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Abstract: Due to the rapid growth of XML representation for information exchange, XML 
databases have been widely adopted in a variety of applications. This paper presents two layers of 
optimisation for dealing with large XML databases: (1) OXDP (Object-Based Methodology for 
XML Data Partitioning) which has been developed to partition XML data efficiently and (2) 
OXiP (Object-Based XML Indexing for Partitions) which is an indexing and linking mechanism 
for partitioned data. OXDP provides optimal XML data partitioning based on an object’s 
semantic features which improves XML data query performance. The OXiP method tokenises all 
rooted label paths and preserves the pathways within each XML object partition. The semantic-
based data partition ultimately enhances the notion of a frequently accessed data subset which is 
an advantageous feature in our proposed methods to decrease the time to answer queries. 
Experimentally, OXDP and OXiP can achieve an order of magnitude performance improvement 
for querying XML data.  
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1 Introduction 

In multi-institutional, dynamic virtual organisations, grid 
computing plays an important role in solving problems and 
sharing coordinated resources. Recently, grid technology 
has become applicable as a computational grid or as a data 
grid. The concern of increasing the execution time of 
applications due to excessive computer processing cycles 
has been addressed by the computational grid (Zhang and 

Phillips, 2011). However, in the case of utilising a large 
scale of data, the data grid plays a significant role to sort out 
data management issues. Since XML has wide-ranging 
features to support global data representation and exchange 
over the web, most applications generate their data in XML 
format (Tusa et al., 2009). Consequently, XML data has 
expanded significantly even in the area of the data grid. 
Hence, continuing research on the efficient storage and 
querying of an enormous amount of XML data is required.  
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Since RDB fails to deliver all the necessary functions to 
efficiently store and query XML data, the Enabled XML 
Database (EXD) or Native XML Database has been proposed. 
Several query languages have been introduced to query  
XML data, including XPath (Berglund et al., 2011), Quilt 
(Chamberlin et al., 2000) and XQuery (Robie et al., 2010).  

Partitioning relational data in RDB has been extensively 
investigated and employed to improve the performance of 
relational data processing. Many applications have gained 
benefits from this technique. The underlying concept of data 
partitioning is now required in the XML data management 
area. In order to optimise query execution time, this paper 
presents two layered methodologies for processing large XML 
documents more efficiently. The Object-Based Methodology 
for XML Data Partitioning (OXDP) aims to improve query 
performance through optimal XML data partitions based on the 
semantics of the objects. This method can be applicable in 
many different high-performance computing environments. For 
example, since it introduces a semantic concept in partitioning 
XML data into objects, this feature makes it appropriate in 
parallel database environments by allocating each processor 
with a partition. Due to each partition being disjointed with 
others, they can be processed in parallel and potentially reduce 
execution time.  

Object-Based Methodology XML Indexing for Partitions 
(OXiP) exploits the semantics of OXDP in order to efficiently 
link the data partitions during a query execution of XML data. 
Although earlier works focused on the development of 
methodologies to index XML data, none addressed the goal of 
finding an efficient mechanism for linking partitioned data. It 
can be argued that in general, a common document-based 
XML indexing method can be used to index partitioned data 
whereby each partition is treated as a separate document, and 
the XML index is used to consolidate and index the data for 
querying purposes. However, the weakness is that the method 
does not utilise the knowledge gained from the object partitions 
for constructing XML data because it only treats them as 
separate components. In our proposed methodology, the object-
based knowledge of OXDP is utilised and leveraged in OXiP-
indexing development. OXiP does not merely link partitions 
together; it leverages the knowledge of the data partition path 
locations and makes the construction of linking more efficient.  

In a previous work on partitioning XML data, we proposed 
the essential concept of Object-Based Partitioning (OBP) 
methodology and how XML queries gained improvement in 
their performance (Alghamdi, 2011). In this publication, we 
reintroduce the knowledge of objects in combination with 
XML index to solve a number of limitations in current 
indexing approaches with respect to leveraging the concept of 
objects in indexing and querying large XML data.  

The key contributions of the work are summarised as 
follows:  

 Although a variety of XML data query processing 
techniques have been proposed, to the best of our 
knowledge, none of them takes into consideration the 
semantic-based query workload which is undertaken in 
OXDP and OXiP.  

 OXDP exploits and supports the hierarchical structure 
of XML data by introducing the notion of objects 
during the data partitioning. As a result, queries can 
access a certain object leading to a reduction of the cost 
of traversing entire documents.  

 OXDP can work independently to serve specific 
applications. However, in this paper, we show a second 
layer of optimisation, OXiP, which is used in conjunction 
with OXDP to consistently link objects for further speed.  

 Significant search space reduction during the OXiP 
mechanism by utilising the knowledge of OXDP leads 
to high performance in query evaluation. OXiP devises 
a pruning technique for irrelevant objects.  

The remainder of this paper is organised as follows. A survey 
of related work is presented in Section 2. We present an 
overview of the system architecture in Section 3. In Section 4 
we describe OXDP in detail. Thereafter, Section 5 describes 
OXiP. The experiments and evaluation are presented in Section 6 
and we conclude our work in Section 7. 

2 Related work 

In this section, we first review previous research on XML 
data partitioning and then describe the prior work on 
indexing XML data. Shredding XML documents is a 
common method used in storing XML documents within a 
pure RDB. Shredding is an automatic mechanism to 
partition XML data into what RDB really understands, such 
as tables with rows and columns (McGovern et al., 2003). 
Various approaches have been developed for XML 
document partitioning for different purposes. Double lazy 
parser (2LP) is a technique that emulates physical pointers 
through partitioning XML documents into sub-trees (Farfán 
et al., 2009). Although navigation and parsing time is 
reduced, producing several large partitions is somewhat 
unacceptable since smaller and uniform partition size is 
more rational. In addition, XML Clustering (XC) takes 
advantage of XML navigational behaviour to direct its 
partitioning decision and uses dynamic programming over 
weight intervals determined by the ‘chunk_size’ parameter 
(Bordawekar and Shmueli, 2004). However, when the 
‘chunk_size’ value is decreased and XC precision is 
increased, memory usage and runtime would also increase.  

Kanne and Moerkotte (2006) proposes a technique that 
uses the sibling properties of the trees to segregate an XML 
tree. However, this approach failed to consider the effect of 
query workload on performance since the partitioning of 
XML data is purely based on sibling properties.  

Of the state-of-the-art path indexing, DataGuide is 
considered a key revolution in XML indices. The main idea 
of DataGuide is to construct a path summary which indexes 
each distinct path to evaluate a single path query (Goldman 
and Widom, 1997). T-index is also a path index which 
selects a path based on specific templates based on the 
similarity of node pairs (Milo and Suciu, 1999; Cooper  
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et al., 2001). A(k) index has been proposed to reduce the size 
of the XML index. It targets localised structural information 
about XML data based on bi-similarity on nodes related to 
paths of length k (Kaushik et al., 2002). D(k) index is an 
improvement of A(k) index and considers the query load 
(Chen et al., 2003). Like D(k) index, M(k)-index and M*(k)-
index (Hao and Yang, 2004) support dynamic indexing. It 
can be said that M(k)-index is a further optimised index of 
D(k)-index by not over-refining index nodes for irrelevant 
index or data nodes. Another workload-aware path index is 
APEX (Chung et al., 2002). It is an adaptive path index 
constructed by applying data-mining algorithms to mine 
frequently appearing paths in the query.  

XISS is a node XML-indexing approach on a B+-tree 
designed to support regular path expressions (Li and Moon, 
2001). The main notion of XISS is to decompose the query 
into several simple path expressions. Structural join 
algorithms then produce an intermediate result for each 
simple path expression which can be used in the subsequent 
stage of processing a query.  

Sequence-based indexing has been proposed where each 
XML document and a twig pattern of a query are 
transformed into structure-encoded sequences. Subsequence 
matching is used to evaluate the query as in ViST (Wang  
et al., 2003) and PRIX (Rao and Moon, 2004) which eschew 
costly join operations by utilising tree structures as the basic 
unit of a query. Similar to PRIX and ViST, LCS-TRIM in 
Tatikonda et al. (2007) relies on a sequential encoding 

transformation and matching for both XML data and path 
queries. 

The TwigX-Guide approach processes path queries by 
extending the existing path summary in DataGuide and region 
encoding in TwigStack structural algorithms. To process the 
path query, TwigX-Guide uses the CutMatchMergePath 
algorithm which adopts the decomposition–matching–merging 
approach (Haw and Lee, 2009). LTIX combines the Level-
based Labelling Scheme LLS and the DataGuide path index. 
The new idea of LLS is essential to identify the node whose 
level specifies the most likely result of a query (Mohammad 
and Martin, 2010).  

3 System architecture 

The entire view of the system architecture is shown in 
Figure 1. Our system aims to improve the performance of 
querying XML data, consisting of two essential components 
that can work independently. The first component is OXDP 
which introduces a new notion of partitioning XML data. 
OXDP preserves XML data hierarchy structures logically 
by partitioning XML data into objects while enhancing its 
queries efficiency through optimisation and semantic 
improvement. The second component, OXiP, can be 
coupled with OXDP as a partition linking and indexing. It is 
adopted to increase the efficiency of the queries as an index 
method, in addition to its ability to link generated partitions.  

Figure 1 The architecture of OXDP and OXiP 
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Figure 2 XTree sample 

 
 

OXDP takes XML Entry, that is, an XML document and its 
corresponding XML schema (XSD), as input. XSD is used 
since it represents XML objects and their semantic structure. 
Hereafter, XML Entry runs through two layers: (1) the 
semantics layer and (2) the optimisation layer to be partitioned 
into objects which are to be passed to OXiP as a double 
optimisation layer to construct indices for joining the obtained 
objects. It is important to highlight that constructing OXDP as 
well as OXiP is considered an offline stage before the online 
phase when the actual query processing commences.  

OXiP consists of two main parts: (1) XML schema 
indices, which are indices and meta-data created from an 
XML schema based on the knowledge of OXDP and (2) 
XML data indices, which produce indices for partitioned 
XML data. OXiP reduces excessive structural joins in query 
evaluations. The idea beyond OXiP is to utilise an XML 
document as the main memory structure where queries can 
be evaluated efficiently. All rooted label paths are 
tokenised, and their pathways are preserved within each 
XML object partition with far fewer nodes and edges; thus, 
the goal of increasing the query-processing efficiency 
becomes applicable for large amounts of XML data.  

Since the main characteristic of OXDP is the semantic 
workload of queries, OXiP leveraged this advantageous 
feature during the construction of its indices. Semantic 
workload characteristics to partition XML data coupling 
with an efficient linking technique among partitions to 
processing queries over partitions have a significant impact 
on the performance of XML queries. From a semantic 
workload perspective, it is known that not all parts, called 
objects in this paper, of XML data are equal in ‘access rate’; 
some objects are more frequently used than others. 
Consequently, it can be obvious that the ‘access rate’ to 
some index nodes is highly likely to vary, because of their 
relativity to the position of the index structure. Therefore, 
the frequent access to the same object results in benefits in 
reducing the time to answer queries.  

4 OXDP: object-based methodology for  
XML data partitioning 

4.1 OXDP Layer 1: semantics layer 

In this layer, XML data is semantically partitioned based on 
object-oriented (OO) principles. This process takes place 
before the actual partitioning process by (1) creating XTree 
from XML Entry and (2) setting and applying the OBP 
algorithm to identify the objects that are to be partitioned.  

XTree (see Figure 2) is the first component of the 
Semantics layer in the OXDP section and is generated from 
XML Entry.  

Definition 1 (XTree): XTree is a labelled tree consisting of a 
set of nodes that are linked to each other via labelled edges. 
Each complex node CN of XML Entry represents an object in 
XTree. CN is a tag name for non-leaf nodes that are 
represented by circles in XTree. CN normally has leaf nodes 
called basic nodes or BN, which are represented by rectangles 
in XTree.  

Example 1: Figure 2 shows XTree where B and C are CN 
because they have either BN or other CN or both. It can be 
seen that d, e and f are BN since they are leaf nodes.  

Definition 2 (Object): An object is defined as an element 
with complexType or complexContent and it is a non-leaf 
node in XTree. Objects might consist of other nested objects 
and basic elements.  

Example 2: In Figure 2, because c is CN, c is an object. It is 
a nested object of the object B.  

XTree in Figure 2 likewise defines the cardinality constraints 
over the nodes in which a single shape and multiple shapes 
denote the maximum occurrence of one and more than one, 
respectively. Dashed lines and solid lines mean minimum 
occurrence of zero and one, respectively. XTree also represents 
the object size, which is the summation of the entire node's size 
value underneath the object, between practices within the graph. 
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In order to be clear about the objects contained in the 
document, XTree shows all the objects of XML data regardless 
of their usability or relevance in the partitioning process. XTree 
also defines the semantic relationships over the edges between 
objects.  

Definition 3 (semantic relationship between objects): Semantic 
relationship between objects is a representation categorised 
into two relationship-type annotations within XTree: Object 
relationship (ObR) and generalisation relationship (GnR).  

OBP has three essential criteria: (1) the object relationship type 
that is either ObR or GnR, (2) the occurrence constraint such as 
maxOccurs and minOccurs and (3) the type of nodes, which is 
either basic or complex. This diversity of node type is regarded 
and treated differently during the OBP process. 

Definition 4 (Partitioning a basic node): Partitioning a basic 
node that belongs to the parent node N is determined by 
including it with its parent partition. Let BN be a basic node 
with N as its parent and OP is the object partition. 

1 2 1, ,..., ( ),n
n i iBN BN BN N BN OP N N OP      

Definition 5 (Prior Parent Holder): Prior Parent Holder 
(PPH) is an object with complex nodes, which has the 
priority to hold its parent in its partition. PPH has two 
essential conditions: (1) it is a complex element and (2) its 
minimum occurrence is one.  

PPH avoids node repetition and enables XML document 
reconstruction through a query. If all nodes have these two 
conditions, one of them will be randomly allocated as PPH and 
its parent elements will become its partition’s root. The rest of 
the elements will have virtual roots in order to ensure the 
accuracy of generated XML partitions. Table 1 describes the 
symbols used in OBP algorithms. The algorithm is based on a 
top-down approach, similar to the way to traverse XML 
objects. Basic nodes are partitioned following Definition 4. 
Complex nodes or objects are initially partitioned based on two 
OBP algorithms. The first algorithm (see Figure 3a) is used 
when a parent object does not have basic nodes and has a 
relationship with complex nodes. For illustration, if we have 
two complex nodes (X, Y) and they relate to a PR as in Figure 3b, 
we will obtain two partitions and either X or Y can hold a 
parent node based on the PPH rules. 

Table 1 Symbols used in OBP algorithms 

Symbol  Definition 

PR Parent root  

CN Complex node  

BN Basic node  

[ObR(1-1)|GnR(1-1)]  A CN relates to its PR through one-to-
one ObR or GnR relationship  

[ObR(1-∞)|GnR(1-∞)]  A CN relates to its PR through one-to-
many ObR or GnR relationship  

CN(CNQ)  Complex node which includes  
other complex nodes  

CN(BNQ)  Complex node which includes  
basic nodes  

CN1  Number of complex node is 1  

CNQ  Number of complex nodes is Q  

The second algorithm (see Figure 4) is used when the parent 
node has basic nodes and complex node(s). The main 
benefit of OBP is that objects, which will be partitioned, can 
be determined before the actual partitioning process which 
allows a saving of memory workload for the next layer.  

Figure 3 (a) OBPI algorithm and (b) OBPI illustration 

 
(a) 

 
(b) 

Figure 4 OBP2 algorithm 

 

4.2 OXDP Layer 2: optimisation layer 

After extracting semantic features of XML data and 
identifying the objects, we execute the partition of XML 
documents. The partitioning algorithm, OXDPartition, is 
capable of determining object size. It obtains XML data 
with its XSD as inputs together with the outputs of the 
previous semantic layer. Then, it generates XML data 
partitions and XSD that corresponds to each partition. The 
main functionality of this algorithm is to check the objects’ 
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size. When it finds that the object is optimal, it calls the 
partition_object() that will create partitions for each object. 
However, when the object size exceeds the maximum limit, 
the algorithm uses the partition_objects_horizontally() 
method to partition the object horizontally. Alternatively, 
when the object size is less than the minimum limit, the 
merge_objects() method is used to combine the current 
object with its parents or its siblings. During the partitioning 
process, PartitionsID is set up to link some partitions and 
keep their referential data. The primary advantage of 
OXDPartition algorithm, aside from its ability to produce 
optimal partitions while preserving semantic structure, is the 
ability to check the size of the objects prior to the 
partitioning process in order to increase the performance by 
reducing the amount of memory buffers. Alghamdi et al. 
(2011) provide more detail about this algorithm.  

Definition 6 (PartitionsID): A pair of <linkID, objectID> is 
called PartitionsID in which linkID is a unique number 

given to elements to link between them, and objectID is a 
name of a partition where linked elements are located.  

It can be observed that linked elements share the same linkID 
but differentiate in objectID since each of them is located  
in different partitions. To illustrate OXDP algorithms, 
SigmodRecord in Figure 5a contains nested objects which are 
SigmodRecord, issue, articles, article and authors.  

In the semantics layer, ‘issue’ is included in ‘SigmodRecord’ 
partitions based on OBP1, since its parent does not have any 
basic node. Since ‘articles’ has a 1-to-many relationship with its 
parent that has basic nodes, ‘articles’ is excluded along with its 
children ‘article’ based on OBP2. The ‘authors’ is placed in a 
different partition. Three objects are generated at the 
completion of the semantics layer: ‘SigmodRecord’, ‘articles’ 
and ‘authors’. However, in the optimisation layer, where 
OXDP identifies the object size, the result becomes two 
partitions ‘SigmodRecord’ and ’authors’ with PartitionID to 
link them. At the end of the OXDP process, the optimal 
partitions with semantic meaning are ready to be queried. 

Figure 5 SigmodRecord XML schema sample and its OXiP 
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5 OXiP: object-based XML data indexing 
partitions 

In this layer, the knowledge of OXDP is utilised. XML data 
is semantically indexed, based on OO concepts resulting 
from OXDP. OXiP takes place after OXDP and consists of 
two components: (1) XML schema indices and (2) XML 
data indices.  

5.1 OXiP terms and definitions 

Definition 7 (tokens): Each node name along a schema path 
is encrypted with a token.  

Figure 5b represents all distinct node names available in the 
XML Schema in Figure 5a along with their tokens and their 
type within the schema.  

Definition 8 (XML data path): A path P = {n1, ..., nk} is an 
XML data path, where each ni+1 is a child node of ni for i = 
1…k – 1, and is said to be an XML data path of length k if 
n1 is a root of the XML data tree and nk is a leaf node.  

Definition 9 (schema path identifier): A path SP = {T11, ..., 
Txk} is a schema path identifier representing the XML data 
path P, where each Txi is a token of ni for i = 1 … k, and is 
said to be a schema path identifier for an XML data path of 
length and where x is a token ID.  

Schema paths are similar to XML data paths starting from 
the root node. However, schema paths are created from 
XML schema and XML data paths from XML documents. 
Each XML data path should have its representation in 
schema paths.  

From SigmodRecord XTree in Figure 5a, a path of the 
tree is from the root element SigmodRecord until the 
element title including all other elements within the same 
path i.e., issue, articles and article is considered a schema 
path which represents XML data paths of pointers 1,2,5,6,7, 
1,16,19,20,21 and 1,25,28,29,30 (see Figure 6).  

Figure 6 SigmodRecord XML data partitions generated by 
OXDP 

 

In Figure 5c, a path T1 T2 T5 T6 T7 is a sequence of tokens for 
schema path SP1 which represents the previous XML data paths 
where each Ti is a token of each node in the XML data paths.  

Definition 10 (schema path/schema partial path): Let SP = 
{T11, ..., Txk} be a schema path identifier and P = {n1, ..., 
nk} be an XML data path, where T11 of SP is a token of n1 
which is a root of P. SP can either be a schema path when 
Txk of SP is a token of a leaf node nk or a partial schema 
path when Txk of SP is a token of a non-leaf node nk.  

SP1 = {T1 T2 T5 T6 T7} shown in Figure 5c identifies a 
schema path of XTree since T7 is a leaf node. In contrast, 
SP12 = {T1 T2 T5 T6 T10} of Figure 5d determines a 
schema partial path since T10 is a non-leaf node.  

Definition 11 (query tags): Consider a query Q = {qt1 [/ | //] … 
qti[/ |//]; … ; qtk }. Node names qti, for 1 ≤ i ≤ k, are called 
query tags, where k is the total number of tags in the query. 

For example, a query Q1 = sigmodRecord/issue//initpage is 
utilised. It can be considered that query tags inside the query 
are sigmodRecord, issue and initpage.  

5.2 XML schema indices 

 Tokenised tags: This is a meta-data for XML schema used 
to assign an identical symbol for each element in XML 
schema that will later represent a node in XML data. It has 
been considered that these identically symbolled tags are 
distinct in the meta-data (see Figure 5b). The advantage 
here is that ‘meta-data of schema’ most likely does not 
require frequent changes because it is based on schema 
and not XML data. The reason beyond this is that in some 
cases, XML data does not represent all its schema 
elements and needs, in time, to add some elements which 
might be optional and do not exist in data. Therefore, 
meta-data tokenises all elements of XML schema 
significantly for further fast access. Moreover, tags have 
been chosen specifically due to the need to decrease the 
size of the index and avoid redundancies.  

 Schema path partition/schema partial path partition: 
Along with each schema path or schema partial path, 
there are tokenised tags. The index allocates each path 
and an object partition ID where it exists. In other 
words, schema path/partial path partition indices 
identify all distinct paths within the schema and then 
identify tokens allocated along with each path in a 
schema besides its supposed partition. Schema 
path/partial path partition indices determine in which 
partitions the SPs are located.  

 Schema path nested partition: In regard to OXDP, the 
generated partitions can be a nested partition. In this 
case, the schema path nested partition index carefully 
handles a path of tokenised tags for each SP, which 
takes a place in a nested partition, to be converted into 
an equivalent path of tokenised tags reflecting a real 
path of XML data within the partition.  
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 Tokenised schema path index: This stores each token 
associated with its SPs where the token exists. It is a 
reverse index to the schema path partition index since it 
stores all schema paths that share the same tokenised tag. 
However, the schema path partition index stores all tokens 
allocated within an SP. Different from the tokenised 
schema path which stores all SPs of a token, the tokenised 
schema partial path stores only the SP of a token that is 
against the tail node of a partial path. Definitely, this node 
is a non-leaf in the XML Tree (XTree).  

5.3 XML data indices 

 XML objects’ path index: In schema path index, the tail 
of each SPs is a leaf node. All XML data paths that 
match the pattern of SP in the schema path index are 
stored in conjunction with its pointers. The pointer is a 
unique number assigned to each XML data node by 
traversing XML data ‘in depth first order’. For example 
SigmodRecord/issue/articles/article/title in Figure 6 has 
pointers 1, 2, 5, 6 and 7 to determine the position of a 
node within an XML document. In this path, the 
schema path is SP1 which matches the schema path of 
L3 in Figure 7a. 

Figure 7 OXiP of SigmodRecord XML data 

 

 XML object partial path index: Since this index supports a 
path query ending with a non-leaf node, all XML data 
paths matching a specific SP in the schema partial path 
index are stored with their pointers along with the SP. For 

example, a path SigmodRecord/issue in Figure 6 has 
pointers 1 and 2, in that order, pointing to the positions of 
these nodes of the path query within the XML document. 
Since this index is concerned about retrieving an object, 
not only a leaf node, it keeps track of its children in the sub 
items’ ID. If its child is a leaf node, it will store a leaf ID. 
However, if its child is a non-leaf and located in a different 
partition, PartitionsID will be adapted to link partitions and 
retrieve the sub-item ID. This index is filled in bottom-up 
traversing XML partitions. For instance, in the leftmost 
path of object1 in Figure 5a, SigmodRecord/issue/articles/ 
article, matching SP11 and with pointers 1, 2, 5, 6 
respectively, has ‘L3 L4 L5 or1’ as its children (see Figure 
7c). To be clear, ‘L3 L4 L5’ can be retrieved from the 
same index of object1; however, ‘or1’ is in object2 where 
or1 has ol1 ol2 ol3 ol4. The rest of the data can be 
retrieved in a similar manner.  

For the demonstration of the proposed method, in Figure 8, 
Q1: SigmodRecord//article/title is considered. It has been 
used over the schema and XML data of the SigmodRecord 
dataset. This query example is used to illustrate how the 
OXiP can sufficiently process the query. First the query 
needs to be analysed to obtain all the tokens of its tags 
‘SigmodRecord’, ‘article’ and ‘title’ which are T1, T6, and 
T7, respectively, as shown in Figure 8. As ‘title’ is a 
simple/leaf node type, the paths of schema associated with 
each token of the query tags are retrieved from the tokenised 
schema path index (see Figure 5f). All three lists of schema 
paths associated with each token intersect in SP1, which is 
the only path that contains all three tokens and is located in 
object partition 1 with the same partition schema path. It can 
be seen that the main purpose of the schema path partition 
index is to identify the exact partition allocation besides its 
ability to identify the correlation between tags within the 
schema path. By using this technique, there will be a 
verification of hierarchical satisfactory of a schema path 
between the three tags ‘SigmodRecord, article and title’ and 
will reduce the exceeding number of joins in past indexing 
methods. If the SP1 schema path, which is T1 T2 T5 T6 T7, 
traverses scanning forward, then T1, T6 and T7 can be 
found in the same order. The tokenised partition path 
associated with SP1 and the partitioned ID are referred to 
for further processing. Partition ID assists in reaching the 
XML data index that is related to specific partitions and this 
decreases the searching and matching time. For each path of 
items within XML data associated with each passing 
schema path identifier, the pointer numbers of XML data 
nodes that occur in the same query tag positions in the 
partition path schema entry return a join result.  

Figure 8 Q1: processing SigmodRecord//article/title 
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Figure 9 Processing Q2: SigmodRecord//article/authors 

 

Figure 10 OXiP algorithm and its functions 
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In Figure 9, Q2: SigmodRecord//article/authors is used to 
elaborate how a query is processed for a partial path. The 
ability of OXiP to link XML data partitions can be seen in this 
example besides its capability to support OXDP as a double 
optimisation layer. The query tags have T1, T6, and T12 as 
shown in Figure 5b. Since T12, which is the tail of the path 
query, has a complex type, a path of schema associated with 
T12 is retrieved from the tokenised partial schema path index 
(refer to Figure 5g). The schema path is shown in Figure 5d to 
be T1 T2 T5 T6 T10 located in nested object2. This 
information identifies from which partition the data will be 
retrieved in order to clarify that this partition is a nested object 
of another object. For this reason, a new path of tokens will be 
allocated for SP12 as can be seen in Figure 5e. XML data is 
retrieved in conjunction between object2 and partial object2.  

5.4 Query processing with OXiP 

An OXiP query-processing method has been proposed to take 
full advantage of OXiP characteristics. Algorithm 3, in Figure 
10, has been used to process path queries more efficiently. The 
essential goal of this algorithm is to match query tags based on 
tokens. Table 2 shows the algorithm symbols. 

Table 2 OXiP algorithm symbols 

Symbols  Descriptions 

qTs  Query tags  

qEs  Query elements  

tType  Query tag type  

cSP  Candidate schema path  

nPointer  XML node position  

isSimple  Flag indicating type of a query tag  

isPC  Flag determining type of relationship between 
query tags  

nPos  Token positions in query matching with token 
positions in SP  

The input of the algorithm is a sequential query. The query 
is analysed into tags and relationship types which are either 
ancestor–descendant A–C or parent–child P–C relationship. 
Let us consider a sequential query Q = qt1/qt2//qt3. The 
query tags are qt1, qt2, qt3, and the relationships between 
tags are ancestor–descendant and parent–child. From the 
tokenised tag index, each extracted tag is mapped into its 
token represented in Q = {T1, T2, T4}. This part is depicted 
in Algorithm 3, lines 2–8. Hereafter, getCandidatePath is 
invoked with tag type and elements of query as its 
arguments and returns schema path identifiers cSP.  

In getCandidatePaths, there are two streams: (1) If qt3 
in the query Q is a leaf node, the tokenised schema path 
index will be used to find the schema path identifier that 
contains all query tokens. For example, let us say β is a 
tokenised schema path and β = {SP(T1), SP(T2), SP(T4)}, 
where SP(T1) is a set of schema path identifiers containing 
the token T1 and so forth. (2) If qt3 is non-leaf, the 
tokenised partial schema path index will be used to retrieve 
SP where the token of qt3 exists. This function will return 
the intersection values of schema path identifiers.  

At line 14 of Algorithm 3, if Q has P–C path only, one path 
cSP will be retrieved, cSP will be the intersection between SPs 
in β and cSP = SP, where SP is a schema path identifier that 
consists of all query tags. However, at line 26 of Algorithm 3, 
if Q has A–C, then cSP = {SP1 ... SPm}, where each SPi will 
be a schema path identifier that consists of all query tags and 1 
≤ i ≤ m, m is the number of intersected schema path identifier. 
This intersection of paths is used to eliminate processing false 
matches. In Algorithm 3, relationship classification is identified 
by a flag called isPC. Once the flag has true value, this means 
all relationships between query tags are P–C.  

However, if it is false, an A–C relationship between query 
tags should exist. In case all the paths are P–C, lines 14–25 in 
the algorithm are invoked, else lines 26–44 in the algorithm 
will be executed. objectID will be retrieved from the schema 
path partition, and it will assist to prune the search space by 
eliminating irrelevant parts of XML data. Then the matching 
and joining process will take its place. The output of this 
algorithm is the positions of the nodes of interest in the 
tokenised schema path, which are used to determine the result 
from the pointers of the XML items in lines 45–47. 

validateQuery at line 31 is invoked to validate the query 
tokens with schema path tokens. ST = {t1 ... tℓ} where ℓ is 
the length of schema path, for each schema path identifier 
entry QT = {t1 … tj} where j is the number of tags in the 
query QT. By matching ST with QT, the tokens’ positions 
can be identified to retrieve the position of XML data in the 
algorithm.  

6 Experiments and evaluation 

OXDP and OXiP have been developed using MS Visual C#, 
and the database used is an EXD using its Oracle XMLType 
facility. XSD needs to be traversed using SOM ‘Schema 
Object Model’ to determine all object partitions including 
nested objects. The evaluation was done in an Intel® 
Core™2 Duo CPU with 2.1.00 GHz processing power. It 
has 2048 MB of high-speed memory and runs the 32-bit 
version of Window Vista™.  

For evaluation, we conduct an experiment by running 
different queries. This experiment is divided into two stages: 
(1) the evaluation of OXDP and (2) evaluation of OXiP.  

6.1 Evaluation of OXDP 

This evaluation has been conducted using different XML 
datasets: SIGMODRecord and Yahoo (UW, 2002). 
XMLQuery, XMLTable and XPath were used in EXD. 
Query performance is measured by the number of accessed 
data blocks (NADBs). The queries were categorised into 
three groups: (1) Query Group 1 which varies the number of 
partitions accessed for a query; (2) Query Group 2 which 
varies the size of the file and (3) Query Group 3 which 
alters the depth of the accessed path during the queries.  

In Query Group 1 (see Table 3), the query cost was 
determined for partitioned and non-partitioned XML data in 
addition to querying optimised and non-optimised partitioned 
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data. Horizontal partitions are stored in a table of XMLType to 
reduce the join cost. These query scenarios are shown in Figure 11. 
Figure 12 shows that partitioned XML data outperforms  
non-partitioned XML data in terms of query performance. In 
addition, horizontal partitioning methods improved query 
performance too. 

Table 3 QGroup 1 for SigmodRecord 

Q# Queries 

Q1 SigmodRecord/issues/articles/article [title=" 
Architecture of Future Data Base Systems."]/ 
initPage |endPage  

Q2  SigmodRecord/issues[volume="1"andnumber="2"]
/articles/article[initPage="3"]/title  

Q3  SigmodRecord/issue/articles/article/authors 
[author="Stephen Knowles']/ ../article/title  

Q4  SigmodRecord/issue/articles/article 
[title="Architecture of Future Data  
Base Systems."]/ authors/ author  

Figure 11 A visual scenario of QGroup 1 for SigmodRecord  
(see online version for colour) 

 

Figure 12 NADB in SigmodRecord XMLdata (see online version 
for colour) 

 

In Query Group 2, we test the query performance for varying 
data size. We performed the same queries using XMLQuery 
and XMLTable methods. In Figure 13, the partitioned data 
needs to access less data blocks to obtain the answers of the 
same queries performed on the non-partitioned data. OXDP 
demonstrated that it is possible to manipulate XML data with 
different sizes and to reduce query cost. 

Figure 13 NADB in (a) SigmodRecord (b) yahoo XML data  
(see online version for colour) 

 

In Query Group 3, we check the cost effectiveness in retrieving 
some elements presented in various paths which can be 
accessed in the partitioned XML data via different paths. The 
visual representation for these queries is shown in Figure 14. 
The variation of the path can be seen in Table 4. The results of 
these queries show that the OXDP methodology also exhibits 
better performance than the results of non-partitioned datasets 
as shown in Figure 15. 

Figure 14 A Visual Scenario of QGroup 3 for (a) SigmodRecord 
and (b) Yahoo (see online version for colour) 

 
(a) 

 
(b) 
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Figure 15 NADB for QGroup3 (see online version for colour) 

 

Table 4 Experiments for QGroup 3 

Q#  Depth P Depth Non-P Elements Dataset 

Q1  3 3 //volume SigmodRecord 

Q2  5 5 //title SigmodRecord 

Q3  3 6 //author SigmodRecord 

Q1  3 3 //payment_types Yahoo 

Q2  3 4 //location Yahoo 

Q3  4 5 //bidder_name Yahoo 

6.2 Evaluation of OXiP 

Evaluation of OXiP is carried out on three datasets. DBLP 
and SigmodRecord are real datasets obtained from the UW 
repository (UW, 2002). Standard is a synthetic dataset 
obtained from XMark benchmark project (XMark, 2004). 
Experimental queries are shown in Table 5 with their 
classification while Table 6 shows the characteristics of the 
chosen datasets. We compared our result with that of state-
of-the-art TwigX-Guide since it has shown comprehensive 
performance advantages over many other approaches (Haw, 
2009). We implemented TwigX-Guide algorithm using 
C0023 because it is not publicly available at this time. 

For queries containing only P–C edges as shown in Table 
4, we found similar comparative performance between OXiPs 
and TwigX-Guide. When both of them query only P–C edges, 
they use few joins as path matching. Thus, in this case, the 
performance is optimised. In OXiP, P–C edges are stored as a 
path of tokens in the schema path partition index. Hence, the 
desired SP can be used with the objectID to retrieve the 
required XML data by accessing a small portion of the data and 
avoid the non-participating part. In TwigX-Guide, P–C edges 
could be obtained from the Dataguide index table and, thus, the 
number of required joins is few.  

 
 

Table 5 Experiments for OXiP 

Q#  P–C A–C Blended Datasets Query 

1  √   /dblp/inproceedings/ 
booktitle  

2   √  /dblp//author  

3    √ /dblp/inproceedings//i  

4  √   /dblp/mastersthesis/title  

5   √  /dblp//title  

6    √ 

DBLP 

/dblp/www//title  

7  √   /site/closed_auctions/ 
closed_auction/price  

8   √  //description//keyword  

9    √ /site/regions//item/location 

10  √   /site/open_auctions/ 
open_auction  

11   √  //regions//item  

12    √ 

XMark  

/site//africa/item/ 
description//keyword  

13  √   /SigmodRecord/issue/ 
volume  

14    √ /SigmodRecord//article/ 
title  

15   √  /SigmodRecord//articles//
author  

16    √ /SigmodRecord/issue// 
author  

17   √  /SigmodRecord//issue// 
title  

18   √  /SigmodRecord//articles  

19   √  

Sigmod
Record  

//articles//authors  

Table 6 Characteristics of the datasets 

 DBLP XMark SigmodRecord 

Size (MB)  131 114 470 

Max. depth  6 12 6 

Objects#  8 11 2 

The main feature of OXiP utilises the notion of objects in 
processing the query. Therefore, it has the ability to 
eliminate irrelevant objects. This feature has a significant 
impact in improving the performance of querying either  
A–D edges only or mixed with P–C edges. OXiP performs 
significantly better compared to TwigX-Guide when the 
query contains only A–D edges. TwigX-Guide requires a 
greater number of joins. It can be observed that OXiPs 
greatly outperform in Q2, Q5 in DBLP (see Figure 16) and 
Q8 in XMark (see Figure 17) because the candidate SP 
identifier coupled with the determined object assists in 
reducing the matching process. As the number of matchings 
reduces, a fewer numbers of disks is accessed and therefore 
the execution time is optimised. 
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Figure 16 OXiP evaluation with DBLP (see online version  
for colour) 

 

Figure 17 The evaluation of OXiP with XMark (see online 
version for colour) 

 

Figure 18 OXiP evaluation with SigmodRecord (see online 
version for colour) 

 

When path queries contain blended edges, the results show 
that OXiP outperforms TwigX-Guide. Figures 16, 17 and 18 
show the improvement of the performance test results 
caused from OXiP. It can be seen in Figure 16 that OXiP 
and TwigX-Guide achieved an optimum result which is 
quite less than 0.15 ms when we run Q4. Figure 19 indicates 
that OXiP is more scalable in processing different-scale 
datasets than TwigX-Guide when we used Q14 from Table 
5. On average, OXiP outperforms TwigX-Guide by around 
75.73% in queries of DBLP, by 53.46% in queries of 
XMark and 74.98% in queries of SigmodRecord. 

Figure 19 The evaluation of OXiP scalability (see online version 
for colour) 

 

7 Conclusion and future research  

In this paper, we introduced two contributions which can 
work independently: (1) a new method to partition XML 
data based on semantics by performing object-based 
partitioning (OXDP) and (2) OXiP which provides its 
ability to link partitions as well as processing path queries. 
We demonstrated that OXDP allows elements that are 
semantically close to each other to be stored together within 
the same partition. We have also developed an optimisation 
algorithm which allows the size of the partitioned XML data 
to be equally distributed to avoid high costs in query 
performance. OXDP has demonstrated a method to improve 
the query performance in EXD environments and yields 
better performance gains. OXiP is an extended layer of the 
system cooperating with OXDP. It aims to further improve 
the query performance by exploiting the semantics of 
OXDP and adopting an index technique.  

For further research and investigation, we focus on 
extending our methods to deal with branching queries and 
work out a query-processing method to deal with this kind 
of query along with OXDP.  
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