
External and Distributed Databases:
Efficient and Secure XML Query Assurance

Andrew Clarke 1, Eric Pardede 2, Robert Steele 1

1 Discipline of Health Informatics, University of Sydney,
NSW, Australia

E-mail: {andrew.clarke, robert.steele}@sydney.edu.au
2 Department of Computer Science & Computer Engineering, La Trobe University,

Bundoora, VIC 3083, Australia
E-mail: e.pardede@latrobe.edu.au

Abstract

Emerging information system architectures will often be comprised of distributed systems and data repos-
itories. As a result, providing efficient and secure query assurance over these emerging future information
systems is a concern. This paper details the use of temporary time stamps and variable hash granularity to
increase the efficiency of query assurance. This approach is implemented against datasets of varying type
and size, including encrypted data to illustrate the potential overhead issues present in distributed systems
and data repositories.

Keywords: Query Assurance, XML, Optimization, Distributed

1. Introduction

Emerging information system architectures, such
as future health information systems will intrinsi-
cally include distributed systems and data reposito-
ries (Fig. 1) across multiple organizations1. In these
information systems, XML seems particularly well
suited due to its interoperability potential2.

However, due to the nature of this approach to
data organization, that is, the multi data-owner/multi
server model, it is difficult to ensure the accuracy of
query results. In particular, to be certain that data
is not modified (correctness), the query is performed
over the entire dataset (completeness) and represents
the most up to date version (freshness). There has
been substantial previous work in this area3,4,5, pri-

marily focusing on the overheads and efficiency of
providing query assurance. In our previous work6, it
was shown that data overhead can be significant and
efficiency can be further improved. The application
of query assurance allows for detection of anoma-
lous behavior from individual servers in the infor-
mation systems. This would potentially allow for
more rigorous trust decisions to be made in the dis-
tributed system, perhaps through a fuzzy approach7.

In cases of sensitive data, there are important
benefits from storing data in an encrypted format8.
As such, it can be identified that an approach that
provides query assurance and data confidentiality
without substantially diminishing the usability of the
information, is a necessary step. In this paper we
propose an authenticated efficient query assurance

International Journal of Computational Intelligence Systems, Vol. 5, No. 3 (June, 2012), 421-433

Published by Atlantis Press
 Copyright: the authors
 421

D
ow

nl
oa

de
d

by
 [

L
a

T
ro

be
 U

ni
ve

rs
ity

]
at

 2
1:

32
 2

0
A

ug
us

t 2
01

4

Administrateur
Texte tapé à la machine
Received 2 March 2011

Administrateur
Texte tapé à la machine
Accepted 14 February 2012

Administrateur
Texte tapé à la machine

Andrew Clarke et al.

approach combined with searchable encryption.
Various proposed models for query assurance

have been put forth. However, most authenticated
approaches have a data-centric focus4,5 which more
closely resembles traditional database applications
where data is strongly structured and search by value
is of primary importance. Less attention has been
given to document-centric XML, where the structure
and order of the data may be meaningful as in some
XML documents. Additionally, while previous ap-
proaches have in some cases combined query assur-
ance and data confidentially, it has not extended to
a searchable encryption approach. Further, though
previous works have briefly suggested the use of ei-
ther distributed or expiring time stamps - the method
of distribution or the mechanism for setting expiry
rates has not been fully explored. Most approaches
suggest distribution of timestamps to users/client,
but for a highly dynamic database, the associated
overheads could be quite onerous if new time stamps
need to be propagated.

Fig. 1. External and Distributed Database Model

Of concern to all approaches is efficiency.
Our approach is targeted to work efficiently
with both document-centric and data-centric XML
database/files, and extends previous work on fresh-
ness to identify methodology of adjustment of time
stamp expiry rates in a XML database solution.

2. Related Work

Most approaches to query assurance can be catego-
rized into two groups:

(i) Probabilistic - An approach whereby addi-
tional fake or duplicate data is stored in
the database that is known to the data own-
ers and the clients, but indistinguishable to
the database system. The clients then make
queries that extend over both the unknown and
known data and if the known data is returned
correctly it is assumed the unknown data is
also correctly returned. This approach com-
monly makes use of encryption to mask the
fake data from the server.

(ii) Authenticated - A more traditional approach
that uses some combination of encryption, dig-
ital signing, secure hashing and time stamps.
Most recent work has used the concepts of
merkle hash trees9,10,11 to make the approach
more scalable and efficient.

2.1. Authenticated Verification

The majority of the previous work in authenticated
verification has focused on relational databases.
However, most recent work has either directly tar-
geted XML or has been compatible and will be de-
tailed in this section.

Partially Materialized Digest Scheme (PMDS)5

is a variation of a merkle hash tree that works on the
premise that hashing operations take less time than
file reads. Based on that core concept, a hash tree
is created where only the higher branches of the tree
are stored. When a query is made, the hash tree val-
ues are recreated to verify the result. The root of the
tree is digitally signed to ensure the correctness of
the model even though the majority of the tree is not
stored.

Further, PMDS also attempts to address the issue
of hash tree sprawl by implementing nesting to mod-
ify the breadth and depth of the hash tree to increase
efficiency.

Nested B+ Merkle Tree4 is a form of embedded
merkle hash tree that is specifically tailored to XML
data. The root tree is a path tree which preserves the

Published by Atlantis Press
 Copyright: the authors
 422

D
ow

nl
oa

de
d

by
 [

L
a

T
ro

be
 U

ni
ve

rs
ity

]
at

 2
1:

32
 2

0
A

ug
us

t 2
01

4

Secure XML Query Assurance

path information, though path order is not preserved
and equivalent paths are collapsed into an element
in the tree. Leaf nodes in the path tree contain a
value tree and a parent tree. A value tree contains
the index to search element by value. The parent
tree stores data relating to parent elements.

Embedded Merkle Hash Trees12 were a pro-
posed extension to improve efficiency of authenti-
cated query assurance through control of the tree
fan-out and depth. In this approach, individual B+
trees are nodes of a larger verification tree. The in-
tended result of this type of tree creation is that the
server will be able to return smaller verification ob-
jects to authenticate the queries.

2.2. Probabilistic Verification

There have been a number of previous works into
probabilistic verification, however the most recent
have typically used encryption and fake or duplicate
data3,13 to provide query assurance.

This approach requires that the data owner and
the clients are able to share knowledge of a sub-
set of the database3. This known data is typically
some sort of fake or duplicate data and encryption is
used so that the server cannot differentiate between
fake and real data. Further, to provide freshness as-
surance the known data needs to also be modified
over time and those modifications shared between
the users of the system. Previous works3 have imple-
mented this quite well - however the limitations of
the system remain that if the server can at any point
have the same knowledge as the client, the query as-
surance would be vulnerable. It is also not possible
to disable query assurance at the client level if ef-
ficiency overrules verification in some cases. The
strength of this approach is that variable levels of
data can be added to provide higher or lower levels
of assurance, and as a result vary the level of over-
head. Further, there are no necessary modifications
to make to the server.

Dual Encryption13 is another approach to prob-
abilistic query assurance whereby the data is en-
crypted and stored on the server. However, a subset
of the total data is stored in duplicate and encrypted
with a second key. The use of two different encryp-
tion keys is required so that though the data is iden-

tical, it is not detectable by the server. Queries can
then be authenticated by querying as usual and when
a duplicate block is retrieved checking the content is
identical. The weakness of Dual Encryption is sim-
ilar to that of any approach that utilizes encryption:
most query types can not be performed as the server
can not query directly over encrypted data without
invalidating the query assurance scheme.

2.3. Summary

In summary, the related work has produced a
number of possible models that have associated
strengths. Probabilistic approaches can provide a
reasonable and variable level of assurance. How-
ever, they can be vulnerable to being defeated if the
server has the same information as any user that ac-
cesses the database. This limits the type of database
model it can be applied to, as it requires trusted
users. Authenticated approaches on the other hand,
have not fully addressed freshness. Further, the effi-
ciency of authenticated models on document-centric
XML, or situations where value based search is not
used can be problematic.

3. Problem Definition

In complex external and distributed systems, prob-
lems arise as it is difficult to know whether the ser-
vice provider is behaving correctly. This section will
briefly introduce the requirements for query assur-
ance and the mechanisms to provide that assurance
within this database model.

There are three requirements to ensure that query
results are fully valid. Correctness and complete-
ness for data centric databases have been quite
well covered by previous works4,9 with current
work addressing efficiency improvements. How-
ever, freshness approaches are less well covered –
especially in relation to dynamic multi-user, multi-
owner databases.

• Correctness is the requirement that query results
match what is stored in the database. Its goal is to
detect corruption caused by server errors or mod-
ification caused by malicious operators/service
provider/users.

Published by Atlantis Press
 Copyright: the authors
 423

D
ow

nl
oa

de
d

by
 [

L
a

T
ro

be
 U

ni
ve

rs
ity

]
at

 2
1:

32
 2

0
A

ug
us

t 2
01

4

Andrew Clarke et al.

• Completeness is the requirement that query results
accurately represent the full range of matching re-
sults rather than a subset of the total result. Its goal
is to ensure that the query is accurately performed
on the entire database and results returned.

• Freshness is the requirement that query results
represent the most up to date version of the
database. As the database is likely to change over-
time, the issue arises that previously valid data
might be sent out even after a change has been af-
fected. As the older data was valid at some time, it
is necessary to be able to detect whether returned
data is fresh.

Ideally overheads from performing query assur-
ance would be minimal enough that the process ap-
pears transparent to the end users. However, there
are many contributors to overheads, and frequently
it is a balance. For example, by making overheads
lower for clients, data owner/server overheads may
increase.

• Client computation: Any extra user query pro-
cessing overheads due to query assurance imple-
mentation. Depending on the scheme this could
include: encryption/decryption, digital signature
verification, hash checking, known data checking,
time stamp checking and range checking. Mea-
surement used could be processing time or CPU
usage.

• Client bandwidth: Additional data overheads cre-
ated by sending verification data. Measurement
used would be bytes. However, overheads created
compared to size of data requested is a relevant
measure as increases may not be linear.

• Server computation: Any extra server process-
ing created by query assurance. This will vary
quite significantly based on the scheme as for ex-
ample, schemes that require fake/false data cre-
ate significantly more server overheads while typ-
ically hashing/digital signature schemes put most
of the computational work onto the client/owner.
The system of measurement would be server CPU
load.

• Data owner computation: Any extra computa-
tion overheads for the data owner. This includes
hashing, digital signatures, time stamping, fake

data creation and deletion, sorting and encryp-
tion/decryption - depending on the scheme in use.
The best system of measurement is likely to be the
overall time spent on database maintenance.

• Server storage: Additional space required to store
any verification information and functions.

The importance of these factors can vary widely
based on the use of the database implementation.

4. Efficient Query Assurance

As covered in Section 2, methods for query assur-
ance are broadly separated into two streams:

(i) Probabilistic - Fake or duplicate data is added
to the database that is identifiable/known to the
users/data owner but not to the server.

(ii) Authenticated - Hash/digital signature infor-
mation is attached to databases to prove query
reply authenticity.

This work proposes an approach to authenticated
query assurance that differs from the previous solu-
tions in the following ways:

• Previous solutions have focused on sort by value
approach to create verification objects capable of
providing completeness assurance. This is logical
for data-centric XML, but has some shortcomings
when applied to document-centric XML. This ap-
proach, in contrast, primarily sorts by exact path
in the XML tree.

• Earlier works have rarely or briefly addressed
freshness. Though expiring time stamps and dis-
tributed time stamps are suggested they have not
fully been explored.

• This approach takes data overhead to be a more
serious concern due to its relevance in mobile
computing.

• It is compatible with searchable encryption ap-
proach, without creating detrimental overhead.

In the following sections we will discuss the in-
dividual techniques that are used to provide query
assurance, then their combined implementation to
create our query assurance optimization approach.

Published by Atlantis Press
 Copyright: the authors
 424

D
ow

nl
oa

de
d

by
 [

L
a

T
ro

be
 U

ni
ve

rs
ity

]
at

 2
1:

32
 2

0
A

ug
us

t 2
01

4

Secure XML Query Assurance

4.1. Hash Granularity

Granularity has long been a concern for query
assurance10. Ideally, data queried from a database
would map exactly to the coinciding verification
data. In practice, this can be difficult to achieve
without creating large amounts of overhead. For ex-
ample, digitally signing every element of an XML
database separately would be expensive in CPU time
for the data owner - but also for the user10. Even
when merkle hash trees are used5 to reduce the num-
ber of digitally signed elements (by hashing the in-
dividual elements then just signing the root node of
the tree), there is still the additional concern of the
large amount of verification data required to be re-
trieved. On the other side of this balance is the sit-
uation where coarse verification granularity is used
so that the user has to retrieve much more XML data
to then perform digital signature/hashing checks.

The challenge in query assurance is to match the
hash granularity as closely as possible to the queries
requested. If the use of the database is well known
in advance this can be easily achieved, and a certain
level of hash granularity can be imposed. We’ll refer
to this type of hash granularity as uniform database
hashing. In our approach, we use variable hash
granularity where there is allowance for the hashing
granularity to change overtime based on usage. This
occurs at the root level affecting the entire tree as
well as at a branch level affecting the granularity in a
particular branch. We propose that by recording for
each query request, whether it had to request extra
XML data (over read) or whether the query matched
exactly (exact read), we can make fairly informed
decisions on whether to increase or decrease hash
granularity at a particular element over time.

4.2. Time stamps and digital signatures

Time stamps and digital signatures play a significant
role in authenticated query assurance. All verifi-
cation objects need to be covered by a time stamp
that is digitally signed to ensure freshness, correct-
ness and completeness of the result. This approach
is quite well researched and understood. However,
previous approaches only considered the use of a
single time stamp/signature, with no consideration

given to the following:

(i) Propagation of time stamp to users in set time
stamp systems.

(ii) Calculation of appropriate expiry rate in expir-
ing time stamp systems.

In our approach, we use multiple digitally signed
expiring time stamps. Further, we consider that it is
beneficial that elements that are modified frequently
should be covered by a time stamp with a shorter
duration than an element which is rarely modified.
The extension of this is that more volatile areas of
the database could have a higher assurance of fresh-
ness, both through tracking of modification and read
frequencies - it also allows for specific areas to be
flagged as particularly time sensitive and the time
stamps to be adjusted as such.

As a further consideration, as we are now track-
ing the areas of high access and can place digitally
signed time stamps in close proximity, the efficiency
of verification can be improved as less data needs to
be retrieved and less hash operations conducted. If a
less selective approach was taken, the overhead for
the data owner to refresh the time stamps at short ex-
piry rates would be significant compared to the effi-
ciency increase for clients.

The relevant variables to time stamp creation on
a granule are:

(i) Modification frequency - Granules that are of-
ten updated, should have a time stamp that en-
sures that the freshest update is returned.

(ii) Access frequency - If a granule is accessed fre-
quently, it is beneficial to apply a time stamp as
close as possible to high access content as it re-
duces the bandwidth and computation required
for each query.

Lastly, it is an important consideration that
schemes of this type also reduce the additional time
stamps as a section of the database traffic reduces.
Otherwise there would be a gradual data owner over-
head increase as large portions could become digi-
tally signed. To prevent nodes from often switching
states, the trigger to remove a time stamped node
should be marginally lower than that to create it.

Published by Atlantis Press
 Copyright: the authors
 425

D
ow

nl
oa

de
d

by
 [

L
a

T
ro

be
 U

ni
ve

rs
ity

]
at

 2
1:

32
 2

0
A

ug
us

t 2
01

4

Andrew Clarke et al.

4.3. Encryption

For a query assurance methodology to be fully rel-
evant to all types of applications that are likely to
be needed within an external and distributed model,
compatibility with encrypted records is required1. In
our approach we allow encryption of the records.
The downside is the limitation of the types of queries
that can be processed.

For the data stored within these repositories to
be usable, a form of searchable encryption needs to
be provided. Previous work has suggested a num-
ber of different improvements14,15,16, but the core of
most approaches is trapdoor searchable symmetrical
encryption.

In our approach we implement a simple form of
searchable symmetrical encryption using a trapdoor
for the search keyword T (w,sw), given a keyword w
and the secret key sw.

As records are added to the repository the
T (w,sw) is generated for that record and stored in
the Index tree. When a query is processed, the client
encrypts the keyword, sends it to the server and the
server matches it against the previously stored trap-
door value. This allows the server to accurately an-
swer exact match queries without having knowledge
of the search keyword or the contents of the record.

4.4. Implementation Techniques

Query assurance implementation can either be client
or server driven, or a combination. In previous
work, typically probabilistic approaches have been
client driven and authenticated approaches have
been server driven. There has been limited inter-
est in client driven authenticated query assurance,
possibly due to the additional communication over-
heads. However, in our approach we consider that
a client driven authenticated approach is preferable
for the following reasons:

• Distribution - Verification data need not be stored
on the same server (or with the same service
provider) as the data repository. By separating the
two services, the likelihood of receiving matching
invalid data and verification objects is reduced.

• Optional - Clients could choose not to retrieve
the verification data, in situations where process-

ing/ battery/bandwidth are limited or efficiency
paramount. It would be difficult for the data
repository to discover this without collaborating
with the verification service provider.

• Provider Trust Levels - As the verification tree is
comparably small to that of the XML data, it may
be possible to store the verification data with a
higher QoS server.

• Scalability - As the XML and verification compo-
nents are separate servers, it would be possible to
have one verification server for a number of mir-
ror XML servers.

However, the associated downsides are that the
client will have to make two server connections and
queries rather than one. This has associated over-
heads. Further, it is necessary that the client do some
basic query translation to request the correct verifi-
cation data from the verification server.

4.4.1. Initialization

On adding an XML document to the database server,
Path and Index trees are created as in Fig. 2. The
Path tree contains signed time stamp at the root node
and read/modification counts. The leaf nodes of the
Path tree contain a hash of the XML data to which
it refers. Branches of the Path tree contain hashes of
their child elements.

Fig. 2. Verification Tree Structure

Published by Atlantis Press
 Copyright: the authors
 426

D
ow

nl
oa

de
d

by
 [

L
a

T
ro

be
 U

ni
ve

rs
ity

]
at

 2
1:

32
 2

0
A

ug
us

t 2
01

4

Secure XML Query Assurance

It is possible to change the depth and breadth of
this verification tree by adjusting the maximum child
nodes per branch. The leaves are sorted based on ab-
solute path, so elements are retrieved by path based
query.

In our approach, all XML files need a Path tree
for query assurance. If completeness proofs are re-
quired for value based searches, an Index tree would
be added. The Index tree contains a nested tree for
each search variable. Leaf nodes of the Index con-
tain the absolute path to the XML element. The
branches of the tree act in the same manner as the
Path tree, whereby the branches contain the hash
value of their children. As the Index tree contains
only the path of the XML element, it essentially
links to the Path tree. As the hash of the contents
is not contained in the Index tree, both index and
path verification data is required to validate a query.

4.4.2. Accessing

Fig. 3. Verification Tree Accessing

In our approach accessing is client driven. That is,
the client makes the XML query, and also an associ-
ated verification query. In the case of the verification
query, the server returns the verification object for
the requested item and boundary cases on either side
to provide completeness assurance as shown in Fig.
3. This verification data is then compared against
the XML query result. If the time stamp is valid,
the hash and digital signature can be verified. As the
verification object includes boundary values at either
end (border test nodes), the query result is verified as
accurate.

4.4.3. Updates

On updating of the XML data, two updates need to
be created - one for each server. The XML update
occurs as usual. In the verification update, the ele-
ment is changed in the Path tree and the parent recal-
culated until a signed node is reached. However, the
Index tree does not need to be recalculated on each
update, only in cases where:

(i) The exact path of an element changes.

(ii) The search value on which an element is in-
dexed changes.

This allows for cheaper updates and appends where
the value is not indexed. However, insertion and
deletion of elements would be more expensive.

4.4.4. Refreshing

In our approach, we consider that for keeping time
stamps fresh a master data owner model is relevant.
So, in systems where there are multiple data own-
ers, there is a single data owner responsible for re-
freshing the time stamps. However, any data owner
can update data and refresh time stamps when they
make a change. The process taken is that a list of
time stamped nodes are retrieved, the data owner re-
signs these nodes with a fresh time stamp, and then
the time stamp nodes are updated back into the tree.

4.4.5. Maintenance

Maintenance is an additional step that is not required
for query assurance. However, it allows for opti-
mization techniques to be adjusted on the verifica-
tion tree. It could be run as part of a scheduled
backup service or more often to optimize the veri-
fication trees to changing query habits. An example
of a Tree prior and post maintenance is shown in Fig.
4.

In our approach, during maintenance the hash
granularity can be increased or decreased based on
past usage. The expiry rate of time stamps is ad-
justed based on modification rates. Further, addi-
tional time stamped and digitally signed nodes are
created to optimize the verification object size - and

Published by Atlantis Press
 Copyright: the authors
 427

D
ow

nl
oa

de
d

by
 [

L
a

T
ro

be
 U

ni
ve

rs
ity

]
at

 2
1:

32
 2

0
A

ug
us

t 2
01

4

Andrew Clarke et al.

the children per branch can be adjusted to modify
the depth and breadth of the tree.

The maintenance process begins with the XML
documents being retrieved in their entirety along
with their associated Index/Path trees. The first ad-
justment is that of hash granularity. Based on over
reads and exact reads on the verification tree versus
the XML document that was recorded in the verifi-
cation data, the hash granularity is adjusted or kept
the same.

Fig. 4. Pre and Post Maintenance Tree Structure

Based on this approach, if the query habits
remain the same after a few maintenance runs,
the most efficient level of hash granularity can be
achieved. Further, if those habits later change, the
hash granularity will adjust.

The second stage of the maintenance process
is time stamp management. Modification rates are
compared to existing expiry rates on time stamps.
The goal is to set expiry rates at 10-20% lower

than that of the average time between modifica-
tions. Lower is preferred as it is expected that most
databases with have peak and trough times during a
cycle.

Finally, to increase efficiency, temporary time
stamps are added at branches nearby highly accessed
nodes. In this approach, the leaves of the verification
tree are traversed from first to last and any highly ac-
cessed nodes that occur within proximity are signed
at their common ancestor. Through this process, the
most common queries have a significantly smaller
data overhead than that of a random query due to
having to retrieve far less verification data. An ex-
ample of this change in structure is shown in Fig.
4

5. Experiment and evaluation

5.1. Experiment Setup

The test setup was conducted on a x3 AMD 710 with
3GB of RAM. The client and both server implemen-
tations were run on the one machine. To more ac-
curately simulate verification overheads in compari-
son to XML DB queries, a full featured native XML
database was utilized. In this case a Xindice data
collection17 running on a tomcat 6 server. A client
and verification server was developed in Java with
1.6.0 runtime library. The verification tree object is
a custom class built on top of the DefaultMutable-
TreeNode class. The tree objects loosely follow a
B+ tree structure - with the characteristics that the
tree is self balancing and all records are stored in
leaf nodes.

Additionally, to demonstrate the applicability of
this approach over an encrypted data set a key-value
store was used to store encrypted records - in this
case an Apache Cassandra database running as a
single node. This was acceptable as encrypting
records limit the types of queries that can be per-
formed, though this is minimized with the imple-
mentation of a searchable encryption16,15 approach.
As a result, there is no advantage to storing the en-
crypted records in a native XML database, and a
more streamlined database implementation can be
utilized.

To perform the encryption of the data a 128-bit

Published by Atlantis Press
 Copyright: the authors
 428

D
ow

nl
oa

de
d

by
 [

L
a

T
ro

be
 U

ni
ve

rs
ity

]
at

 2
1:

32
 2

0
A

ug
us

t 2
01

4

Secure XML Query Assurance

AES specification was used. To create the verifica-
tion trees and objects RSA encryption with a 1024
key length and SHA1 hashing were implemented.

5.1.1. Data setup

The data used in the experiment was of three distinct
types:

(i) The CIA World Fact Book18 is used to demon-
strate a mid sized data-centric XML file.

(ii) A collection of ten RSS documents to demon-
strate smaller document-centric XML files.

(iii) 100000 Continuity of Care (CCR) XML docu-
ments. The approximate total size of the CCR
files is 3 GB. Prior to storage these records are
encrypted using a 128-bit AES, encoded into
base64 then stored between CDATA tags in
XML format to avoid issues with unparseable
XML records.

The use of various sizes and types of XML files
is to demonstrate the effectiveness of the optimiza-
tion approach on common data types. Additionally,
the CIA World Fact Book and RSS documents are
stored in a Xindice data collection, while the en-
crypted CCR records are stored in an Apache Cas-
sandra database. CCR XML files were chosen to
illustrate a domain where query assurance across
encrypted data might be increasingly important1.
Additionally, XML files are often suggested as a
suitable format for distributed systems, such as
health information systems due to their potential for
interoperability2.

5.1.2. Query Setup

For the Xindice datasets, a range of different query
types are attempted. Path, exact match and range
search are conducted to give a more broad result.
The sample set that is used on the XML/verification
servers consists of a limited number of queries
performed hundreds of times for a total of 20000
queries performed on each XML data set. The sam-
ple queries are performed both pre and post main-
tenance to measure the improvement gained by the

query assurance optimization. As there are two
databases in use, and each database is queried both
pre and post maintenance, and by path and index
verification trees, the total number of queries per-
formed is 80000.

For the Cassandra dataset, since the records
are stored in an encrypted format, with trapdoor
searchable encryption implemented to provide ba-
sic query functionality, only exact match queries are
performed. In this case, two separate query sets
are conducted. Query Set 1 involved performing
500000 queries pre and post maintenance. This was
considered a best case scenario where the pre and
post maintenance queries are identical. In addition,
Query Set 2 involved performing 500000 queries pre
and post maintenance. However, the pre and post
maintenance queries were randomized to demon-
strate the effectiveness of the maintenance optimiza-
tion techniques even where there is no pattern to
client queries.

5.2. Initialization

Fig. 5. Xindice Verification Tree Setup Time

During our tests of the verification tree initializa-
tion time, we found overall that the setup time was
not significant as shown in Fig. 5. The verification
tree creation involved populating 10 path verifica-
tion trees and 10 index verification trees. The time
required to setup each index tree was reasonable in
comparison to that of the path verification. This is
due to the index tree population using some of the
resources of the path verification initialization. It
follows, that increasing the number of index veri-

Published by Atlantis Press
 Copyright: the authors
 429

D
ow

nl
oa

de
d

by
 [

L
a

T
ro

be
 U

ni
ve

rs
ity

]
at

 2
1:

32
 2

0
A

ug
us

t 2
01

4

Andrew Clarke et al.

fication trees would not be a major overhead growth
area. In our previous work6 we found the initial-
ization time increased depending on the variation in
hash granularity and further, there can be some im-
provement gained by increasing children per branch
as this leads to less branch splits during verification
tree initialization. However, in this implementation
we used fine granularity and a smaller number of
children per branch.

5.3. Client Query

After initialization of the Xindice verification trees,
the initial benchmark client queries were conducted.
Measurements were taken for data and CPU time.
It is shown in Fig. 6 that CPU time overhead to
verification object creation is not significant com-
pared to that already used by the XML database.
In total, initialization, verification and maintenance
were less than 10% of the Xindice query runtime
with initialization being the most significant of those
numbers at 7%. However, as shown in Fig. 7, the
data overheads were very significant compared to
the XML data returned - with an overall overhead
of 89.5% pre-maintenance reduced to 53.4% after
maintenance.

The trends whereby overheads increase as num-
ber of elements in the database increase are quite
clearly defined in Fig. 9. In a unexpected result, CIA
World Fact Book path verification data returned was
larger than the amount of XML data returned, which
emphasizes the potential inefficiencies of authenti-
cated query assurance.

Fig. 6. Xindice Experiment Computation Breakdown

The results for the Cassandra data sets also
showed a reduction in CPU time at 23.61% prior
to optimization and 15.4% (Fig. 8) after optimiza-
tion as a percentage of total query time. The average
query time over the 500000 queries performed dur-
ing the pre and post optimization phase was 2.01ms
and 1.93ms respectively.

Fig. 7. Xindice Verification data overheads

Fig. 8. Cassandra Experiment Computation Breakdown

5.4. Maintenance

The maintenance stage, which adds additional dig-
ital signatures and time stamps at lower branches
of the verification tree in proximity to high access
leaves, garnered the following results: The actual
execution time of the maintenance stage, though
quite short compared to the entire test run at 0.5%
of the runtime, would be too costly to perform in
real time. Further, the maintenance time increases as
the size of the database increases. This is expected
and acceptable because as shown in Section 5.5, the
larger databases have the most significant overhead

Published by Atlantis Press
 Copyright: the authors
 430

D
ow

nl
oa

de
d

by
 [

L
a

T
ro

be
 U

ni
ve

rs
ity

]
at

 2
1:

32
 2

0
A

ug
us

t 2
01

4

Secure XML Query Assurance

concerns and could benefit more from efficiency im-
provements.

5.5. Post Maintenance client Query

In this stage, a query set similar to that processed in
the initial benchmark was re-processed. We found
from our results Fig. 9 that there was an overall
verification data reduction of 59% for the Xindice
datasets. As expected the XML data retrieved re-
mained the same. In terms of individual break-
downs, the RSS collection had its overhead reduced
by 30.5%, the CIA World Fact Book by 46.5% and
the encrypted CCR files by 70.8% and 28.8% for
Query Set 1 and 2 respectively (Fig. 10). The best to
worst overhead goes from an initial 204% increase
to 111%. Further, the computational time was also
marginally improved by 1% in the Xindice datasets
and 8.21% for the Cassandra datasets but as the ver-
ification data query time was significantly less than
the XML data query, the overall runtime was not ef-
fectively changed.

Fig. 9. Xindice Maintenance Performance Comparison

Fig. 10. Cassandra Maintenance Performance Comparison

5.6. Discussion

Through our implementation we have shown that
it is possible to provide significant efficiency im-
provements to query assurance over XML through
the use of variable time stamps and hash granular-
ity. This is a dynamic optimization approach and
could be used in tandem with a more static opti-
mization through other related work. The balance
is that of long term global improvement of the entire
database from static approaches, compared to short
term small portion efficiency increases.

A further issue of this model suggested in this
work is the use of exact paths to map from Index
tree to Path trees. The use of exact paths means
that the trees in some circumstances display array
like qualities. That is, inserting or deleting elements
anywhere other than on the end of a sequence can be
quite expensive due to the need to also alter any fol-
lowing records in that same sequence. However, the
upside of using exact path to map between the trees
is that there are less required updates. As Index trees
only need to be updated when the exact path or the
index value changes. This allows for more relaxed
time stamps on the Index trees as updates are less
frequent - which further improves efficiency by al-
lowing for more temporary time stamps for the same
given amount of refreshing overhead.

The approach used in this paper assumes that to
some extent client usage habits will be pattern based.
This allows for optimization based on usage pattern
with weightings on the most active records. How-
ever, in the case of a random usage pattern, the ef-
fectiveness of this approach would be significantly
reduced as shown in the Cassandra implementation
example. So while still providing query assurance it
would do so in a more inefficient manner.

Also important and relating to our work, is that
computational time of verification and maintenance
was found to be not as crucial due to its relative
smaller values compared to that of the XML query
operations. This is an important distinction as it
prompted us to look into data overhead which has
more noticeable effect on the client and was an im-
portant and somewhat overlooked metric of query

Published by Atlantis Press
 Copyright: the authors
 431

D
ow

nl
oa

de
d

by
 [

L
a

T
ro

be
 U

ni
ve

rs
ity

]
at

 2
1:

32
 2

0
A

ug
us

t 2
01

4

Andrew Clarke et al.

assurance.
Further, the Cassandra results indicate that the

overhead cost of applying an authenticated query as-
surance model in combination with searchable en-
cryption is not detrimentally high. The use of CCR
XML files is well suited to demonstration of sen-
sitive information that may be stored. Addition-
ally, though CCR files are relatively large for indi-
vidual records, they occupy the middle ground of
health record types where medical imaging and re-
sults would be significantly larger.

Finally, there is the limitation on the decision
making data. In our study we used the read and
modification counts on the verification server to
make decisions on varying hash granularity and time
stamp placement and duration. Though it is sim-
ple to ensure the modification count integrity from
changes by a non privileged user through digitally
signing of such data, there is no practical way to
provide the same certainty for read counts as they
need to be updated by clients’ actions. Clients in
this model do not have access to re-sign the verifi-
cation tree. Our concession to this weakness was
to give higher weighting to modification counts over
read counts. However, there is the potential for ex-
ploitation of this to make the database behave in an
inefficient manner. The rational for this is limited
as it would also increase the load on the verification
server. In terms of ways to reduce or detect this form
of exploitation, auditing and then crosschecking data
between verification and XML servers to detect in-
consistencies is a possibility, but would be insuffi-
cient if the servers collaborated. A further approach
could be to collect opt-in data from a percentage of
users and extrapolate that as a predicted usage model
and detect aberrant behavior.

6. Conclusions and Future Work

This work explored the area of secure and efficient
query assurance in external and distributed XML
databases. Procedures to provide that assurance
while reducing data overheads compared to similar
approaches were investigated. In particular, an ex-
act path approach to storing verification data, and an
indexing scheme for verification with dynamic op-

timization through temporary time stamps and vari-
able levels of hash granularity were considered. Fur-
ther, time stamp creation and the issues involved
with read/modification counts were explored.

To gauge the effectiveness of this approach a
test implementation was constructed. The query
assurance tests were run along side a native XML
database (Xindice) to more accurately assess over-
heads. This implementation test was composed of
80000 queries performed over a range of different
sample files, ranging from a collection of small RSS
feeds to large XML files. Additionally, to show the
applicability of this approach to encrypted records
100000 CCR records were stored in a Cassandra
data store and queried 500000 times pre and post
maintenance through a keyword trapdoor encryption
modification to the verification tree. This allows for
the implementation to perform basic queries on the
encrypted data, while preserving the confidentiality
of the keyword and stored data.

It was of particular interest that our results
showed that the CPU time overheads of query assur-
ance were not significant compared to that of XML
queries. The results indicated that the most signif-
icant area of verification overheads would then be
data overhead. Further, our results showed that the
data overhead could be significantly reduced by the
use of temporary time stamps to optimize the veri-
fication tree to the queries it is performing. Reduc-
tions of as much as 70.8% occurred in large files.

In the future, an interesting study would be us-
ing the methods in this work with that of other ap-
proaches (embedding/nesting) in an adaptive and
self maintaining/balancing way that applies the
most efficient range of optimizations based on the
databases’ current type and usage, while historic us-
age patterns affect the modifications in an attempt to
predict and optimize for upcoming usage.

An extension of this is investigating the effect
that this verification approach has on more complex
FLWOR (FOR LET WHILE ORDER RETURN)
XQuery expressions. Previous work and this paper
have focused on path and range searches, rather than
on the effect of join type queries.

Finally, there remains the challenging future task
of implementating query assurance as part of a com-

Published by Atlantis Press
 Copyright: the authors
 432

D
ow

nl
oa

de
d

by
 [

L
a

T
ro

be
 U

ni
ve

rs
ity

]
at

 2
1:

32
 2

0
A

ug
us

t 2
01

4

Secure XML Query Assurance

plete approach to database security. This involves
the consideration of the other areas of external and
distributed database security: data confidentiality,
privacy, secure auditing and secure and efficient
storage.

References

1. A. Clarke and R. Steele, “Secure and reliable dis-
tributed health records: Achieving query assurance
across repositories of encrypted health data,” in
HICSS, IEEE Computer Society, 2012.

2. R. Steele, W. Gardner, D. Chandra, and T. S. Dil-
lon, “Framework and prototype for a secure xml-based
electronic health records system,” IJEH, vol. 3, no. 2,
pp. 151–174, 2007.

3. M. Xiey, H. Wang, J. Yin, and X. Meng, “Provid-
ing freshness guarantees for outsourced databases,”
in Proceedings of the 11th international confer-
ence on Extending database technology: Advances in
database technology, vol. 261, pp. 323–332, 2008.

4. V. H. Nguyen and T. K. Dang, “A novel solution to
query assurance verification for dynamic outsourced
xml databases,” Journal of Software, vol. 3, no. 4,
pp. 9–16, 2008.

5. K. Mouratidis, D. Sacharidis, and H. Pang, “Partially
materialized digest scheme: an efficient verification
method for outsourced databases,” Very Large Data
Base, vol. 18, no. 1, pp. 363–381, 2009.

6. A. Clarke and E. Pardede, “Outsourced xml database:
Query assurance optimization,” in AINA, pp. 1181–
1188, IEEE Computer Society, 2010.

7. S. Schmidt, R. Steele, T. S. Dillon, and E. Chang,
“Building a fuzzy trust network in unsupervised multi-
agent environments,” in OTM Workshops, vol. 3762
of Lecture Notes in Computer Science, pp. 816–825,
Springer, 2005.

8. M. Czapski and R. Steele, “Strengthening privacy
and confidentiality protection for electronic health
records,” in Web Technologies, Applications, and Ser-
vices (M. H. Hamza, ed.), pp. 35–40, IASTED/ACTA

Press, 2005.
9. G. T. Einar Mykletun, Maithili Narasimha, “Authen-

tication and integrity in outsourced databases,” ACM
Transactions on Storage (TOS), vol. 2, no. 2, pp. 107–
138, 2006.

10. P. T. Devanbu, M. Gertz, C. U. Martel, and S. G. Stub-
blebine, “Authentic third-party data publication,” in
Database Security, pp. 101–112, 2000.

11. M. Narasimha and G. Tsudik, “Authentication of out-
sourced databases using signature aggregation and
chaining,” in Lecture Notes in Computer Science
3882, pp. 420–436, 2006.

12. F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin,
“Dynamic authenticated index structures for out-
sourced databases,” in Special Interest Group on Man-
agement Of Data Conference (S. Chaudhuri, V. Hris-
tidis, and N. Polyzotis, eds.), pp. 121–132, ACM,
2006.

13. H. Wang, J. Yin, C.-S. Perng, and P. S. Yu, “Dual en-
cryption for query integrity assurance,” in Conference
on Information and Knowledge Management (J. G.
Shanahan, S. Amer-Yahia, I. Manolescu, Y. Zhang,
D. A. Evans, A. Kolcz, K.-S. Choi, and A. Chowd-
hury, eds.), pp. 863–872, ACM, 2008.

14. P. van Liesdonk, S. Sedghi, J. Doumen, P. H. Hartel,
and W. Jonker, “Computationally efficient searchable
symmetric encryption,” in Secure Data Management
(W. Jonker and M. Petkovic, eds.), vol. 6358 of Lec-
ture Notes in Computer Science, pp. 87–100, Springer,
2010.

15. I. R. Jeong, J. O. Kwon, D. Hong, and D. H. Lee,
“Searchable encryption with keyword-recoverability,”
IEICE Transactions, vol. 92-D, no. 5, pp. 1200–1203,
2009.

16. H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee,
“Trapdoor security in a searchable public-key encryp-
tion scheme with a designated tester,” Journal of Sys-
tems and Software, vol. 83, no. 5, pp. 763–771, 2010.

17. “Apache xindice.” http://xml.apache.org/xindice/,
2009.

18. “Sample dataset – cia factbook: Coun-
try data.” http://www.dbis.informatik.uni-
goettingen.de/lopix/lopix-mondial.html, 2009.

Published by Atlantis Press
 Copyright: the authors
 433

D
ow

nl
oa

de
d

by
 [

L
a

T
ro

be
 U

ni
ve

rs
ity

]
at

 2
1:

32
 2

0
A

ug
us

t 2
01

4

