
112 Int. J. Grid and Utility Computing, Vol. 3, Nos. 2/3, 2012

Copyright © 2012 Inderscience Enterprises Ltd.

OXDP & OXiP: the notion of objects for efficient
large XML data queries

Norah Saleh Alghamdi*, Wenny Rahayu
and Eric Pardede
Department of Computer Science and Computer Engineering,
La Trobe University,
Melbourne, VIC 3083, Australia
Email: nalghamdi@students.latrobe.edu.au
Email: w.rahayu@latrobe.edu.au
Email: E.Pardede@latrobe.edu.au
*Corresponding author

Abstract: Due to the rapid growth of XML representation for information exchange, XML
databases have been widely adopted in a variety of applications. This paper presents two layers of
optimisation for dealing with large XML databases: (1) OXDP (Object-Based Methodology for
XML Data Partitioning) which has been developed to partition XML data efficiently and (2)
OXiP (Object-Based XML Indexing for Partitions) which is an indexing and linking mechanism
for partitioned data. OXDP provides optimal XML data partitioning based on an object’s
semantic features which improves XML data query performance. The OXiP method tokenises all
rooted label paths and preserves the pathways within each XML object partition. The semantic-
based data partition ultimately enhances the notion of a frequently accessed data subset which is
an advantageous feature in our proposed methods to decrease the time to answer queries.
Experimentally, OXDP and OXiP can achieve an order of magnitude performance improvement
for querying XML data.

Keywords: XML database; semantic-based query processing; indexing; partitioning; optimisation;
path query.

Reference to this paper should be made as follows: Alghamdi, N.S., Rahayu, W. and Pardede, E.
(2012) ‘OXDP & OXiP: the notion of objects for efficient large XML data queries’, Int. J. Grid
and Utility Computing, Vol. 3, Nos. 2/3, pp.112–125.

Biographical notes: Norah Saleh Alghamdi completed her Bachelor of Computer Science
degree at Taif University, Taif, Saudi Arabia. She completed her Master of Computer Science
degree from the Department of Computer Science and Computer Engineering at La Trobe
University, Victoria, Australia, where she is currently pursuing her PhD. Her areas of interest are
XML databases, query processing and query optimisation.

Wenny Rahayu is an Associate Professor in the Department of Computer Science and Computer
Engineering, La Trobe University, Australia. She is currently the Director of Academic Studies
and the Head of the Data Engineering and Knowledge Management Laboratory in the
department. Her research areas cover a wide range of advanced database topics including XML
databases, spatial and temporal databases and data warehousing, and the semantic web and
ontology.

Eric Pardede is a Lecturer in the Department of Computer Science and Computer Engineering at
La Trobe University, Australia. His current research areas include XML databases, database as a
service and data management in social network applications.

1 Introduction

In multi-institutional, dynamic virtual organisations, grid
computing plays an important role in solving problems and
sharing coordinated resources. Recently, grid technology
has become applicable as a computational grid or as a data
grid. The concern of increasing the execution time of
applications due to excessive computer processing cycles
has been addressed by the computational grid (Zhang and

Phillips, 2011). However, in the case of utilising a large
scale of data, the data grid plays a significant role to sort out
data management issues. Since XML has wide-ranging
features to support global data representation and exchange
over the web, most applications generate their data in XML
format (Tusa et al., 2009). Consequently, XML data has
expanded significantly even in the area of the data grid.
Hence, continuing research on the efficient storage and
querying of an enormous amount of XML data is required.

 OXDP & OXiP 113

Since RDB fails to deliver all the necessary functions to
efficiently store and query XML data, the Enabled XML
Database (EXD) or Native XML Database has been proposed.
Several query languages have been introduced to query
XML data, including XPath (Berglund et al., 2011), Quilt
(Chamberlin et al., 2000) and XQuery (Robie et al., 2010).

Partitioning relational data in RDB has been extensively
investigated and employed to improve the performance of
relational data processing. Many applications have gained
benefits from this technique. The underlying concept of data
partitioning is now required in the XML data management
area. In order to optimise query execution time, this paper
presents two layered methodologies for processing large XML
documents more efficiently. The Object-Based Methodology
for XML Data Partitioning (OXDP) aims to improve query
performance through optimal XML data partitions based on the
semantics of the objects. This method can be applicable in
many different high-performance computing environments. For
example, since it introduces a semantic concept in partitioning
XML data into objects, this feature makes it appropriate in
parallel database environments by allocating each processor
with a partition. Due to each partition being disjointed with
others, they can be processed in parallel and potentially reduce
execution time.

Object-Based Methodology XML Indexing for Partitions
(OXiP) exploits the semantics of OXDP in order to efficiently
link the data partitions during a query execution of XML data.
Although earlier works focused on the development of
methodologies to index XML data, none addressed the goal of
finding an efficient mechanism for linking partitioned data. It
can be argued that in general, a common document-based
XML indexing method can be used to index partitioned data
whereby each partition is treated as a separate document, and
the XML index is used to consolidate and index the data for
querying purposes. However, the weakness is that the method
does not utilise the knowledge gained from the object partitions
for constructing XML data because it only treats them as
separate components. In our proposed methodology, the object-
based knowledge of OXDP is utilised and leveraged in OXiP-
indexing development. OXiP does not merely link partitions
together; it leverages the knowledge of the data partition path
locations and makes the construction of linking more efficient.

In a previous work on partitioning XML data, we proposed
the essential concept of Object-Based Partitioning (OBP)
methodology and how XML queries gained improvement in
their performance (Alghamdi, 2011). In this publication, we
reintroduce the knowledge of objects in combination with
XML index to solve a number of limitations in current
indexing approaches with respect to leveraging the concept of
objects in indexing and querying large XML data.

The key contributions of the work are summarised as
follows:

 Although a variety of XML data query processing
techniques have been proposed, to the best of our
knowledge, none of them takes into consideration the
semantic-based query workload which is undertaken in
OXDP and OXiP.

 OXDP exploits and supports the hierarchical structure
of XML data by introducing the notion of objects
during the data partitioning. As a result, queries can
access a certain object leading to a reduction of the cost
of traversing entire documents.

 OXDP can work independently to serve specific
applications. However, in this paper, we show a second
layer of optimisation, OXiP, which is used in conjunction
with OXDP to consistently link objects for further speed.

 Significant search space reduction during the OXiP
mechanism by utilising the knowledge of OXDP leads
to high performance in query evaluation. OXiP devises
a pruning technique for irrelevant objects.

The remainder of this paper is organised as follows. A survey
of related work is presented in Section 2. We present an
overview of the system architecture in Section 3. In Section 4
we describe OXDP in detail. Thereafter, Section 5 describes
OXiP. The experiments and evaluation are presented in Section 6
and we conclude our work in Section 7.

2 Related work

In this section, we first review previous research on XML
data partitioning and then describe the prior work on
indexing XML data. Shredding XML documents is a
common method used in storing XML documents within a
pure RDB. Shredding is an automatic mechanism to
partition XML data into what RDB really understands, such
as tables with rows and columns (McGovern et al., 2003).
Various approaches have been developed for XML
document partitioning for different purposes. Double lazy
parser (2LP) is a technique that emulates physical pointers
through partitioning XML documents into sub-trees (Farfán
et al., 2009). Although navigation and parsing time is
reduced, producing several large partitions is somewhat
unacceptable since smaller and uniform partition size is
more rational. In addition, XML Clustering (XC) takes
advantage of XML navigational behaviour to direct its
partitioning decision and uses dynamic programming over
weight intervals determined by the ‘chunk_size’ parameter
(Bordawekar and Shmueli, 2004). However, when the
‘chunk_size’ value is decreased and XC precision is
increased, memory usage and runtime would also increase.

Kanne and Moerkotte (2006) proposes a technique that
uses the sibling properties of the trees to segregate an XML
tree. However, this approach failed to consider the effect of
query workload on performance since the partitioning of
XML data is purely based on sibling properties.

Of the state-of-the-art path indexing, DataGuide is
considered a key revolution in XML indices. The main idea
of DataGuide is to construct a path summary which indexes
each distinct path to evaluate a single path query (Goldman
and Widom, 1997). T-index is also a path index which
selects a path based on specific templates based on the
similarity of node pairs (Milo and Suciu, 1999; Cooper

114 N.S. Alghamdi, W. Rahayu and E. Pardede

et al., 2001). A(k) index has been proposed to reduce the size
of the XML index. It targets localised structural information
about XML data based on bi-similarity on nodes related to
paths of length k (Kaushik et al., 2002). D(k) index is an
improvement of A(k) index and considers the query load
(Chen et al., 2003). Like D(k) index, M(k)-index and M*(k)-
index (Hao and Yang, 2004) support dynamic indexing. It
can be said that M(k)-index is a further optimised index of
D(k)-index by not over-refining index nodes for irrelevant
index or data nodes. Another workload-aware path index is
APEX (Chung et al., 2002). It is an adaptive path index
constructed by applying data-mining algorithms to mine
frequently appearing paths in the query.

XISS is a node XML-indexing approach on a B+-tree
designed to support regular path expressions (Li and Moon,
2001). The main notion of XISS is to decompose the query
into several simple path expressions. Structural join
algorithms then produce an intermediate result for each
simple path expression which can be used in the subsequent
stage of processing a query.

Sequence-based indexing has been proposed where each
XML document and a twig pattern of a query are
transformed into structure-encoded sequences. Subsequence
matching is used to evaluate the query as in ViST (Wang
et al., 2003) and PRIX (Rao and Moon, 2004) which eschew
costly join operations by utilising tree structures as the basic
unit of a query. Similar to PRIX and ViST, LCS-TRIM in
Tatikonda et al. (2007) relies on a sequential encoding

transformation and matching for both XML data and path
queries.

The TwigX-Guide approach processes path queries by
extending the existing path summary in DataGuide and region
encoding in TwigStack structural algorithms. To process the
path query, TwigX-Guide uses the CutMatchMergePath
algorithm which adopts the decomposition–matching–merging
approach (Haw and Lee, 2009). LTIX combines the Level-
based Labelling Scheme LLS and the DataGuide path index.
The new idea of LLS is essential to identify the node whose
level specifies the most likely result of a query (Mohammad
and Martin, 2010).

3 System architecture

The entire view of the system architecture is shown in
Figure 1. Our system aims to improve the performance of
querying XML data, consisting of two essential components
that can work independently. The first component is OXDP
which introduces a new notion of partitioning XML data.
OXDP preserves XML data hierarchy structures logically
by partitioning XML data into objects while enhancing its
queries efficiency through optimisation and semantic
improvement. The second component, OXiP, can be
coupled with OXDP as a partition linking and indexing. It is
adopted to increase the efficiency of the queries as an index
method, in addition to its ability to link generated partitions.

Figure 1 The architecture of OXDP and OXiP

 OXDP & OXiP 115

Figure 2 XTree sample

OXDP takes XML Entry, that is, an XML document and its
corresponding XML schema (XSD), as input. XSD is used
since it represents XML objects and their semantic structure.
Hereafter, XML Entry runs through two layers: (1) the
semantics layer and (2) the optimisation layer to be partitioned
into objects which are to be passed to OXiP as a double
optimisation layer to construct indices for joining the obtained
objects. It is important to highlight that constructing OXDP as
well as OXiP is considered an offline stage before the online
phase when the actual query processing commences.

OXiP consists of two main parts: (1) XML schema
indices, which are indices and meta-data created from an
XML schema based on the knowledge of OXDP and (2)
XML data indices, which produce indices for partitioned
XML data. OXiP reduces excessive structural joins in query
evaluations. The idea beyond OXiP is to utilise an XML
document as the main memory structure where queries can
be evaluated efficiently. All rooted label paths are
tokenised, and their pathways are preserved within each
XML object partition with far fewer nodes and edges; thus,
the goal of increasing the query-processing efficiency
becomes applicable for large amounts of XML data.

Since the main characteristic of OXDP is the semantic
workload of queries, OXiP leveraged this advantageous
feature during the construction of its indices. Semantic
workload characteristics to partition XML data coupling
with an efficient linking technique among partitions to
processing queries over partitions have a significant impact
on the performance of XML queries. From a semantic
workload perspective, it is known that not all parts, called
objects in this paper, of XML data are equal in ‘access rate’;
some objects are more frequently used than others.
Consequently, it can be obvious that the ‘access rate’ to
some index nodes is highly likely to vary, because of their
relativity to the position of the index structure. Therefore,
the frequent access to the same object results in benefits in
reducing the time to answer queries.

4 OXDP: object-based methodology for
XML data partitioning

4.1 OXDP Layer 1: semantics layer

In this layer, XML data is semantically partitioned based on
object-oriented (OO) principles. This process takes place
before the actual partitioning process by (1) creating XTree
from XML Entry and (2) setting and applying the OBP
algorithm to identify the objects that are to be partitioned.

XTree (see Figure 2) is the first component of the
Semantics layer in the OXDP section and is generated from
XML Entry.

Definition 1 (XTree): XTree is a labelled tree consisting of a
set of nodes that are linked to each other via labelled edges.
Each complex node CN of XML Entry represents an object in
XTree. CN is a tag name for non-leaf nodes that are
represented by circles in XTree. CN normally has leaf nodes
called basic nodes or BN, which are represented by rectangles
in XTree.

Example 1: Figure 2 shows XTree where B and C are CN
because they have either BN or other CN or both. It can be
seen that d, e and f are BN since they are leaf nodes.

Definition 2 (Object): An object is defined as an element
with complexType or complexContent and it is a non-leaf
node in XTree. Objects might consist of other nested objects
and basic elements.

Example 2: In Figure 2, because c is CN, c is an object. It is
a nested object of the object B.

XTree in Figure 2 likewise defines the cardinality constraints
over the nodes in which a single shape and multiple shapes
denote the maximum occurrence of one and more than one,
respectively. Dashed lines and solid lines mean minimum
occurrence of zero and one, respectively. XTree also represents
the object size, which is the summation of the entire node's size
value underneath the object, between practices within the graph.

116 N.S. Alghamdi, W. Rahayu and E. Pardede

In order to be clear about the objects contained in the
document, XTree shows all the objects of XML data regardless
of their usability or relevance in the partitioning process. XTree
also defines the semantic relationships over the edges between
objects.

Definition 3 (semantic relationship between objects): Semantic
relationship between objects is a representation categorised
into two relationship-type annotations within XTree: Object
relationship (ObR) and generalisation relationship (GnR).

OBP has three essential criteria: (1) the object relationship type
that is either ObR or GnR, (2) the occurrence constraint such as
maxOccurs and minOccurs and (3) the type of nodes, which is
either basic or complex. This diversity of node type is regarded
and treated differently during the OBP process.

Definition 4 (Partitioning a basic node): Partitioning a basic
node that belongs to the parent node N is determined by
including it with its parent partition. Let BN be a basic node
with N as its parent and OP is the object partition.

1 2 1, ,..., (),n
n i iBN BN BN N BN OP N N OP

Definition 5 (Prior Parent Holder): Prior Parent Holder
(PPH) is an object with complex nodes, which has the
priority to hold its parent in its partition. PPH has two
essential conditions: (1) it is a complex element and (2) its
minimum occurrence is one.

PPH avoids node repetition and enables XML document
reconstruction through a query. If all nodes have these two
conditions, one of them will be randomly allocated as PPH and
its parent elements will become its partition’s root. The rest of
the elements will have virtual roots in order to ensure the
accuracy of generated XML partitions. Table 1 describes the
symbols used in OBP algorithms. The algorithm is based on a
top-down approach, similar to the way to traverse XML
objects. Basic nodes are partitioned following Definition 4.
Complex nodes or objects are initially partitioned based on two
OBP algorithms. The first algorithm (see Figure 3a) is used
when a parent object does not have basic nodes and has a
relationship with complex nodes. For illustration, if we have
two complex nodes (X, Y) and they relate to a PR as in Figure 3b,
we will obtain two partitions and either X or Y can hold a
parent node based on the PPH rules.

Table 1 Symbols used in OBP algorithms

Symbol Definition

PR Parent root

CN Complex node

BN Basic node

[ObR(1-1)|GnR(1-1)] A CN relates to its PR through one-to-
one ObR or GnR relationship

[ObR(1-∞)|GnR(1-∞)] A CN relates to its PR through one-to-
many ObR or GnR relationship

CN(CNQ) Complex node which includes
other complex nodes

CN(BNQ) Complex node which includes
basic nodes

CN1 Number of complex node is 1

CNQ Number of complex nodes is Q

The second algorithm (see Figure 4) is used when the parent
node has basic nodes and complex node(s). The main
benefit of OBP is that objects, which will be partitioned, can
be determined before the actual partitioning process which
allows a saving of memory workload for the next layer.

Figure 3 (a) OBPI algorithm and (b) OBPI illustration

(a)

(b)

Figure 4 OBP2 algorithm

4.2 OXDP Layer 2: optimisation layer

After extracting semantic features of XML data and
identifying the objects, we execute the partition of XML
documents. The partitioning algorithm, OXDPartition, is
capable of determining object size. It obtains XML data
with its XSD as inputs together with the outputs of the
previous semantic layer. Then, it generates XML data
partitions and XSD that corresponds to each partition. The
main functionality of this algorithm is to check the objects’

 OXDP & OXiP 117

size. When it finds that the object is optimal, it calls the
partition_object() that will create partitions for each object.
However, when the object size exceeds the maximum limit,
the algorithm uses the partition_objects_horizontally()
method to partition the object horizontally. Alternatively,
when the object size is less than the minimum limit, the
merge_objects() method is used to combine the current
object with its parents or its siblings. During the partitioning
process, PartitionsID is set up to link some partitions and
keep their referential data. The primary advantage of
OXDPartition algorithm, aside from its ability to produce
optimal partitions while preserving semantic structure, is the
ability to check the size of the objects prior to the
partitioning process in order to increase the performance by
reducing the amount of memory buffers. Alghamdi et al.
(2011) provide more detail about this algorithm.

Definition 6 (PartitionsID): A pair of <linkID, objectID> is
called PartitionsID in which linkID is a unique number

given to elements to link between them, and objectID is a
name of a partition where linked elements are located.

It can be observed that linked elements share the same linkID
but differentiate in objectID since each of them is located
in different partitions. To illustrate OXDP algorithms,
SigmodRecord in Figure 5a contains nested objects which are
SigmodRecord, issue, articles, article and authors.

In the semantics layer, ‘issue’ is included in ‘SigmodRecord’
partitions based on OBP1, since its parent does not have any
basic node. Since ‘articles’ has a 1-to-many relationship with its
parent that has basic nodes, ‘articles’ is excluded along with its
children ‘article’ based on OBP2. The ‘authors’ is placed in a
different partition. Three objects are generated at the
completion of the semantics layer: ‘SigmodRecord’, ‘articles’
and ‘authors’. However, in the optimisation layer, where
OXDP identifies the object size, the result becomes two
partitions ‘SigmodRecord’ and ’authors’ with PartitionID to
link them. At the end of the OXDP process, the optimal
partitions with semantic meaning are ready to be queried.

Figure 5 SigmodRecord XML schema sample and its OXiP

118 N.S. Alghamdi, W. Rahayu and E. Pardede

5 OXiP: object-based XML data indexing
partitions

In this layer, the knowledge of OXDP is utilised. XML data
is semantically indexed, based on OO concepts resulting
from OXDP. OXiP takes place after OXDP and consists of
two components: (1) XML schema indices and (2) XML
data indices.

5.1 OXiP terms and definitions

Definition 7 (tokens): Each node name along a schema path
is encrypted with a token.

Figure 5b represents all distinct node names available in the
XML Schema in Figure 5a along with their tokens and their
type within the schema.

Definition 8 (XML data path): A path P = {n1, ..., nk} is an
XML data path, where each ni+1 is a child node of ni for i =
1…k – 1, and is said to be an XML data path of length k if
n1 is a root of the XML data tree and nk is a leaf node.

Definition 9 (schema path identifier): A path SP = {T11, ...,
Txk} is a schema path identifier representing the XML data
path P, where each Txi is a token of ni for i = 1 … k, and is
said to be a schema path identifier for an XML data path of
length and where x is a token ID.

Schema paths are similar to XML data paths starting from
the root node. However, schema paths are created from
XML schema and XML data paths from XML documents.
Each XML data path should have its representation in
schema paths.

From SigmodRecord XTree in Figure 5a, a path of the
tree is from the root element SigmodRecord until the
element title including all other elements within the same
path i.e., issue, articles and article is considered a schema
path which represents XML data paths of pointers 1,2,5,6,7,
1,16,19,20,21 and 1,25,28,29,30 (see Figure 6).

Figure 6 SigmodRecord XML data partitions generated by
OXDP

In Figure 5c, a path T1 T2 T5 T6 T7 is a sequence of tokens for
schema path SP1 which represents the previous XML data paths
where each Ti is a token of each node in the XML data paths.

Definition 10 (schema path/schema partial path): Let SP =
{T11, ..., Txk} be a schema path identifier and P = {n1, ...,
nk} be an XML data path, where T11 of SP is a token of n1
which is a root of P. SP can either be a schema path when
Txk of SP is a token of a leaf node nk or a partial schema
path when Txk of SP is a token of a non-leaf node nk.

SP1 = {T1 T2 T5 T6 T7} shown in Figure 5c identifies a
schema path of XTree since T7 is a leaf node. In contrast,
SP12 = {T1 T2 T5 T6 T10} of Figure 5d determines a
schema partial path since T10 is a non-leaf node.

Definition 11 (query tags): Consider a query Q = {qt1 [/ | //] …
qti[/ |//]; … ; qtk }. Node names qti, for 1 ≤ i ≤ k, are called
query tags, where k is the total number of tags in the query.

For example, a query Q1 = sigmodRecord/issue//initpage is
utilised. It can be considered that query tags inside the query
are sigmodRecord, issue and initpage.

5.2 XML schema indices

 Tokenised tags: This is a meta-data for XML schema used
to assign an identical symbol for each element in XML
schema that will later represent a node in XML data. It has
been considered that these identically symbolled tags are
distinct in the meta-data (see Figure 5b). The advantage
here is that ‘meta-data of schema’ most likely does not
require frequent changes because it is based on schema
and not XML data. The reason beyond this is that in some
cases, XML data does not represent all its schema
elements and needs, in time, to add some elements which
might be optional and do not exist in data. Therefore,
meta-data tokenises all elements of XML schema
significantly for further fast access. Moreover, tags have
been chosen specifically due to the need to decrease the
size of the index and avoid redundancies.

 Schema path partition/schema partial path partition:
Along with each schema path or schema partial path,
there are tokenised tags. The index allocates each path
and an object partition ID where it exists. In other
words, schema path/partial path partition indices
identify all distinct paths within the schema and then
identify tokens allocated along with each path in a
schema besides its supposed partition. Schema
path/partial path partition indices determine in which
partitions the SPs are located.

 Schema path nested partition: In regard to OXDP, the
generated partitions can be a nested partition. In this
case, the schema path nested partition index carefully
handles a path of tokenised tags for each SP, which
takes a place in a nested partition, to be converted into
an equivalent path of tokenised tags reflecting a real
path of XML data within the partition.

 OXDP & OXiP 119

 Tokenised schema path index: This stores each token
associated with its SPs where the token exists. It is a
reverse index to the schema path partition index since it
stores all schema paths that share the same tokenised tag.
However, the schema path partition index stores all tokens
allocated within an SP. Different from the tokenised
schema path which stores all SPs of a token, the tokenised
schema partial path stores only the SP of a token that is
against the tail node of a partial path. Definitely, this node
is a non-leaf in the XML Tree (XTree).

5.3 XML data indices

 XML objects’ path index: In schema path index, the tail
of each SPs is a leaf node. All XML data paths that
match the pattern of SP in the schema path index are
stored in conjunction with its pointers. The pointer is a
unique number assigned to each XML data node by
traversing XML data ‘in depth first order’. For example
SigmodRecord/issue/articles/article/title in Figure 6 has
pointers 1, 2, 5, 6 and 7 to determine the position of a
node within an XML document. In this path, the
schema path is SP1 which matches the schema path of
L3 in Figure 7a.

Figure 7 OXiP of SigmodRecord XML data

 XML object partial path index: Since this index supports a
path query ending with a non-leaf node, all XML data
paths matching a specific SP in the schema partial path
index are stored with their pointers along with the SP. For

example, a path SigmodRecord/issue in Figure 6 has
pointers 1 and 2, in that order, pointing to the positions of
these nodes of the path query within the XML document.
Since this index is concerned about retrieving an object,
not only a leaf node, it keeps track of its children in the sub
items’ ID. If its child is a leaf node, it will store a leaf ID.
However, if its child is a non-leaf and located in a different
partition, PartitionsID will be adapted to link partitions and
retrieve the sub-item ID. This index is filled in bottom-up
traversing XML partitions. For instance, in the leftmost
path of object1 in Figure 5a, SigmodRecord/issue/articles/
article, matching SP11 and with pointers 1, 2, 5, 6
respectively, has ‘L3 L4 L5 or1’ as its children (see Figure
7c). To be clear, ‘L3 L4 L5’ can be retrieved from the
same index of object1; however, ‘or1’ is in object2 where
or1 has ol1 ol2 ol3 ol4. The rest of the data can be
retrieved in a similar manner.

For the demonstration of the proposed method, in Figure 8,
Q1: SigmodRecord//article/title is considered. It has been
used over the schema and XML data of the SigmodRecord
dataset. This query example is used to illustrate how the
OXiP can sufficiently process the query. First the query
needs to be analysed to obtain all the tokens of its tags
‘SigmodRecord’, ‘article’ and ‘title’ which are T1, T6, and
T7, respectively, as shown in Figure 8. As ‘title’ is a
simple/leaf node type, the paths of schema associated with
each token of the query tags are retrieved from the tokenised
schema path index (see Figure 5f). All three lists of schema
paths associated with each token intersect in SP1, which is
the only path that contains all three tokens and is located in
object partition 1 with the same partition schema path. It can
be seen that the main purpose of the schema path partition
index is to identify the exact partition allocation besides its
ability to identify the correlation between tags within the
schema path. By using this technique, there will be a
verification of hierarchical satisfactory of a schema path
between the three tags ‘SigmodRecord, article and title’ and
will reduce the exceeding number of joins in past indexing
methods. If the SP1 schema path, which is T1 T2 T5 T6 T7,
traverses scanning forward, then T1, T6 and T7 can be
found in the same order. The tokenised partition path
associated with SP1 and the partitioned ID are referred to
for further processing. Partition ID assists in reaching the
XML data index that is related to specific partitions and this
decreases the searching and matching time. For each path of
items within XML data associated with each passing
schema path identifier, the pointer numbers of XML data
nodes that occur in the same query tag positions in the
partition path schema entry return a join result.

Figure 8 Q1: processing SigmodRecord//article/title

120 N.S. Alghamdi, W. Rahayu and E. Pardede

Figure 9 Processing Q2: SigmodRecord//article/authors

Figure 10 OXiP algorithm and its functions

 OXDP & OXiP 121

In Figure 9, Q2: SigmodRecord//article/authors is used to
elaborate how a query is processed for a partial path. The
ability of OXiP to link XML data partitions can be seen in this
example besides its capability to support OXDP as a double
optimisation layer. The query tags have T1, T6, and T12 as
shown in Figure 5b. Since T12, which is the tail of the path
query, has a complex type, a path of schema associated with
T12 is retrieved from the tokenised partial schema path index
(refer to Figure 5g). The schema path is shown in Figure 5d to
be T1 T2 T5 T6 T10 located in nested object2. This
information identifies from which partition the data will be
retrieved in order to clarify that this partition is a nested object
of another object. For this reason, a new path of tokens will be
allocated for SP12 as can be seen in Figure 5e. XML data is
retrieved in conjunction between object2 and partial object2.

5.4 Query processing with OXiP

An OXiP query-processing method has been proposed to take
full advantage of OXiP characteristics. Algorithm 3, in Figure
10, has been used to process path queries more efficiently. The
essential goal of this algorithm is to match query tags based on
tokens. Table 2 shows the algorithm symbols.

Table 2 OXiP algorithm symbols

Symbols Descriptions

qTs Query tags

qEs Query elements

tType Query tag type

cSP Candidate schema path

nPointer XML node position

isSimple Flag indicating type of a query tag

isPC Flag determining type of relationship between
query tags

nPos Token positions in query matching with token
positions in SP

The input of the algorithm is a sequential query. The query
is analysed into tags and relationship types which are either
ancestor–descendant A–C or parent–child P–C relationship.
Let us consider a sequential query Q = qt1/qt2//qt3. The
query tags are qt1, qt2, qt3, and the relationships between
tags are ancestor–descendant and parent–child. From the
tokenised tag index, each extracted tag is mapped into its
token represented in Q = {T1, T2, T4}. This part is depicted
in Algorithm 3, lines 2–8. Hereafter, getCandidatePath is
invoked with tag type and elements of query as its
arguments and returns schema path identifiers cSP.

In getCandidatePaths, there are two streams: (1) If qt3
in the query Q is a leaf node, the tokenised schema path
index will be used to find the schema path identifier that
contains all query tokens. For example, let us say β is a
tokenised schema path and β = {SP(T1), SP(T2), SP(T4)},
where SP(T1) is a set of schema path identifiers containing
the token T1 and so forth. (2) If qt3 is non-leaf, the
tokenised partial schema path index will be used to retrieve
SP where the token of qt3 exists. This function will return
the intersection values of schema path identifiers.

At line 14 of Algorithm 3, if Q has P–C path only, one path
cSP will be retrieved, cSP will be the intersection between SPs
in β and cSP = SP, where SP is a schema path identifier that
consists of all query tags. However, at line 26 of Algorithm 3,
if Q has A–C, then cSP = {SP1 ... SPm}, where each SPi will
be a schema path identifier that consists of all query tags and 1
≤ i ≤ m, m is the number of intersected schema path identifier.
This intersection of paths is used to eliminate processing false
matches. In Algorithm 3, relationship classification is identified
by a flag called isPC. Once the flag has true value, this means
all relationships between query tags are P–C.

However, if it is false, an A–C relationship between query
tags should exist. In case all the paths are P–C, lines 14–25 in
the algorithm are invoked, else lines 26–44 in the algorithm
will be executed. objectID will be retrieved from the schema
path partition, and it will assist to prune the search space by
eliminating irrelevant parts of XML data. Then the matching
and joining process will take its place. The output of this
algorithm is the positions of the nodes of interest in the
tokenised schema path, which are used to determine the result
from the pointers of the XML items in lines 45–47.

validateQuery at line 31 is invoked to validate the query
tokens with schema path tokens. ST = {t1 ... tℓ} where ℓ is
the length of schema path, for each schema path identifier
entry QT = {t1 … tj} where j is the number of tags in the
query QT. By matching ST with QT, the tokens’ positions
can be identified to retrieve the position of XML data in the
algorithm.

6 Experiments and evaluation

OXDP and OXiP have been developed using MS Visual C#,
and the database used is an EXD using its Oracle XMLType
facility. XSD needs to be traversed using SOM ‘Schema
Object Model’ to determine all object partitions including
nested objects. The evaluation was done in an Intel®
Core™2 Duo CPU with 2.1.00 GHz processing power. It
has 2048 MB of high-speed memory and runs the 32-bit
version of Window Vista™.

For evaluation, we conduct an experiment by running
different queries. This experiment is divided into two stages:
(1) the evaluation of OXDP and (2) evaluation of OXiP.

6.1 Evaluation of OXDP

This evaluation has been conducted using different XML
datasets: SIGMODRecord and Yahoo (UW, 2002).
XMLQuery, XMLTable and XPath were used in EXD.
Query performance is measured by the number of accessed
data blocks (NADBs). The queries were categorised into
three groups: (1) Query Group 1 which varies the number of
partitions accessed for a query; (2) Query Group 2 which
varies the size of the file and (3) Query Group 3 which
alters the depth of the accessed path during the queries.

In Query Group 1 (see Table 3), the query cost was
determined for partitioned and non-partitioned XML data in
addition to querying optimised and non-optimised partitioned

122 N.S. Alghamdi, W. Rahayu and E. Pardede

data. Horizontal partitions are stored in a table of XMLType to
reduce the join cost. These query scenarios are shown in Figure 11.
Figure 12 shows that partitioned XML data outperforms
non-partitioned XML data in terms of query performance. In
addition, horizontal partitioning methods improved query
performance too.

Table 3 QGroup 1 for SigmodRecord

Q# Queries

Q1 SigmodRecord/issues/articles/article [title="
Architecture of Future Data Base Systems."]/
initPage |endPage

Q2 SigmodRecord/issues[volume="1"andnumber="2"]
/articles/article[initPage="3"]/title

Q3 SigmodRecord/issue/articles/article/authors
[author="Stephen Knowles']/ ../article/title

Q4 SigmodRecord/issue/articles/article
[title="Architecture of Future Data
Base Systems."]/ authors/ author

Figure 11 A visual scenario of QGroup 1 for SigmodRecord
(see online version for colour)

Figure 12 NADB in SigmodRecord XMLdata (see online version
for colour)

In Query Group 2, we test the query performance for varying
data size. We performed the same queries using XMLQuery
and XMLTable methods. In Figure 13, the partitioned data
needs to access less data blocks to obtain the answers of the
same queries performed on the non-partitioned data. OXDP
demonstrated that it is possible to manipulate XML data with
different sizes and to reduce query cost.

Figure 13 NADB in (a) SigmodRecord (b) yahoo XML data
(see online version for colour)

In Query Group 3, we check the cost effectiveness in retrieving
some elements presented in various paths which can be
accessed in the partitioned XML data via different paths. The
visual representation for these queries is shown in Figure 14.
The variation of the path can be seen in Table 4. The results of
these queries show that the OXDP methodology also exhibits
better performance than the results of non-partitioned datasets
as shown in Figure 15.

Figure 14 A Visual Scenario of QGroup 3 for (a) SigmodRecord
and (b) Yahoo (see online version for colour)

(a)

(b)

 OXDP & OXiP 123

Figure 15 NADB for QGroup3 (see online version for colour)

Table 4 Experiments for QGroup 3

Q# Depth P Depth Non-P Elements Dataset

Q1 3 3 //volume SigmodRecord

Q2 5 5 //title SigmodRecord

Q3 3 6 //author SigmodRecord

Q1 3 3 //payment_types Yahoo

Q2 3 4 //location Yahoo

Q3 4 5 //bidder_name Yahoo

6.2 Evaluation of OXiP

Evaluation of OXiP is carried out on three datasets. DBLP
and SigmodRecord are real datasets obtained from the UW
repository (UW, 2002). Standard is a synthetic dataset
obtained from XMark benchmark project (XMark, 2004).
Experimental queries are shown in Table 5 with their
classification while Table 6 shows the characteristics of the
chosen datasets. We compared our result with that of state-
of-the-art TwigX-Guide since it has shown comprehensive
performance advantages over many other approaches (Haw,
2009). We implemented TwigX-Guide algorithm using
C0023 because it is not publicly available at this time.

For queries containing only P–C edges as shown in Table
4, we found similar comparative performance between OXiPs
and TwigX-Guide. When both of them query only P–C edges,
they use few joins as path matching. Thus, in this case, the
performance is optimised. In OXiP, P–C edges are stored as a
path of tokens in the schema path partition index. Hence, the
desired SP can be used with the objectID to retrieve the
required XML data by accessing a small portion of the data and
avoid the non-participating part. In TwigX-Guide, P–C edges
could be obtained from the Dataguide index table and, thus, the
number of required joins is few.

Table 5 Experiments for OXiP

Q# P–C A–C Blended Datasets Query

1 √ /dblp/inproceedings/
booktitle

2 √ /dblp//author

3 √ /dblp/inproceedings//i

4 √ /dblp/mastersthesis/title

5 √ /dblp//title

6 √

DBLP

/dblp/www//title

7 √ /site/closed_auctions/
closed_auction/price

8 √ //description//keyword

9 √ /site/regions//item/location

10 √ /site/open_auctions/
open_auction

11 √ //regions//item

12 √

XMark

/site//africa/item/
description//keyword

13 √ /SigmodRecord/issue/
volume

14 √ /SigmodRecord//article/
title

15 √ /SigmodRecord//articles//
author

16 √ /SigmodRecord/issue//
author

17 √ /SigmodRecord//issue//
title

18 √ /SigmodRecord//articles

19 √

Sigmod
Record

//articles//authors

Table 6 Characteristics of the datasets

 DBLP XMark SigmodRecord

Size (MB) 131 114 470

Max. depth 6 12 6

Objects# 8 11 2

The main feature of OXiP utilises the notion of objects in
processing the query. Therefore, it has the ability to
eliminate irrelevant objects. This feature has a significant
impact in improving the performance of querying either
A–D edges only or mixed with P–C edges. OXiP performs
significantly better compared to TwigX-Guide when the
query contains only A–D edges. TwigX-Guide requires a
greater number of joins. It can be observed that OXiPs
greatly outperform in Q2, Q5 in DBLP (see Figure 16) and
Q8 in XMark (see Figure 17) because the candidate SP
identifier coupled with the determined object assists in
reducing the matching process. As the number of matchings
reduces, a fewer numbers of disks is accessed and therefore
the execution time is optimised.

124 N.S. Alghamdi, W. Rahayu and E. Pardede

Figure 16 OXiP evaluation with DBLP (see online version
for colour)

Figure 17 The evaluation of OXiP with XMark (see online
version for colour)

Figure 18 OXiP evaluation with SigmodRecord (see online
version for colour)

When path queries contain blended edges, the results show
that OXiP outperforms TwigX-Guide. Figures 16, 17 and 18
show the improvement of the performance test results
caused from OXiP. It can be seen in Figure 16 that OXiP
and TwigX-Guide achieved an optimum result which is
quite less than 0.15 ms when we run Q4. Figure 19 indicates
that OXiP is more scalable in processing different-scale
datasets than TwigX-Guide when we used Q14 from Table
5. On average, OXiP outperforms TwigX-Guide by around
75.73% in queries of DBLP, by 53.46% in queries of
XMark and 74.98% in queries of SigmodRecord.

Figure 19 The evaluation of OXiP scalability (see online version
for colour)

7 Conclusion and future research

In this paper, we introduced two contributions which can
work independently: (1) a new method to partition XML
data based on semantics by performing object-based
partitioning (OXDP) and (2) OXiP which provides its
ability to link partitions as well as processing path queries.
We demonstrated that OXDP allows elements that are
semantically close to each other to be stored together within
the same partition. We have also developed an optimisation
algorithm which allows the size of the partitioned XML data
to be equally distributed to avoid high costs in query
performance. OXDP has demonstrated a method to improve
the query performance in EXD environments and yields
better performance gains. OXiP is an extended layer of the
system cooperating with OXDP. It aims to further improve
the query performance by exploiting the semantics of
OXDP and adopting an index technique.

For further research and investigation, we focus on
extending our methods to deal with branching queries and
work out a query-processing method to deal with this kind
of query along with OXDP.

Acknowledgements

Norah Saleh Alghamdi would like to express her gratitude
to the Taif University in Saudi Arabia, for supporting her
with a scholarship.

 OXDP & OXiP 125

References

Alghamdi, N., Rahayu, W. and Pardede, E. (2011) ‘Object-based
methodology for XML data partitioning (OXDP)’,
Proceedings of the 25th International Conference on
Advanced Information Networking and Applications (AINA
2011), Singapore, March 22–25, pp.307–315.

Berglund, A., Boag, S., Chamberlin, D., Fern´andez, M.F., Kay,
M., Robie, J. and Sim´eon, J. (2011) XML Path Language
(XPath) 2.0 (Second Edition), World Wide Web Consortium,
W3C Recommendation.

Bordawekar, R. and Shmueli, O. (2004) ‘Flexible workload-aware
clustering of XML documents’, Proceedings of Second
International XML Database Symposium, XSym 2004, 29–30
August, Springer, Toronto, Canada.

Chamberlin, D., Robie, J. and Florescu, D. (2000) ‘An XML query
language for heterogeneous data sources’, Proceedings of the
International Workshop on the Web and Databases (WebDB’
2000), Springer-Verlag, Dallas, TX.

Chen, Q., Lim, A., Ong K. W (2003) ‘D(k)-Index: an adaptive
structural summary for graph-structured data’, Proceedings of
the 2003 ACM SIGMOD, New York, NY, USA.

Chung, C-W., Min, J-K. and Shim, K. (2002) ‘APEX: an adaptive
path index for XML data’, Proceedings of ACM SIGMOD
International Conference on Management of Data, Madison,
WI, USA, pp.121–132.

Cooper, B., Sample, N., Franklin, M.J., Hjaltason, G.R.
and Shadmon, M. (2001) ‘A fast index for semistructured
data’, Proceedings of the 27th International Conference
on Very Large Data Bases (VLDB), San Francisco,
CA, USA.

Farfán, F., Hristidisa, V. and Rangaswami, R. (2009) ‘2LP: a
double-lazy XML parser’, Information Systems, Vol. 34,
No. 1, pp.145–163.

Goldman, R. and Widom, J. (1997) ‘Dataguides: enabling query
formulation and optimization in semistructured databases’,
Proceedings of the 23 International Conference on VLDB,
Athens, Greece, pp.436–445.

Hao, H. and Yang, J. (2004) ‘Multiresolution indexing of XML for
frequent queries’, IEEE Computer Society, Proceedings
ICDE ’04, Boston, Massachusetts, USA.

Haw, S. and Lee, C. (2009) ‘Extending path summary and region
encoding for efficient structural query processing in native
XML databases’, Journal of Systems and Software, Vol. 83,
No. 6, pp.1025–1035.

Kanne, C. and Moerkotte, G. (2006) ‘A linear time algorithm for
optimal tree sibling partitioning and approximation
algorithms in Natix’, Proceedings of the 32nd International
Conference on VLDB Endowment, Seoul, Korea.

Kaushik, R., Shenoy, P., Bohannon, P. and Gudes, E. (2002)
‘Exploiting local similarity for indexing paths in graph-
structured data’, Proceedings of the 18th International
Conference on Data Engineering, Washington, USA.

Li, Q. and Moon, B. (2001) ‘Indexing and querying XML data for
regular path expressions’, Proceedings of the 27th
International Conference on VLDB, September 11–14,
Morgan Kaufmann, Roma, Italy, pp.361–370.

McGovern, J., Bothner, P., Cagle, K., Linn, J. and Nagarajan, V.
(2003) XQuery Kick Start, SAMS Publishing, Indianapolis,
IN, USA.

Milo, T. and Suciu, D. (1999) ‘Index structures for path
expression’, Proceedings of International Conference on
Database Theory (ICDT), January, Springer, London, UK.

Mohammad, S. and Martin, P. (2010) ‘LTIX: a compact level-based
tree to index XML databases’, Proceedings of the 14th
International Database Engineering & Applications Symposium,
NY, USA, pp.21–25.

Rao, P. and Moon, B. (2004) ‘PRIX: indexing and querying XML
using Prüfer sequences’, Proceedings of the 20th
International Conference on Data Engineering, ICDE 2004,
March 30–April 2, Boston, MA, USA.

Robie, J., Chamberlin, D., Dyck, M. and Snelson, J. (2010)
‘XQuery 3.0: an XML query language W3C working draft’.

Tatikonda, S., Parthasarathy, S. and Goyder, M. (2007) ‘LCS-
TRIM: dynamic programming meets xml indexing and
querying’, Proceedings of VLDB ’07, Vienna, Austria.

Tusa, F., Villari, M. and Puliafito, A. (2009) ‘Design and implementation
of an XML-based grid file storage system with security features’,
WETICE ’09, Groningen, the Netherlands, pp.183–188.

UW (2002) University of Washington XML Repository. Available
online at: http://www.cs.washington.edu/research/xmldatasets

Wang, H., Park, S., Fan, W. and Yu, P.S. (2003) ‘ViST: a dynamic index
method for querying XML data by tree structures’, Proceedings
of the 2003 ACM SIGMOD, San Diego, California, USA.

XMark (2004) XMark – an XML benchmark project. Available
online at: http://www.xml-benchmark.org

Zhang, J. and Phillips, C. (2011) ‘Job-scheduling via resource
availability prediction for volunteer computational grids’,
International Journal of Grid and Utility Computing, Vol. 2,
No. 1, pp.25–32.

