ∈V in G if v has no children and v is a simple type 
then it is either an attribute or a leaf-node 

• for each edge, in schema directed graph G, between two vertices (vh, vi) if j and K are 
the minimum and maximum occurrences of child element vi then the number of 
edges for this pair of nodes is k times in XML document T where 0 ≤ j and j ≤ k  

• for node v ∈V if u found within a complex type v then u is called a  
sub-element of v and for any r ∈V if r, as an attribute to itself, is found within v then r 
is an attribute element, there is a certain parent-child,  
an essential structural constraint, edge from v to u; v to r  

• for any element v ∈ V if z is found to be a value v with then v is called  
a leaf element; z is the context content of v. Each v may be assigned with some 
content-based constraint1 c ∈C. 

3.2 Path and path expression 

A schema path specifies the selection of vertices. The structural paths are expressed 
based on the XML schema and XML document. Hence, we define the class of path 
expression as: 

Definition 3 (Path in schema G): A path in the XML schema G is a sequence of vertices 
(Vx, …, Vz) s.t. Vz must occur under Vx via Vy where x ≤ y ≤ z. 

Definition 4 (Path expression): A path expression in an XML schema G is a path that has 
elements represented by ‘*’, ‘..’ or ‘.’. Elements are separated by ‘/’ or ‘//’. 

• // represents ancestor and descendants 

• / represents parent and child 

• * represents a union of vertices/elements 

• . represents the vertices/elements 

• .. represents the parent. 

The following are (some, not all) path expressions in the XML schema: 

{company//name; company//location; //depart; company/*/@id; company/*/name; 
company/depart; company/depart/@id; company/depart /name; company/depart/staffList, 
//depart/staffList /perm/../contract; */*; *//*; */*/*; etc…}. 

Definition 5 (A Path in XML Document): A path query over an XML document tree  
is a path expression if and only if  

• A path and path expression are identical 

• Or we replace‘*’ with some vertex and the path matches the new path expression 

• Or we replace ‘.’ with the current vertex then the path matches the new path 
expression 
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• Or we replace // with a sequence of nodes separated by / the path matches the new 
path expression 

• Or we replace ‘..’ with ‘[ ]’ where [ ] contains a vertex or a path that matches the new 
path expression. 

Motivation example: with reference to Figure 1 XML company schema, it can be 
explained as follows:  

The root is the ‘company’ where there must be at least one department, valid location, 
and address. There is no limit to the number of departments but the company can be 
located in two locations attached to two different addresses respectively. Every 
department ‘depart’ occurs under the ‘company’ and must have at least one immediate 
department name ‘dname’ and a list of staff ‘StaffList’. Every staff list contains 
information about at least one staff of permanent and contract type with no restriction 
 on the number of staff in each list. The record of every permanent and contract staff 
member contains the following information: identification, name that includes first name 
and last name, age, address, city, email, status and phone number and employment  
date. Every contract staff member has, in addition, a record of duration of tenure.  
Staff Identification is modelled as the unique attribute ‘id’ in both ‘perm’ and ‘contract’ 
elements. The ‘name’, ‘age’, ‘status’, ‘employment date’, ‘address’, ‘city’, ‘email’ and 
‘phone’ elements are child elements in both ‘perm’ and ‘contract’. ‘Age’ of staff must be 
between 23 and 55. A staff member can be a supervisor who will have a supervision id 
that is restricted to an alphanumeric pattern. The company’s locations are restricted  
to ‘Bundoora’ or ‘Melbourne’. Every employee is assigned with a status ‘Active’ or 
‘Inactive’.  

3.3 Notion of query tree patterns  

Prior to presenting our proposed semantic path transformation, we revisit the theory  
of query tree pattern that represents a structure of an XML query, specific to XPath 
query. The processing of a query tree is called pattern matching which we have also 
described.  

Definition 6 (Query Tree Pattern): A query tree pattern QT is a tree where every  
node is labelled with a vertex u  ∪  ∗; a wildcard * represents any tag. The semantics 
between two vertices u in the QT is represented by ‘/’ or ‘//’ where ‘/’ represents  
a structural semantic of a parent-child and ‘//’ represents a structural semantic of 
ancestor-descendant. 

A query tree pattern QT corresponds to an XPath query P. See the running examples  
of XPath queries a, b and c and unique paths (Le et al., 2007) d, e and f below for tree 
pattern representations in Figure 2: 

XPath queries:  (a) company/*/name; (b) company[depart]/location; (c) *//depart 

Unique paths:  (d) company; (e) company/name; (f) company/depart/staffList. 
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Figure 2 Tree paterns for XPath queries and Unique paths 

 

Each of these query tree patterns exhibits only two types of structural relationship.  
While the former one ‘|’ is called a parent-child relationship which is represented by the 
path operator ‘/’, the latter one ‘||’ is known as an ancestor-descendant relationship. 

In our running example of XPath query b, a query tree pattern shows that it has 
outgoing branches at a degree greater than 0 at the branching node ‘company’. 

Definition 7 (Branching node): is a node that has at least two child nodes. 

The node selection by a query tree pattern (QT,) returns a non-empty valid result if,  
and only if, QT is matched to a whole or portion of the XML schema graph G. This notion 
is known as pattern matching.  

The pattern matching (Al-Khalifa et al., 2002) notion has been studied for a query 
tree pattern QT in XML database T. However, due to the nature of our research, the XML 
schema is the main asset and therefore it does not access the XML database in order to 
decide whether the query pattern is valid; instead it depends on the schema to decide  
the valid ability of the query pattern. Hence, we match QT to the paths in the schema.  
We revise a pattern matching definition based on our work content as below. 

Definition 8 (Pattern matching): A matching of a pattern query QT is a mapping δ from 
QT1 (u) to QT1 (v) such that δ: 

• For each u in QT, the predicate node label of u is matched by δ (v) in G  

• For each edge (u, ω) in QT, δ(ω) is a child or descendant of δ (u) in G  

• For each edge (u, ω) in QT ,  if  δ (u) is branching node then it must also is a 
branching node in G. 

We have revisited comprehensive material, information and background of query tree  
and pattern matching for XML query, schema and path structures, which we believe are 
useful for the readers to follow our proposed semantic query transformation. The section 
below presents the main work of this paper.  

4 Semantic transformation typology 

The concept of our unique path introduced in Le et al. (2007) is a schema labelling 
concept (Wang et al., 2003). For this particular work, we consider that the schema nodes 
are uniquely labelled among themselves. This means that a child node is recursively 
under multiple parents; however, a parent is restricted to not having two different 
children with the same label name.  
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Definition 9 (Unique path): Unique paths Q is a set of all possible paths Qu that are 
expressed over an XML schema, that contains a sequence of elements (ex, …, ez), s.t.  
ex must be the root r of schema, ez must occur under ex via ey (where x ≤ y ≤ z), and 
hierarchical relationships ‘/’ parent-child expresses the relationships among the elements.  

In the running example of XML company schema (Figure 1), the possible (but not all) 
unique paths are:  

{company; company/name; company/location; company/depart; company/depart/name; 
company/depart/staffList; company/depart/staffList/perm; company/depart/staffList/ 
perm/@id; etc..} 

Each unique path is represented by a query tree pattern where the tree pattern strictly  
has no branches. A series of unique paths goes through a normalisation process, similar to 
the BCNF technique, to form a new query tree pattern that may allow some branches.  
We define such a query pattern as follows: 

Definition 10 (Normalised Pattern): A normalised pattern results from multiple unique 
paths, which are needed to produce a required answer, being replaced with ‘//’.  

For example, we have identified two unique paths Qu1 and Qu2 which are 
‘company/depart/staffList/perm’ and ‘company/depart/staffList/contract’. A new query 
pattern can be formed as we can normalise these two query patterns to derive a single 
query tree pattern. We can remove ‘company/depart’ from Qu1 or Qu2 and allow the 
branching out on ‘staffList’ node that has two children ‘contract’ and ‘perm’. This means 
either ‘contract’ or ‘perm’ is a conditional element in the predicate. 

Not all the required answer needs multiple unique paths to produce it. A unique path 
is sometimes an XPath query; in which case, it has the following unique characteristics  
– it is based on the structure of the schema, it must start with the root vertex, and it allows 
only the parent-child ‘/’ relationship. A unique path is therefore also a query tree pattern.  

Any node or vertex in the XML schema can be a target3 node. The distinct property 
of the unique paths is that the target node in multiple unique paths may have the same tag 
name; however, path structures are uniquely different in terms of parents and ancestor 
although they must start from the root.  

4.1 Semantic path expansion transformation 

The difference between the earlier semantic path expansion (Le et al., 2007) and this 
semantic path expansion is that while the former adopted the unique path concept, in the 
latter we continue using the unique path concept and ensure the accuracy of this 
transformation by integrating the notion of query tree pattern matching from an XPath 
query to one or more unique path(s). The normalisation will be applicable for semantic 
path contraction and semantic path complement.  

Definition 11 (Semantic path expansion): A semantic path expansion P’ is an XPath 
query that is transformed from an XPath query P and matches a unique path, which 
produces the same result set as P does. 
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Proposition: P’ is a semantic expanded path if and only if P’ is an exact match to one and 
only one unique path; hence, there exists only a parent-child relationship between each 
pair of elements in the path.  

Given a valid XML schema graph G, we derive a set of unique paths Q = {Qu1, Qu2, 
Qu3, …, Qun} where n > 1. Each Qu has a query tree pattern (VQ, EQ) where EQ is a set of 
edges ‘/’ separating set of nodes VQ in Qu. 

The ‘if’ direction in the proposition says for an XPath query P that has a set of 
elements and edges where elements labelled with l or ‘*’  or ‘.’ and edges expressed by 
‘|’ or ‘||’. If all elements in a Qu are a superset of all elements in P; ‘*’  or ‘.’ in P can be 
mapped to elements in Qu and edge trees ‘||’ (if there exists any) can be replaced by a 
sequence of elements labelled l separated by ‘/’ in Qu then Qu patterns P, hence Qu is P’. 

Rule 1: XPath P is semantically expanded only if the following required criteria are met:  

• Start from the target element vj ∈ P mapped to target element vj ∈ Qu 

• Map all nodes vi ∈ P → vi ∈ Qu where vi is the parent or ancestor of vj 

• Replace all ‘*’ and ‘.’ in P with ∃vi ∈ Qu 

• If ‘//’ exists in P, replace it with a fragment in Qu, that has an ancestor  
and a descendant enclosed ‘//’ in P . 

Let us consider an example of XPath query P = company/*//perm. (1) 

Referring to Figure 1, a unique path Qu that leads to ‘perm’ element is 
‘company/depart/staffList/perm’. 

By applying Rule 1 to P, we explain the derivation of P’ from P, as depicted in  
Figure 3. The matching elements of P to elements in Qu can be summarised such  
that target node ‘perm’ ∈ VP → ‘perm’ ∈ VQu and VQu ⊆ VP; ‘∗’ ∈VP → ‘depart’ ∈ VQu . 
The tree edge ‘/’ represents a parent-child relationship between ‘company’ and ‘*’ in  
P or ‘company’ and ‘depart’ in Qu. As the result, we can replace ‘*’ with ‘depart’,  
which makes up a new path ‘company/depart//perm’. The tree edge ‘//’ in P  
represents an ancestor-descendant where ‘perm’ is descendant and ‘depart’ is ancestor.  
If ‘depart//’perm’ can be mapped to a path fragment in Qu where only a parent-child 
relationship exists between the pair of elements, then P can semantically be replaced by 
Qu, hence, Qu is automatically P’. 

Figure 3 P, Qu & P’ 

 

In this section, we show how an XPath query is semantically transformed using the 
semantic path expansion rule that employs the parent-child constraint to eliminate the 
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ancestor-descendant representative in the XPath query. The next semantic transformation 
rule is the semantic path contraction. 

4.2 Semantic path contraction transformation 

Path contraction is applicable only when we deal with query answers that need multiple 
unique paths to produce them. 

Definition 12 (Semantic path contraction): A semantic path contraction P′ is transformed 
from an XPath query P. P matches with multiple unique paths Qu, which are required to 
produce the same result as P does. 

Proposition: Some path fragments in P’ are semantically contracted if and only if P’ does 
not match a single unique path Qu, Multiple identified unique paths Qu are normalised 
where different path fragments in all Qu are replaced with ‘//’. Same path fragment in all 
Qu are retained in P’. This same path fragment has only some parent-child ‘/’ between the 
pair of elements. 

Given a valid XML schema graph G, we derive a set of unique paths Q = {Qu1, Qu2,  
Qu3, …, Qnn}. Each Qu has a query tree pattern (VQ, EQ) where EQ is a set of edges ‘/’ and 
set of elements VQ in each Qu.  

The “iff” direction in the Proposition indicates that an XPath query P has a set  
of elements and edges where elements are labelled with l or ‘*’  or ‘.’ and edges are 
expressed by ‘|’ or ‘||’. If all elements in some Qu are a superset of all elements in P,  
and ‘*’  or ‘.’ in P can be mapped to elements in same set of Qu and edge trees ‘||’  
(if there exists any) cannot be replaced by a sequence of elements labelled l separated by 
‘/’ in Qu then set Qu some different path fragments and same path fragment. The pattern 
normalisation would produce P’ that has a sequence of elements separated only by ‘/’ 
(repeated path fragment in set Qu and ‘//’(different path fragment in set Qu). 

Rule 2 (Semantic path contraction): XPath query P is semantically contracted if it meets 
the following requirements:  

• Seek the target element of P to target element in each unique path Qu to identify the 
number of possible Qu.  

• For all unmatched elements in P, match each of them to those in identified possible 
Qu to ensure that tag name is conflict free. 

• Detect “//” in P and match it back to a path fragment in each identified Qu, ‘//’. 

• Detect all ‘..’, ‘*’ and ‘.’ in P and replace them with matched elements  
in each Qu. 

• Normalise all identified Qu where the repeated path fragment in all Qu  
is retained and the different path fragments in all Qu are contracted to ‘//’. 

• P’ is the semantic contracted XPath query that is derived in the form of set  
of valid elements separate by ‘/’ and ‘//’.  
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Let us consider an example of XPath query P = //staffList//name. (2) 

Using the schema information from Figure 1, Figure 4 depicts P, set of identified Qu  
and P′ in tree patterns. 

Figure 4 P, Qu & P′ 

 

By applying Rule 2 to P, the target element ‘name’ ∈ VP → ‘name’ ∈ VQu where i = 2, 
element ‘staffList’ in P  can also be mapped to element ‘staffList’ in both Qu1 and Qu2. 
Edge ‘//’ is detected between ‘staffList’ and ‘name’ elements in P means the target 
element ‘name’ is traversing back to element ‘staffList’ on two different path fragments 
‘staffList/perm/name’ and ‘staffList/contract/name’ respectively. The difference in  
path fragment from ‘statffList’ to ‘name’ appears Qu1 and Qu2. Figure 4 depicts a  
query pattern during a normalisation of Qu1 and Qu2 denoted Nor4(Qu1, Qu2) where 
‘company/depart/staffList’ are the repeating nodes or path fragments in both Qu1 and Qu2 
from the root to the ‘staffList’ element. According to the semantic path contraction rule, 
we would replace the different fragments in Qu1 and Qu2 with ‘||’ as shown in the P’ tree 
pattern in Figure 4. 

As the example demonstrates, the semantic path contraction is applied to an XPath 
query only when it matches multiple unique paths after undergoing the pattern matching 
process. 

4.3 Semantic path complement transformation 

Without the use of a predicate [ ] in an XPath query, it can still have a condition 
represented by ‘..’. Although the ‘..’ operator. Due to the users’ nature, they may choose 
to use ‘..’ instead of [ ]. Therefore, our semantic path transformation provides a complete 
solution to transform such an XPath query. The proposed semantic complement 
transformation allows us to complement a new XPath query by collaborating with both 
the semantic path contraction and semantic path expansion. In doing so, we can eliminate 
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the ‘..’ based on the occurrence constraint of the conditional5 element; or we could 
transform ‘..’ to [ ] if elimination is not applicable.  

Definition 13 (Semantic path complement): A semantic path complement P′ is a 
transformation from the XPath query P where P′ is a unique path that may or may not 
contain a condition enclosed by [ ]. 

Proposition: P’ is a semantic complementary of P if there exists branching elements (s) 
(..) in P and P’ may be enclosed with predicate [ ] if a conditional element cannot be 
eliminated. 

Given a valid XML schema graph G, we derive a set of unique paths Q = {Qu1, Qu2,  
Qu3, … Qnn}. Each Qu has a query tree pattern (VQ, EQ) where EQ is a set of edges ‘/’ and 
set of elements VQ in each Qu.  

The “iff” direction in the Proposition is for a given XPath query that has a set of 
elements labelled with l,’*’, ‘.’, ‘..’ and edges are ‘|’ or ‘||’. All elements in some unique 
paths Qu are a superset of all element in P; ‘..’ indicates an existence of parent element in 
P. The edge trees ‘||’ in query tree pattern P can be replaced by a sequence of elements 
labelled by l and edge ‘|’. The ‘iff’ direction also ensures that ’..’ and conditional element 
are eligible to be removed from P when the parent of the target element is also the parent 
of the conditional element and its occurrence (or multiplicity) constraint must be greater 
than or equal to 1. In some classic cases, both ‘..’ and conditional element cannot be 
removed as the occurrence constraint of the conditional element equals to 0, then ‘..’ is 
replaced and the conditional element is enclosed by [ ]. 

Rule 3 (Semantic path complement): XPath query P is semantically complemented  
by the following requirement criteria:  

• Seek the target element of P to target element in each unique path Qu to identify the 
number of possible Qu.  

• For all unmatched elements in P, match each of them to those in identified possible 
Qu to ensure that the tag name is conflict free. 

• Detect ‘..’ in P and determine the number of branching nodes based on the m 
occurrences of ‘..’ in P . Each path expression that traverses from the root  
of the schema to each child element (used by a predicate or for a conditional 
requirement) of the branching element must match with one unique patch Qu, 
otherwise a conflict in structural semantic will be detected. 

• Normalise all identified Qu where the repeating path fragment in all Qu  
is retained. The conditional element is removed only when its occurrence  
is 1 or above. 

• There may exist [ ] in semantic path P’ iff the minimal occurrence  
of a conditional element is 0.  

Let us consider an example of XPath query P = //depart/dname/../staffList/perm. (3) 

Using the schema information from Figure 1, Figure 5 shows P, Qu and P’ expressed  
in tree patterns. 
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Figure 5 P, Qu, Nor(Qu1, Qu2) & P’ 

 

By applying Rule 3, the query tree pattern depicted in Figure 5, ‘..’ is detected and as 
children under the branching node ‘depart’ is ‘dname’ and ‘staffList’ in P. Two unique 
paths Qu ‘company/depart/dname’ and ‘company/depart/staffList/perm’ are associated 
with a path expression from ‘company’ element to ‘dname’ and a path expression from 
‘company’ element to ‘perm’ element. By applying Nor(Qu1, Qu2) with the occurrence 
constraint of ‘dname’ element (based on XML schema information in Figure 1) is 1, 
‘dname’ can be removed from ‘company/depart/dname’ which left ‘company/depart’. 
However, ‘company/depart’ is the subset of unique path ‘company/depart/staffList/perm’. 
This means P’ is the unique path ‘company/depart/staffList/perm’. 

This illustrates a transformed XPath query P’ without [ ]. Our running example 3 
demonstrates the use of the semantic path complement rule. 

4.4 Semantic qualifier transformation 

Semantic qualifier (predicate) transformation is the transformation dealing with a 
predicate enclosed by [ ]. An element used for conditioning in a predicate [ ] can be  
a leaf-node or element type. In the case where the element is a leaf-node, it may or may 
not have values. Acceptance values defined for a leaf-node, rather than atomic type,  
in the schema are known as constraint values or acceptance content. In the case where an 
element or a fragment of XPath being enclosed by the predicate [ ] is a type, it shows no 
values for conditioning, which normally relies on the last element in the path fragment. 
Another exceptional scenario is where there is only a value or a context sensitive  
(Berglund et al., 2007) function such as last() or position() with a value enclosed in [ ], 
this is known as index ordinary value on the current element. 

Let us consider or an example of XPath query ‘company/deparment[//perm 
[position()>=1]]/dname. To transform this type of query, we first look at the  
condition in the predicate whether the condition should be left of using ‘//’ or possibly  
to expand it to a full conditional path such as ‘staffList/perm’. To achieve this type  
of transformation, we first employ the semantic path expansion transformation. The next 
constraint we also need is the occurrence constraint of ‘contract’, which determines 
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whether there is an occurrence constraint between ‘dname’ and ‘contract’ employee. 
Suppose we apply some transformation rules, which can produce an equivalent query 
such as ‘company/depart/dname’.  

The question we face is which one of these constraints to use first. Conflict constraint 
will produce an empty returned result set, but most importantly, if the query is satisfied, 
would the decision on processing steps of transformation provide an opportunity for an 
increased performance? 

Before we provide the transformations, we discuss the terminologies that support  
our semantic qualifier transformations.  

Definition 14 (Full-qualifier): A full-qualifier is a predicate [ ] of which all values of the 
elements enclosed by [ ] must be equivalent to all the values of the same element defined 
in the schema.  

For instance, a predicate [location = ‘Bundoora’ or location ‘Melbourne’] appears in an 
XPath. Referring to the schema definition, an element ‘location’ is defined with two 
restricted values {‘Bundoora’, ‘Melbourne’}, and in this case the predicate satisfies a 
full-qualifier. However, a predicate [location = ‘Bundoora’ and location ‘Melbourne’]  
or a predicate [location = ‘Bundoora’] is not a full-qualifier due to the AND used in the 
first case and restricted value is only partially validated for the ‘Bundoora’ value in the 
second case, which leads to the next definition. 

Definition 15 (Partial-qualifier): A partial-qualifier is a predicate [ ] of which all values 
of the element enclosed by predicated [ ] are equivalent or matched to some but not all 
values of the same element defined in the schema.  

For instance, a predicate [location = ‘Bundoora’] appears in an XPath. Referring to the 
schema definition, an element ‘location’ is defined with two restricted values 
“Bundoora”, “Melbourne”; in this case the predicate satisfies the condition of being  
a partial-qualifier. However, a predicate [location = ‘Bundoora’ and location 
‘Melbourne’] is not a semi-qualifier. 

We now introduce a set of formal notations accompanied by a brief description of each  
as these will be used repeatedly throughout the definitions and rules being presented in 
this section: 

• Fn is a series of context functions such as last(), position(), etc… 

• Op is a series of comparative operators {!=,=, <, >,>=, <=} 

• θ is the restricted values of an element 

• N is a series of index values, restricted element with or without a restricted value,  
or restricted path fragment. In general N is referred to as an inner focus of [ ]. 

In this section, we introduce two semantic qualifier transformations: 

• Semantic ordinal index transformation allows the transformation of an XPath query 
in the presence of the ordinal index predicate. We utilise the Occurrence constraint 
of the element for which the index value is l and greater than 1. 
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• Semantic Content-based Transformation allows the transformation of an XPath 
query in the presence of values of a conditional element specified in the predicate. 
This has been addressed earlier in the work of Su et al. (2004, 2005) in the semantic 
optimisation context. The difference between our work and earlier works is that we 
introduce more constraints on the leaf-node and combine this with the semantic path 
transformation to provide a complete transformation.  

A Semantic ordinal index transformation 

We apply the multiplicity (also known as occurrence) constraint to transform the ordinal 
index predicate. To the best of our knowledge, none of the earlier works has addressed 
this type of predicate. 

The function position() is used to return the context position. The context position  
is the position of the context item within the sequence of items currently being processed. 
When this function is used with a value in the predicate, it returns the context node or 
item based on a given position value. When the position() function is used without a 
given value in the predicate, all nodes of the current item being processed are returned.  
A predicate may contain only an integer value, which denotes the position value of the 
current element. For example, a query ‘company/depart[position() = 1] is equivalent to 
‘company/depart[1]’. 

The function last() is used to return the context size. The context size is the number  
of the items or context nodes in the sequence of items being processed. When the last() 
function is used without a given value in the predicate, it takes the default value as the 
last item in the sequence returned.  

In an ordinal index predicate, if a fn such as position() or last() is an operator op w.r.t 
op ∈ OP, a value θ or a fn is expected; if one of these is missing, then a semantic conflict  
is immediately detected.  

Definition 16 (Semantic ordinal index predicate): A semantic Ordinal Index predicate is 
a transformed predicate that may or may not have an enclosed [ ] in a semantic XPath 
query P’. 

Proposition: P’ is a valid transformed XPath query where the ordinal index predicate 
possibly can be eliminated or retained iff the predicate is a full-qualifier or  
partial-qualifier respectively. 

Given a valid XML schema graph G, we derive a set of unique paths Q = {Qu1, Qu2,  
Qu3, …, Qnn}. Each Qu has a query tree pattern formed by a set of elements VQ and edges 
EQ where EQ is a set of edges ‘/’.  

The ‘iff’ direction in the proposition states that for a given query tree pattern of  
an XPath query that has a set of elements labelled with l,‘*’,‘.’,‘..’ and edges ‘|’ or ‘||’. 
For each valid element l, there may be a predicate [ ] which contains some context 
functions fn with or without a value following the operator op or index value with no 
function and operator used. The transformation P’ would: 

• eliminate the condition only when the current element being processed has an index 
value θ  for the filtering such that θ = σ; θ = ∂; or θ = σ  >θ = ∂   where 
(∂, σ) → (minOccur, maxOccur) represent the minimal and maximal values  
of occurrence constraint on the current element such that ∂  = 1, σ  = 1; or ∂  = σ 
that. Both ∂ and σ are integers greater than 0; 
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• retain the predicate only when the current element being processed has an index 
value θ for filtering such that θ ≤ σ or θ ≥ ∂  where (∂, σ) → (minOccur, maxOccur) 
represent the minimal and maximal values of occurrence constraint on the current 
element such that ∂ ≥ 1, σ  = ∝; or ∂  ≠ σ. Both ∂ and σ are greater than or equals 0. 

Rule 4 (Semantic ordinal index): An ordinal index predicate in an XPath query P is 
semantically transformed by the following necessary requirements: 

• Detect [ ] in the path where the condition N expressed in the form  
of N = ∃fn ∪ ∃op ∪ ∃θ  or only θ. 

• Identify a unique path Qu that matches the structure of P excluding predicate [ ]. 

• For each condition in predicate [ ], verifying value against the constraint value of 
the branching element. 

• Condition N is removed iff the value is 1 for position(),last(), position() = last() or 
self-index when the minimal and maximal values of the branching element are 1 as 
defined in the schema. 

• Condition N is retained iff the value is not 1 for position(),last(), position() = last() 
or self-index when the minimal and maximal values  
of the branching element are not 1 as defined in the schema. 

• Semantically expand, contract complement the whole path if possible. 

Let us consider XPath query P =//depart/dname[position()=last()]. (4) 

When a context function is used in the predicate, the branching node in this case is the 
context node itself. Therefore, the content of predicate [ ] presented on the tree pattern  
is not applicable. 

By applying Rule 4, as depicted in Figure 6, [ ] is detected in P where the inner  
focus is an ordinal index of N = [position() = last()]. The outer focus ‘dname’ is the valid 
node, but also a self-branching node as ‘dname’ is restricted itself, which is indicated  
by an arrow dot-line. Referring to Figure 1, there exists only one unique path 
Qu = company/depart/dname, that leads to ‘dname’ from the root. Element ‘dname’ has a 
multiplicity or occurrence constraint of (minOccur,maxOccur) = (1,1); this allows [ ]  
to be removed from P; that makes P’ = company/depart/dname.  

Figure 6 P, Qu & P’ 

 

We can also demonstrate the conflict of semantic/constraint in XPath query 
P = //depart/dname[position() = 2]. As the maximal occurrence of ‘dname’ in the  
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schema is 1, it allows each ‘depart’ to carry only one name, so there would not be a 
second name for a ‘depart’ element in the XML database. This type of XPath query can 
immediately be determined by a semantic conflict. 

B Semantic content-based transformation 

We study specific constraints such as enumeration, primary key, foreign key, pattern, 
inclusive and exclusive for this content-based transformation. This semantic 
transformation adopts the transformed concepts such as elimination or introduction of 
range values, space or acceptance values proposed in a relational database. King (1981), 
Hammer and Jdondik (1980), Shenoy and Ozsoyoglu (1987) dealt mainly with predicates 
that contain record fields that are defined as simple or atomic data type. In a similar 
manner, we adopt them to deal with a transformation for predicates containing  
a leaf-node that could be an atomic element or attribute whose content is used for 
restriction. 

First let us categorise the abovementioned constraints into two categories: 
Space/Acceptance value and Range value, and describe how each is used in our proposed 
techniques. The categorisation is: 

1 Space/Acceptance value: Constraints such as enumeration, primary key,  
foreign key and pattern belong to this category, as validation of values requires the 
exact matching values. The eligible comparison operators would be ‘=’  
or ‘!=’ and content-join6 Π between the values. 

For example, refer to Figure 1 where ‘enumeration’ constraint on ‘location’ element 
is enumerated with “‘Bundoora’, ‘Melbourne’”, ‘Status’ is enumerated with 
“‘Active’, ‘Inactive’” and pattern restriction for ‘supervisor’ element is  
“[A–Z]{0–999}–[a–z]”. 

2 Range value: Constraints such as inclusive and exclusive belong to this category. 
Validation of values used by elements in a predicate requires the range matching.  
The suitable comparison operators would be ‘>’, ‘>=’, ‘<’, or ‘<=’; content-Join 
Πwould also be used in this category but not compulsory. 

For example, referring to Figure 1, the ‘age’ element has a range value  
for employees that is greater than 22 and 55. For the range value restriction,  
it provides more flexibility on the expression of the condition. Element ‘age’ used by 
[ ] can be removed if it is a full-qualifier; this means that the content  
of the predicate [ ] under the various scenarios can be specified. 

Under this category, [ ] becomes a partial-qualifier if the join-content Π  is used with 
the ‘=’ or ‘!=’ operator to perform the comparison. An out-of-range value used by an 
element in the predicate would result in a semantic conflict. 

Let [M] is a content-based predicate; M is a set of condition, Π be a content-join;  
op be a comparison operator op ∈ OP and OP = {!=, =, <, >, >=, <=}; l be a tag name  
of an element; θ be a value. M = n1Πn2 … Πn2 (Π  and ni can be null) s.t. 
ni = ∃(l|‘.’) ∪ ∃op ∪ ∃θ  where (l|‘.’). 
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Rule 5 (Semantic content-based): Content based predicate in an XPath query P is 
semantically transformed in the order of the following steps: 

• Detect [ ] in the path that has N.  

• Identify the unique path Qu that matches P; P may match as single unique path, 
if this is the case then the conditional element is the target element and 
condition in the predicate is the value of the target element. P may match  
a series of Qu; if this is true then the conditional element in a predicate is the 
rightmost element in one of the associate unique path Qu. 

• For each ni in N, ni is confirmed for a defined constraint value.  

• N is removed iff N is a full-qualifier or N is retained if some ni or all ni of N are 
partial-qualifier. 

Let us consider an example of XPath query  

P = //depart/location[. = ‘Bundoora’ or . = ‘Melbourne’]. (5) 

We apply Rule 5 where [. = ‘Bundoora’ or . = ‘Melbourne’] is detected in P. ‘location’ is 
a self-branching node. There is a matching Qu = company/depart/location. A verification 
of self-branching node ‘location’ is a valid element in Qu. For each ni ‘.’ is ‘location’ and 
its constraint is enumeration, belongs to acceptance value category. Since [. = ‘Bundoora’ 
or . = ‘Melbourne’] has a content-join Π is ‘OR’ and all values of ‘location’ in [ ] 
matched all restricted values of ‘location’ defined in the schema, this confirms a  
full-qualifier for N, hence it can be removed.  

Figure 7 depicts the outer focus [ ] as a self-branching ‘location’ node and the content 
of predicate [ ] is the acceptance values. Reference to Figure 1, only one unique path Qu  
Qu = company/depart/location that traverse from ‘company’ to ‘location’. We show the 
restriction values on the branching node in P but not Qu in Figure 7. 

Figure 7 P, Qu & P’ 

 

Let us consider another example of XPath query  

P = //depart[location=’Bandore’ or location=‘Melbourne’]/dname. (6)  

We apply Rule 5 where [location = ‘Bandore’ or location = ‘Melbourne’] is detected in P. 
There are two matching unique paths Qu1 = company/depart/location, Qu2 = company/ 
depart/dname. The normalisation process derives a normalised path where ‘depart’ is an 
element and also is the branching node in P. 
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As shown in Figure 1, ‘location’ is the child of ‘depart’ and its constraint (motivation 
example) is enumeration that has acceptance-values {‘Bundoora’, ‘Melbourne’}.  
The predicate [location = ‘Bundoora’ or location = ‘Melbourne’] has a content-join 
Π ‘OR’ and all values of ‘location’ in predicate [ ] matched all values of ‘location’ in the 
schema. This confirms a full-qualifier for N. The occurrence constraint defined in the 
schema for ‘location’ is (minOccur, maxOccur) = (1, 2) means that for each department 
there is at least one valid location, either ‘Bundoora’ or ‘Melbourne’. The occurrence 
constraint defined in the schema for ‘depart’ is (minOccur, maxOccur) has been  
left empty. By default, (minOccur, maxOccur) = (1,1) for any element if the element  
has no assigned value. Predicate [location = ‘Bundoora’ or location = ‘Melbourne’]  
can be eliminated based on the minimal occurrence value of ‘location’ under ‘depart’. 
Hence, P’ = //depart/dname. We further apply semantic path expansion to optimise the 
transformation of P′ = company/depart/dname. 

Figure 8 depicts a query tree patterns of P, Q1, Q2 and P’. Notice the difference of tree 
pattern of P in Figures 7 and 8. We also show how the pattern is matched from P to 
Q = (Q1, Q2) and Q to P’. The normalisation process Nor (Qu1 Qu2) produces P’.  

In this main section of our work, we propose a series of transformations ranging  
from path transformation to the predicate transformation in which a predicate is further 
addressed with different transformations to handle the ordinal index and content-based 
semantic predicates. Although we do not claim that this is a complete work of 
transformation, we do have to acknowledge that our transformations have the ability to 
deliver solutions for different types of XPath. By doing this, we are approaching the end 
of this whole search, which provides a complete, novel transformations technique using 
semantic information.  

Figure 8 P, Qu, Nor (Qu1, Qu2)& P’ 

 

In the next section, we detail the two mains algorithms and describe the process  
of implementation including two phases. The first phase involves the pre-processing  
of the semantics in the schema and storing them so that they can be extracted and used  
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by the transformation; the second phase is the transformation of an XPath query where 
the component is kept alive and ready to transform any input XPath query at any time. 

5 Implementation and evaluation 

This section describes the detailed implementation including the framework overview, 
algorithms and evaluation of test results.  

5.1 Overview of framework 

The implementation overview of our semantic transformation is designed and shown  
in Figure 9.  

Figure 9 Implementation overview of semantic transformation (see online version for colours) 

 

On the start-up, the pre-processing schema (Le et al., 2007) system component  
is called first so that all the constraints/semantics defined in the given schemas are  
pre-processed. This module is shown by a dash-line rectangle labelled ‘Pre-processing 
schema module’. The processed semantics then are housed in the system memory;  
the pre-processing schema module is no longer needed it self-terminates (without human 
intervention). 

The pre-processing schema component is restarted only if the schemas are 
changed/modified). The semantic transformation module takes over, which is invoked  
by the system if it detects a termination from the pre-processing schema module.  



 
   

 
   

   

 

   

    Using semantics for XPath query transformation 83    
 

    
 
 

   

   
 

   

   

 

   

The semantic transformation module is a real-time module. Its functionality is to continue  
to accept the input XPath, to verify the constraints and transform the XPath if the 
constraints encounter no conflict. The semantic transformation sends the semantic XPath 
to the XED for performing the task. Otherwise, the XPath detects conflict in the semantic 
and a message is returned to inform the user. This whole semantic transformation module 
is shown as a thick-line rectangular box and is labelled ‘Semantic transformation 
module’. 

Notice that in Figure 9, information enclosed by the dot rectangular box labelled 
‘EXD’ is not part of our work. We use this same XML schema only for obtaining the 
constraints and related information to support our transformations. The XML schemas 
attached to the database and schema provided by the user must be the same, hence they 
are marked by ‘*’. The XML schema attached to the database simply means the data has 
been verified for consistency before the data is inserted into the database.  

As we can see from the framework, our methodology will have a very minimal 
interaction with the database. In fact, the interaction with the database occurs only if the 
returned semantic XPath is a valid one. It proves that our transformation has an advanced 
ability to determine whether or not the query needs to access the database during the 
transformation phase. 

5.2 Proposed algorithms 

In Figure 9, we show two main tasks: task 1 is the pre-processing of schema and task 2  
is the transformation of the XPath queries. The main program used to drive these two 
algorithms is excluded from this work. However, a brief description of the program 
functionality is to call the pre-processing schema module and semantic transformation 
module respectively. 

The pre-processing schema algorithm is Algorithm 1. It accepts two input parameters 
including the XML schema and the name of the schema root. From these provided valid 
inputs, the schema is processed and three data structure lists S, C and Y are built 
respectively (Lines 5–7). 

The first list S (Line 15) is a two-dimensional type to store the sequence elements in 
the form of [parent type][child] extracted from the schema. The very first item [root][R] 
is inserted in S list (Line 9), the etype stores those detected as type (Lines 10–11).  
The subsequence items in the S list would be the root type and the children of root R; 
those children are not the leaf-node. 

The list C (Line 17) stores the semantics/constraints of all leaf-elements. The 
constraints are cardinality, inclusive, exclusive, enumeration, primary key, foreign key, 
occurrence and pattern. This list C is a three-dimensional type to store the semantic 
information in the form of [element name][constraint name][Val], where Val is a set of 
values, separated by a space, of a constraint. Otherwise, if a type is detected that is not a 
leaf-node, it is inserted into eType list (Line 18). The list Y (Line 21) is the unique path list 
that stores all the derived unique paths in the form of a sequence of elements such as e.g., 
e1/e2/e3/en, where e is the element, by calling on function list unique_paths. 

The unique_paths accepts the S, Y lists and root name. It builds the unique paths  
by matching the last element of the current unique path to each item in S (until end of S) 
where the parent type and child can be found. Once the child is found, it immediately 
builds the new unique path (Lines 1–10). Since efficiency is of concern when building 
this list of unique paths, the search for any given path from S list can be eliminated from 
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the beginning if the given XPath query is a full path, in which case there is no need to 
perform the pattern matching. 

 

The pre-processing schema information can take some time to complete, but bear in mind 
that it is done only once and we can reuse the processed information over and  
over again. 

The semantic_transformation algorithm (Algorithm 2) is called right after the  
“pre-processing schema” module is terminated. Information such as the three structural 
list S, C, and Y is passed to this module by the pre-processing schema algorithm (Line 2). 
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Each XPath is received from the user, and the algorithm performs task. The appropriate 
function, based on the XPath query structure) is then called to accomplish each desired 
task (Lines 10–12).  
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Assume that function semantic_predicate_transform is called first. This function 
accepts an XPath query Q & P, which is the result of Q being transformed. If Q is detected 
with a constraint conflict, then P is encoded with an error message and no further 
transformation needed. As mentioned earlier in this paper, we propose the transformation 
of a predicate that is divided into two main categories. 

Handling the first category for index ordinal predicate, which has an index value, 
with or without the integration of position() or last() function, of the self-branching node.  
The predicate [ ] is removed if the minimal, maximal occurrence, context functions and 
the index value (with or without the presence of context functions such as position 
()/last()) are equivalent and much greater than 0 (Line 5). Otherwise, the index ordinal 
predicate is retained– not all are equivalent [Line 6]. Constraint conflicts occur if the 
index in the predicate is not within the occurrence range, or if the self-branching node is 
not valid (Lines 7–9). 

Handling the second category for value-based predicate (Line 1), which has the  
leaf-node and restricted values inside [ ]. This particular predicate handles two types  
of restrictions: while the former is the constraint with acceptance/spaces values, the latter 
is the type that has range-restricted values. The range values predicate (Line 11–12) is 
rather simple compared with the rest of the other predicate types. The removal rule  
is applied only if the required information retrieved is between the minimal and maximal 
values (apply to inclusive or inclusive constraint) of the leaf-node. The join ‘AND/OR’ is 
valid as long as it has a join between the lower bound and the upper bound values. 
Space/acceptance values (Line 13) used for restriction on an element in [ ]. Predicate [ ] 
is qualified for being removed from Q if it is a ‘full-qualifier’. If a constraint of an 
element in the predicate is defined with a series of values; the join required between the 
different values of the same element is ‘OR’. The join ‘AND/OR’ between a pair of two 
different elements is also verified (Line 14). 

Predicate [ ] is retained if some values of the element’s constraint are not present in 
the [ ]; this includes join ‘OR/AND’ between the values of the same element or different 
values of different elements (Line 15). Constraint conflicts occur if the element in the 
predicate is not valid; that is, it does not exist in the C list; or the element is not the child 
of the branching node; or the join is ‘AND’ of the different values on the same element 
(Line 16). The validation is returned with a ‘conflict’ status when the predicate is 
detected as a content-based one and restricted elements (including values) do not exist in 
the schema (Lines 17–18).  

As the transformation is no longer needed, the control is returned to the beginning  
to wait for the new XPath query. The predicate can be a structure type where the 
condition in predicate is a sequence of elements or just one element. The removal rule 
applies only when the inner focus is valid and the minimal value of the child element  
(if the predicate contains a sub-path, then the child element in this case is the first 
element) of the branching node must be at least one (Lines 19–21). Q can be further 
contracted, expanded or complemented (Line 22). 

We now discuss the function Semantic_path_transform called by the 
“semantic_transformation” algorithm. It accepts an input XPath query Q and returns a 
semantic XPath query P. Line 1 sets an array of path operators that are handled in the 
function. The function first checks if Q exists in the list of unique paths Y and assigns  
Q to P immediately and return P to the user; otherwise P is returned with a ‘conflict’  
if Q does not exist in Y. This applies only when Q appears to be in the expression of a 
sequence of elements which are separated by operator ‘/’ (Lines 2–3). If operator ‘..’ is 
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detected (Line 4) then function semantic_path_complement is called on to complement Q. 
Otherwise, the function process_path is called on to process other operators such as ‘//’, 
‘*’ and ‘.’, and to determine whether the path should be semantically expanded or 
contracted (Line 5). 

If the function process_path is called on, it first accepts XPath queries q and a 
dynamic array of path operator J. The returned semantic xpath P as the result of q has 
been processed. The function first detects the existence of the target element in q as well 
as in one or more unique paths in Y. q is conflicted if the target element does not exist  
in list Y (Lines 1–3). Otherwise, the function backtracks from the target node in q 
processing all operator ‘//’ (Lines 5–19). If ‘//’ in q is valid, then it can be replaced by a 
sequence set of element in S. The validity of ‘//’ is determined by two valid elements  
that lead and end ‘//’. This pair of elements is then passed on to the sub-path function 
(Line 20) for deriving the sub-paths from list S to replace ‘//’ by calling the 
propagate_path (Line 22). Finally, the operator such as ‘*’ or ‘.’ is individually processed 
in each pt (Lines 23–30). Finally, each pt in the list should contain only a sequence of 
elements in which each pair is separated by ‘/’. When pt list contains only one pt then q 
has semantically expanded (Lines 31–32) to pt which is also P. If there is more than one pt 

in the list, then P is semantically contracted (Lines 33–34) from the list pt. 
The propagate_path function propagates ps to ‘//’ in q and returns a set of XPath 

query pt based on the current number of ps. which results from ‘//’. There may be more 
than one path fragments that traverse from branching and descending elements of ‘//’ 
(Lines 1–6). 

Function sub-path processes list S based on the pair of elements that leads and ends 
current ‘//’, and returns a list type ps. This list contains a sub-path or multiple sub-paths 
(Lines 1–8). 

Function semantic_path_contraction derives a contracted path from pt list; from the 
target element of all pt traversing back to the root, which is also the branching node of 
each pt. The function normalises the common elements in all pt and replace those are not 
matched ‘//’. The contracted path P contains a sequence of elements separated by ‘/’ as 
long as each element being found in all processed paths and replace the branches by ‘//’ 
(Lines 1–6).  

Function semantic_path_complement performs a number of XPath queries q from 
user input XPath query Q. For each q, it is stored in list Z (Line 1). The branching node b 
(Line 2) is also identified. When any q in Z is detected with operators other than ‘/’, it is 
processed further by calling on the process_operator (Lines 3–4) function. The returned 
expression q is either a valid path that contains only elements which are separated by 
operator ‘/’ and/or ‘//’ only; no other operators should exist. If the elements in q are not 
matched elements as defined in the schema (Lines 5–6), the whole transformation for Q is 
no longer valid, and the control returns to waiting state for a new Q. Removal applies 
when the conditional element has a minimal occurrence whose value is 1 and above;  
the semantic complemented path P is q left in Z excluding restricted q (Lines 7–8).  
When restricted q cannot be removed; the ‘..’ operator is replaced by [ ] and inner focus 
would be the sequence of descendants of the branching node b (Line 9). Line 10 returns 
the semantic complemented path P to the main control for accessing the database. 
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6 Empirical performance evaluation 

The above algorithm has been implemented and a test bed has been built. We now 
evaluate the potential for optimisation produced by the proposed Semantic 
transformations using the results collected in the test bed system. 

6.1 Performance evaluation strategy and experimental set-up 

There exist essentially two practical approaches to the management of XML data and  
to the processing of queries to XML data: a Native XML database system and an  
XML-enabled database system. We therefore compare the performance of queries and 
transformed queries in our workload for two representative systems: a Native XML 
Database system (referred to as XMS) and a commercial XML Enabled Database system 
(referred to as XDB). The analysis of the results is twofold:  

1 an evaluation ascertains the potential for optimisation (whether a transformed query 
can be evaluated more efficiently) 

2 a comparison is carried out on the relative performance of the two systems. 

XMLSpy7 data generator generates XML documents conforming to a company.xsd 
schema as depicted in Figure 1. We use six data sets (compliant with this schema) of 
varying sizes: 15, 20, 25, 30, 35 and 40 mega bytes.  

Table 2 consists of the queries and their transformed equivalent queries. The time 
response measurements are made using the profiling tools of the respective systems  
and are averaged (outer layers are eliminated) over several attempts in order to cater  
for possible interferences from the operating system and other system processes.  
The experiments are performed on a PC AMD64 (989) 3200+ with 2.0 GB of RAM 
disconnected from the network. 

Table 2 XPath and Semantic Counterparts 

No. XPath queries (Q) Semantic XPath queries (SQ) 
1 //depart/staffList/*/email company/depart/staffList//email 
2 /*//perm/ages company/depart/staffList/perm/ages 
3 /*/depart/*/perm company/depart/staffList/perm 
4 //@location company/depart/@location 
5 //depart/staffList/perm/../contract company/depart/staffList/contract 
6 /*/depart/staffList//name company/deparment/staffList//name 
7 company/depart/staffList/perm[name/lastname] company/depart/staffList/perm 
8 company/depart/staffList/contract  

[city = "Bundoora" or city = “Altona”] 
company/depart/staffList/contract  
[city = ‘Bundoor’] 

9 company/depart/staffList[position()>=1] 
/perm/name[lastname=‘Smith’] 

company/depart/staffList/perm/name 
[lastname=’Smith’] 

10 company/depart/staffList/contract  
[ages > 22 and ages < 56]/name 

company/depart/staffList/contract/na me 
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6.2 Results and analyses 

The XPath queries are grouped and studied under each proposed semantic transformation. 
A reminder here that XDB means XML-Enabled Relational Database and XMS 

means XML Native Database. 

i Semantic Path Expansion Transformation for XPath queries Q2, Q3 and Q4, which 
refer to Table 2 and Figure 10 for result evaluation. 

Figure 10 Semantic path expansion transformation 

 

  

XPath query Q2 is specified with elements, a wildcard selection ‘*’, a ‘//’  
ancestor-descendant and ‘/’ parent-child operators. XPath query (SQ2) is semantically 
expanded from Q2, which includes only a set of valid elements and ‘/’. Referring to 
Figure 11, the result shows a significant improvement in response time by about 90% 
SQ2 in XDB database. In XMS database, SQ2 shows a sound reduction of more than 
50% in response time. This significantly improved performance is mainly due to the use 
of ‘//’ leading the XPath query, as the ‘*’ operator represents a valid element root 
‘company’, which does not contribute much to this improvement. 

Figure 11 Semantic path contraction transformation 
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XPath query Q3 is specified with only a set of valid elements, ‘/’ parent-child operators 
and ‘*’ operators. In this XPath query, each ‘*’ operator (refer to Figure 1), represents 
‘company’ and ‘staffList’ respectively. Similar to the use of ‘*’ in Xpath query Q2,  
we can see the performance of Xpath query SQ3 in both XDB and XMS databases  
is improved by about 5%; it shows a very minor improvement in the transformed XPath 
queries. Operator ‘*’ does not contribute much to the deterioration of performance. 

On the other hand, XPath query Q4 demonstrates the use of an ID and ‘//’ operator 
leading the XPath query. After undergoing the transformation process, the performance 
of SQ4 shows a significant improvement by about 90% in XDB database and sound 
reduction of response time by about 8% in the XMS database.  

ii Semantic Path Contraction Transformation for XPath queries Q1 and Q6,  
which refer to Table 2 and Figure 11 for result evaluation. 

Apart from the use of ‘/’ and valid elements, XPath query Q1 is also specified with ‘//’ 
ancestor-descendant operator leading the XPath query, ‘*’ unidentified element operator. 
After undergoing the transformation process, ‘//’ can be expanded from ‘depart’ to root 
‘company’. However, ‘*’ represents ‘perm’ and ‘contract’ elements. This shows that 
there are multiple unique paths that traverse from the root to ‘email’ via ‘staffList’ in 
order to produce the same result as of Q1. By applying our proposed transformation for 
contraction, as a result, the transformation has replaced ‘/*/’ with ‘//’. The performance  
of SQ1 in XDB database shows a significant improvement by about 95% and less than 
9% for the SQ2 in XMS database.  

In XPath query Q6, which is specified with ‘*’ as the leading element in the XPath 
query and ancestor-descendant ‘//’. After undergoing the transformation process, ‘*’ is 
replaced with a valid element ‘company’ and the rest remain the same. As a result,  
the SQ6 in both XDB and XMS databases shows only minor improvement; this is due to 
the contribution of ‘*’ in the original query.  

iii Semantic Path Complement for XPath query Q5, which refer to Table 2 and  
Figure 12 for result evaluation. 

XPath query Q5 is specified with ‘//’ ancestor-descendant, ‘/’ parent-child and ‘..’  
parent and set of valid elements. After going through our semantic path complement 
transformation process, in XPath query SQ5, ‘..’ has been removed and ‘//’ is replaced 
with a root ‘company’ element. There is a significant optimisation by about 95% for SQ5 
in XDB and a slight improvement for SQ5 in XMS. 

Figure 12 Semantic path complement 
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iv Semantic Qualifier Transformation (Semantic Ordinal Index transformation and 
semantic content-based transformation) for XPath queries Q7, Q8, Q9 and Q10, 
which refer to Table 2 and Figure 13. 

The XPath queries Q7 and Q10 demonstrate the content-based transformation where 
predicates are restricted by range values (ages are between 22 and 55) and acceptance 
values (city is Bundoora or Melbourne}. 

Figure 13 Semantic qualifier transformation 

  

  

In addition to this, we also demonstrate the use of conjunctive join in the predicate  
in Q10. Both XPath queries Q7 and Q10 are successfully transformed. As a result, the 
predicates in these XPath queries depict a full-qualifier. The predicates are therefore 
eligible for elimination. As a result, the SQ7 and SQ10 in XDB database show a great 
improvement in performance of between 50% and 78%; however, the performance of 
these semantic XPath queries in the XMS database shows very little improvement. 

In XPath query Q8, we demonstrates the use content-join of values 
“city = ‘Bundoora’ or ‘Altona’”. Even though ‘Altona’ is not an acceptance value defined 
for City in the schema, however, the join-content for values of ‘City’ is an OR operator. 
The predicate [city = ‘Bundoora’ or city = ‘Altona’] is identified as a partial-qualifier  
as “Altona” is regarded useless and can be removed. We found that there is a significant 
improvement by about 50% for SQ8 in XDB and about 18% for SQ8 in XMS. The result 
indicates that there is a great optimisation opportunity for the removal of values in the 
predicate. 

XPath query Q9, we demonstrate the use of the context-sensitive node function and a 
join content-based. The first predicate uses the context function [position()>=1] on 
‘staffList’ element which can be easily removed as, according to the occurrence 
‘staffList’ set in the schema, there should be at least 1 staffList or multiple staffList in the 
database. This predicate [position()>=1] is identified as a full-qualifier. The second 
predicate uses [lastname = ‘Smith’] on the ‘name’ element. This predicate is identified  
as a partial-qualifier as there maybe other ‘lastname’ in the database. After going  
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through the transformation process, [position()>=1] predicate is removed and 
[lastname = ‘Smith’] is retained.  

Performance wise, there is not much improvement for SQ9 in XMS database with the 
small data size; nevertheless, the improvement picks up as data size increases. However, 
there is a huge improvement for SQ9 in XDB database (not only with the small data size) 
and this increases in big portions as the database size increases. 

7 Conclusion and future work 

We have proposed a family of semantic transformations of XPath queries including 
semantic path transformation and semantic qualifier transformation. The semantic path 
transformation is further divided into semantic path expansion, semantic path contraction 
and semantic path complement. The semantic qualifier transformation is further divided 
into two types of transformations. The former is the semantic ordinal index and the 
semantic content-based. Our semantic transformations utilise XML schema constraints  
as the main source. 

The semantic path transformation is for transforming XPath queries that strictly 
exclude predicates. We focus on eliminating the use of operators such as ‘..’, ‘.’, ‘//’, ‘*’ 
as much as possible. Hence, we replace those with valid full XPath query or as many 
valid elements as we can. 

The qualifier transformation is for transforming predicates in XPath queries. For this 
particular typology, we apply the elimination concept to the whole predicate or part of the 
predicate. 

For completeness, we also devised a set of algorithms and implemented them for 
evaluation. Upon the completion of our implementation, we quantified empirically  
the potential of these transformations in two systems representative of the existing 
options for the management of XML data and for the processing of queries to XML 
databases. The results highlight potential opportunities in performance improvement, 
which although comparatively different, exist in both systems. 

Our ongoing work focuses on fine tuning the algorithm and evaluating its cost  
(which is to be added to the response time in the case of ad hoc queries). Our preliminary 
observations suggest that pre-processing of the schema and appropriate data structures 
yields significant increase in performance even in the case of ad hoc queries. 
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Notes 
1Content-based predicate is a predicate that has a leaf-node and restricted value for data filtering. 
e.g., //employee[age > 22] where ‘age’ is an element in the predicate and 22 is the value of ‘age’. 
Semantic content-based predicate is the transformation of content-based predicate, which will be 
defined later. 

2Index ordinal predicate is a predicate that contains only a value (denoted as θ ) or a context 
sensitive (Biron et al., 2004) function last() or position(). Semantic Index ordinal predicate is the 
transformation of Index ordinal predicate, which will be defined later. 

3The target node is the most important element in an XPath query. E.g., we have a unique path 
‘company/name’ where element ‘name’ is the target node under the parent element ‘company’. 

4Nor is a function used to perform a normalisation task. 
5A conditional element is an element used in predicate to filter information. 
6Content-join is a join represented by ‘OR’ or ‘AND’ between the element with different values  
or different element with different values. 

7XMLSpy is an XML editor and integrated development environment (IDE) from 
www.Altova.com 


