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a b s t r a c t

The emergence of XML adoption as semi-structured data representation in multi-disciplinary domains
has highlighted the need to support the optimization of complex data retrieval processing. In a Big Data
environment, the need to speed up data retrieval processes has further grown significantly. In this paper,
we have adopted an optimization approach that takes into consideration the semantics of the dataset in
order to deal with the complexity of multi-disciplinary domains in Big Data, in particular when the data
is represented as XML documents. Our method particularly addresses a twig XML query (or a branched
path query), as it is one of themost costly query tasks due to the complexity of the join operation between
multiple paths. Our work focuses on optimizing the structural and the content part of XML queries
by presenting a method for indexing and processing XML data based on the concept of objects that is
formed from the semantic connectivity between XML data nodes. Our method performs object-based
data partitioning, which aims at leveraging the notion of frequently-accessed data subsets and putting
these subsets together into adjacent partitions. Then, it evaluates branched queries through two essential
components: (i) Structural and Content indexing, which use an object-based connection to construct
indices i.e. Schema Index, Data Index and Value Index; and (ii) query processing to produce the final
results in optimal time. At the end of this paper, a set of experimental results for the proposed approach
on a range of real and synthetic XML data, as well as a comparative study with other related work in
the area, are presented to demonstrate the effectiveness of our proposed method in terms of CPU cost,
matching and merging cost, scalability (size and number of branches) and total number of scanned elements.
Our evaluation demonstrates the benefit of the proposed index in terms of performance speed as well as
scalability which is critical in a large data repository.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The powerful ability of XML in describing and presenting data
has been recognized as the standard for electronic data interchange
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in multi-disciplinary domains [1–3]. The metadata in XML docu-
ments provides a semantically rich structure which can be lever-
aged for various information system applications. The metadata
also opens up opportunities to improve techniques to access and
process XML data.

In this paper, we focus on processing XML queries efficiently
by taking into consideration the semantic connectivity of the
underlying XML documents. In particular, we focus on XML twig
queries with or without value predicates. A twig query is a type
of query which accesses XML trees with multiple branches and
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Fig. 1. The system configuration.
this query requires complex processing due to the joins between
multiple paths.

A Naïve query processing by scanning the entire XML data to
search for a particular path will cause significant performance
degradation. Indexing schemes have been developed in recent
years to overcome this issue. Different XML data indexing and
query processing approaches have been proposed to support twig
queries. The previous XML data indices were classified into three
categories [4]. The first is path-based indices such as APEX [5]
and MDFB [6], which group nodes in data trees based on local
similarity and have an adjustable index structure depending on
the query workload. These indices need to deal with a huge index
size because its index keeps tracks of the forward and backward
paths to establish a supportive layer that can help in answering
twig queries effectively. The second is node-based indices, such
as TwigX-Guide [7], which index the position of each node within
the XML tree and then process the nodes by joining them when in
some cases; aggressive joins deteriorate the query performance.
The third is sequence-based indices such as ViST [8], PRIX [9]
and LCS-Trim [10], which evaluate queries based on sequence
matching after transforming both XML data and twig queries into
sequences. However, the third approach has a drawback, which
is the occurrence of false positive caused by sequence matching
instead of treematching. All the abovework focus on the structural
presentation of XML data (e.g. a sequence of nodes or a tree
pattern) rather than the semantic relationship between groups of
nodes (i.e. objects). Therefore, exploiting the semantic relationship
between XML data nodes to build an index scheme for twig query
processing is an ideal solution which has not been proposed in the
existing literature as yet.

The work presented in this paper is the ongoing work of a re-
search project on XML query optimization, which consists of three
stages (see Fig. 1). The first two stages can be considered as off-
line stages and the third is on-line stage. Stage one focuses on the
object-based partitioning methodology of XML data. Stage two fo-
cuses on the XML data indexing methodology. Stage three focuses
on the query processing method over indexed data. This paper
presents the second and third stage inmore detail and themethod-
ology of the first stage of the Object-based XML Data Partitioning
(OXDP) has been presented in [11,12]. Fig. 1 shows an overview of
our system configuration.

Our proposed indices in the second stage consist of three main
parts. The first part is the Schema Index; the second is the Data
Index; and the third is the Value Index. The construction phases of
the indices in the current stage are:
Phase 1: We build the Schema Index based on the object partitions
identified by the OXDP process. We tokenize each distinct element
tag to set up the Schema Index components.
Phase 2:We construct the Data Index components by grouping the
XML data within object partitions and we establish keys from the
Schema Index to the Data Index.
Phase 3:We then build the Value Index with knowledge of Schema
and the Data Index.

Then, in the third stage of our system, we proposed a query
processing method to handle indexed data. The query processor
can evaluate simple XML paths aswell as XML pathswith branches
and different value predicates.

This paper is organized as follows. Section 2 provides our mo-
tivation with a brief example that shows the utilization of the se-
mantics of XML in indexing and processing XML data to improve
the query performance. Also, it presents the importance of process-
ing value predicates in XML queries. The related work is reviewed
in Section 3. The preliminary knowledge is presented in Section 4.
We introduce our proposed indices in Section 5 and discuss the
processing method of XML queries in Section 6. Experimental re-
sults are provided in Section 7. Finally, we conclude the paper in
Section 8.

2. Our motivation and contributions

While most of the existing work does not consider the seman-
tics of XML data during the construction or processing of XML data,
our work actually exploits the semantics connectivity between
nodes to construct our indices. The incorporation of the semantic
features of index construction into the XML query processing ap-
proach will lead to an efficient pruning technique. This is because
the search space can be trimmed down to a group of data that fol-
lows certain semantics.

Q1 = ‘‘/purchaseOrder/ShipTo[city][state]/name/Fname’’

For instance, assumewehave a purchase order schema as shown in
Fig. 2 which describes a purchase order generated by home prod-
ucts ordering and a billing application [13] and we have Q1 as
above. Let say that this schema has two object partitions: one in-
cludes a ShipTo elementwith its descendants and another includes
a BillTo element with its descendants. Instead of accessing the two
partitions to find the answer to Q1, it is ideal to retrieve the answer
from a related portion of data. This action is possible if the index
is constructed semantically. Therefore, we introduce the concept
of objects in constructing and processing XML data. It will acceler-
ate the processing of XML queries by localizing the XML data into
a small and relevant portion of data.

In this paper, we tackle the issue of iteration on a large index
size to find matched trees, or matched sequences by introducing
the Schema Index. The Schema Index usually has a smaller index
size compared to an index built only based on the data. This will
help to find important keys within a small index size which is the
Schema Index built from the schema to find the answer from the
Data Index which is usually bigger since it is built from the data.

Q1a = ‘‘/purchaseOrder/ShipTo[city
= ‘Melbourne’and state = ‘VIC ’]/name/Fname’’.
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Fig. 2. Purchase order XML Schema.
In addition, we aim to improve the performance of queries
with a value predicate. Let us modify Q1 to Q1a to include value
predicates as above. This query is a combination of content and
structural constraints and it aims to find all customers who sent
item by shipment to Melbourne, Victoria. A particular customer
will be retrieved using the structural constraints of the query
and only a specific part of the customer’s information will be
finally retrieved utilizing the content constraints, which is also
known as a value predicate. It is not practical to query without
value predicates for transactional queries over a large collection
of data where each collection can contain up to millions or more
of kilobytes. Therefore, an efficient method to index content or
value is necessary to improve the performance of XMLquerieswith
value predicates. However, in order to address queries with value
predicates, content constraint alone is not enough. A knowledge
of the whole path query is also required since the value predicate
will not be standing alone without the existence of the whole path
query. The significant characteristics embedded within Q1a are:
• The underlying semantic structure between a set of intercon-

nected nodes.
• The path connectivity between each node.
• The content constraints of the predicates.

Therefore, it is important to take advantage of these query
characteristics in optimizing query performance. Since the nature
of XML data and schema structure is rich in semantics, identifying
and leveraging the semantic connectivity from the data and
schema in query processing are beneficial in improving query
performance.

We aim in this paper to achieve the following targets:
Construction design:
• Exploiting the semantics of XML Schema and data in building

our index.

Query processing:
• Introducing an Object-based intersection technique, which

trims the search space of a large data repository based on
the knowledge of structures and content derived from XML
Schema.
• Eliminating irrelevant portions of data of our index by discard-

ing unmatched paths and irrelevant objects.

In this paper we run different experiments to support ourmethod-
ology. We demonstrate by the experiments that our method im-
proves the query performance in terms of CPU cost including the
cost needed tomatch XML query patterns and the cost of joins. We
show that our method scales up efficiently when processing large
XML data size. We measured the scalability when processing a
querywith a different number of XML tree branches. An evaluation
of the search quality is undertaken to show the high level of preci-
sion and recall of the query results generated using our indices.
3. Related work

Broadly, a tree model captures the hierarchical structure of an
XML document. XPath or XQuery are determined by path expres-
sions to navigate the documents with various structures. The path
expressions of the query could constitute a tree structure, to be
called a twig query. Different research efforts have been spent on
relevant processing techniques of the path expressions [4,14,15].
Theirmethods rely on identifying the elementswhichmeet the tag
or path requirements, and then to expedite the complex processes,
they perform specially-designed encoding schemes, algorithms, or
data structures including indices or stacks. The search on XML data
can be classified into a structure search and a content search.

3.1. Structure search

Structure Index is used for structure searches to retrieve
matches on a query tree whose tags and relationships consist
of parent–child (P–C) relationships, ancestor–descendant (A–D)
relationships or a mixed type of relationships. This type of index
can be classified into a sequence-based index, a path-based index,
a node-based index and a semantic-based index.

3.1.1. Sequence-based index
A sequence-based index transforms both XML data and path

queries into a certain type of sequence, then performs sequence
matching to process the query sequence over the data sequence
in a top-down or bottom-up manner. In the top-down index, such
as the Virtual Suffix Tree (ViST ) [8], the process of querying XML
paths is amatter of finding subsequencematches of the path query
in XML data since each of them are transformed into structure-
encoded sequences. Each sequence consists of pairs of anXMLnode
and its prefix path within the XML data tree. In ViST, the structural
information of the data is integrated with the content into a se-
quence. One of the advantages of this method is its ability to han-
dle the query flexibly without join operations. However, it suffers
from the existence of false alarms in some query results because
a matched sequence is not necessarily a tree match. Also, its top-
down transformation affects the query processing negatively since
it produces a large number of paths needed to be evaluated during
the subsequence matching for non-contiguous tag names [16]. To
overcome the limitation of ViST, PRIX which is a bottom-up index,
has been proposed [9]. PRIX proposed a bottom-up transformation
approach where XML data and queries are transformed into a se-
quence of labels by the Prüfer’s transformationmethod. Thereafter,
subsequence matching is done on the sequence-based index. To
obtain efficient query results, a series of refinement phases, namely
(i) subsequence matching filtering, (ii) connectedness refinement,
(iii) structure refinement and (iv) leaf node refinement, needs to
be done after the subsequence matching.
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3.1.2. Path-based index
Another type of XML index is a path-based index which can be

classified into a path summary-based index and a bi-similarity-based
index.

The path summary-based index is based on summarizing the
paths of XML data to construct the index. The DataGuides index
[17,18] summarizes all the unique paths in XML data starting
from the root. There are two DataGuide index types: (i) a minimal
DataGuide which has less traversal paths, thus its index size is
compact, and (ii) a strong DataGuide where every label path in
the XML data is described exactly once in the DataGuides. Despite
the fact that DataGuide is a concise and accurate summary index
that reduces the portion of scanned data for queries, it lacks the
ability to answer branching queries. The Index Fabric [19] is a disk-
based extension of the Patricia trie with the same scaling property
but in a more balanced and optimized way for disk-based access.
Each path in the XML data is encoded using unique designators
in the Index Fabric. The designators are special characters which
need to be interpreted using designator dictionaries which are
used to map between designators and the element tags. The main
drawback of this method is that the information on non-leaf nodes
i.e. XML elements without data values, is not stored. Therefore,
partial matching queries cannot be handled [5]. ToXin [20] also
collects the values of XML data in a Value Index in addition to
summarizing all forward and backward paths of XML graphs in a
path index. The Value Index contains values and its corresponding
nodes. The path index consists of the index tree corresponding
to DataGuide [17] and an instance function for each edge of the
tree index. ToXin navigates down, navigates up and filters an XML
query to produce a set of nodes that match a set of query nodes
and relationships over value predicates. Since this approach uses
DataGuide and the edge approach to join paths, it does not keep
the hierarchy information to answer complex twig queries. Unlike
ToXin, CTree [21] does not provide only path summaries at the XML
document level but also at the group level. It also provides details
of child–parent links at the element-level. In addition, CTree [21]
hasmultiple value indices per each data type of XML data including
(List, Number, DTime). All the value indices support a search (value,
gid, input parameter) operationwhere gid indicates a certain group
of CTree. By determining gid, irrelevant groups are eliminated in
order to evaluate value predicates. Therefore, the I/O cost is low.
CTree can only efficiently handle XML documents with regular
groups. However, in the case of an XML document containing lots
of irregular groups, the index space will rapidly rise, due to the
need for element-level links for each element. The RootPath and
DataPath index [22] can evaluate XML twig queries with value
predicates to be tightly integratedwith a relational database query
processor. In the RootPath index, the prefixes of the root-to-leaf
paths are indexed. It is a concatenation of the leaf value and the
reverse of the schema path, and it returns the complete node ID
List. In contrast, the DataPath index stores all the sub-paths of
the root-to-leaf paths. In fact, the DataPath index is bigger than
RootPath, due to the duplication of the schema paths and the node
ID of its structure. The increased size of the index tends to rise
accordinglywith the increase in XML documents size. To overcome
this shortcoming, [22] explored lossless and lossy compression
techniques to reduce the index sizes.

The bi-similarity-based index is constructed based on bi-
similarity from the root element to the indexed element and
consists of two types, namely the forward bi-similarity index as
1-index, A(k)-index [23] and D(k)-index [24] and the forward and
backward bi-similarity index as F&B-index [25] and (F + B)K-
index [26]. In 1-index, XML data is partitioned into equivalence
classes based on its backward bi-similarity from the root element
to the indexed element. In 1-index, each root path represents only
one element in the graph. However, there is possibility that an el-
ement is reachable by multiple paths because the index may con-
tain similar root paths [16]. Another drawback of this method is
reported in [24] that the 1-index is considered inefficient when in-
dexed data is large and irregular due to its structural summaries
being too big. The A(k)-index is based on k-bi-similarity. XML data
elements are grouped together based on local similarity structure.
As the A(k)-index groups XML elements based on the incoming
paths of lengths up to k, it is able to efficiently evaluate path queries
of length no longer than k by the automaton evaluation method.
Otherwise, the validation step is necessary of nodes with false pos-
itives against the source data. The validation can be done by a re-
verse execution of the automaton on the data beginning with each
node with a false positive. Unlike the A(k)-index which is static
structure index, the D(k)-index is a dynamic structure index. It is
a generalization of the A(k)-index since it applies the concept of
bi-similarity. However, it has an adaptive structural summary for
general graph-structured data. Thismeans, it has the ability to sup-
port a given set of frequently used path expressions by adjusting
its structure based on the query workload. A smaller k can handle
shorter path expressions while a larger k handles longer path ex-
pressions. The experimental evaluations report that this adaptive
structural summary outperforms other static ones for evaluation
path queries. The F&B-index [25] is a ‘‘covering index’’ that is cre-
ated by inversing XML data edges to obtain structural summaries
of in-coming (forward) and out-going (backward) paths. In other
words, it partitions XML data elements into equivalence classes
based on their F&B-bi-similarity which is opposite to the 1-index,
the A(k)-index and theD(k)-indexwhich partition only on forward
bi-similarity. This approach is superior to other approaches due to
its ability to support branching path expression queries. However,
in practice, the size of the F&B index is huge andmay approach the
size of the base XML database itself. Therefore, on this large index,
there is definitely little query performance gain because it is similar
to evaluating a query on the base data. Optimization becomes an
essential research issue in the covering index because, for instance,
the evaluation of queries consisting of many ancestor–descendant
‘‘//’’ relationships remains expensive to perform with the F&B in-
dex. (F + B)K -index is an enhanced version of the F&B index be-
cause the size of the index is controlled by determining the value of
‘‘k’’ [26]. Limited classes of branching path queries can be covered
if the index has a low value of ‘‘k’’. However, the index size is re-
duced compared to the F&B index. On the other hand, a wide range
of query classes can be covered with a high value of ‘‘k’’. However,
the index size in this case is larger.

3.1.3. Node-based index
The third type of Structure Index is the node index which can

be further classified into the numbering-based index and multi-
dimension-based index.

The numbering-based index relies on labeling XML nodes to rep-
resent the position of nodes within a document. Several labeling
schemes have been proposed and surveyed in [27]. We reviewed
the indices that use the range-based sub-tree index, the regional-
based sub-tree index and the prefix-based labeling.

The range-based sub-tree index is used to determine the an-
cestor–descendant relationship in O(1) time between any pair of
XML elements. Dietz [28] proposed the first range based encod-
ing scheme based on tree traversal order. The proposition of this
method is that for two given nodes x and y of a tree T , x is an an-
cestor of y if and only if x occurs before y in the pre-order traversal
of T and after y in the post-order traversal. However, its drawback
is the need to re-compute the post-order and pre-order for each
new insertion. Therefore, Li andMoon in XISS [29] proposed a new
range-based index to overcome the limitations of Dietz’s method.
Their method is based on ⟨order, size⟩ to enable graceful node
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insertions. XISS is used ⟨order, size⟩ to create an element index,
attribute index, and Structure Index. The element and attribute
indices are implemented by B + −tree index with the name iden-
tifier (nid) as keys. The Structure Index stores a collection of linear
arrays, each ofwhich contains fixed-length records for all elements
and attributes. The other two components of the system are the
name index to store name strings and the value table to store val-
ues. To evaluate path queries, XISS decomposes a path query into
several simple paths, each of which generates an intermediate re-
sult that can be joined together by either EA-Join, EE-Join, or KC-
Join to obtain the final result. However, large intermediate results
lead to delay in the query performance when producing large fi-
nal results. Also, another limitation is when all the reserved spaces
have been consumed and a new node insertion is needed and, a
global reordering is required.

The regional-based sub-tree index consists of a pair of (start
position, end position) of the substring of XML data counted from
the start of the XML document on depth-first traversal. Zhang
et al. [30] utilized this sort of encoding to build an index using
inverted lists. Two types of indices are used to process containment
queries: (i) text index (T-index) and (ii) element index (E-index).
The occurrence of an element or a word is recorded in the inverted
list and indexed by its document number, position and depth. E-
index consists of ⟨docno, begin : end, level⟩ and T-index consists
of ⟨docno, wordno, level⟩. Despite the effectiveness of this labeling
scheme in determining the relationship betweennodes, it is unable
to handle frequent updates of XML data since it is based on the
assumption that the node positions are never changed once they
are assigned.

The prefix-based index is able to precisely indicate an ancestor
of a node on its path. It encodes each node on a certain path
from the root down to that node. Therefore, the relationship can
be identified between a given node x and its ancestor as y iff
label(y) is a prefix of label(x). For instance, 1.4.2 is the parent of
the child 1.4.2.8. Dewey labeling is an example of a prefix labeling
scheme that was initialized for general information classification.
Thereafter, [31] utilized the idea of Dewey labeling in XML data
as for each node, there is an associated vector of numbers that
represents the ID of the node in a path from the root to that node
by including its ancestors coding as a prefix and it also includes
the node number within its siblings of the same parent. The level
can be determined implicitly by counting the number of codes
separated by dots. [32] propose ORDPATH, which is similar to the
Dewey ID [31], but the ORDPATH label differs from the Dewey ID
in that the ORDPATH label uses only odd numbers in its coding and
reserves even numbers for further node insertions. Prefix-based
labels are much easier to update than range-based labels because
only the nodes in the sub-tree rooted at the following sibling need
to be updated when a new node is inserted [31]. However, when
the depth of a tree increases, the size of the label increases.

In the multi-dimension-based index in [33,34], the author
mapped every element node onto the two-dimension plane, using
its pre-order rank on the x-axis and, its post-order rank on the y-
axis. The context node and the four major axes of the XPath steps
(descendant, ancestor, following, and preceding) divide the two-
dimension space into four document regions, each corresponding
to one major axis. Given a context node, the process of calculating
one of its axes can be simplified as partitioning nodes on the two-
dimension plane and retrieving the nodes falling into the region
corresponding to the specific axis in a query. A new index struc-
ture, XPath Accelerator, has been proposed to support the multi-
dimension approach. Although it could be implemented using a
relational database system, it will benefit greatly if the underlying
database supports spatial indexing techniques such as R-tree. The
resulting set of nodes of the four major axes will be combined to
support all path expression axes. Optimizations can be performed
to further reduce the size of the document region in a query, though
the pre-rank and post-rank in some cases of node insertions have
to be re-calculated.
3.1.4. Semantic-based index
The only index that is semantic-based for processing value

predicates of twig queries is TwigTable [35]. To evaluate the
queries, TwigTable stores values in semantic-based relational tables
whereas the internal structure of XML documents is stored in in-
verted lists [35]. In this approach, structural join algorithm is used
to maintain the inverted list while the relational database pro-
cessor maintains the tables. The semantic-based design of the ta-
bles results in performance advantages of TwigTable. On the other
hand, the limitation of this approach is when a query does not have
value predicates, no semantics will be applied and merely a struc-
tural join algorithm is performed.

3.2. Content search (keyword search)

When users do not need to know the structure of an XML doc-
ument, the keyword-based search provides a friendly user envi-
ronment to query the document. However, the returned results
should ensure that they satisfy the structure of the XML docu-
ment. A keyword search is somehow similar to content retrieval
in IR technology. Various approaches have been proposed to iden-
tify relevant keyword matches. We divide these approaches into
three categories. The first is the LCA (Lowest Common Ancestor)-
based approach, which connects matches of the keyword and
uses different LCA techniques to identify relevant matches. A
number of LCA-based approaches have been proposed, including
XSEarch [36], MLCA [37], CVLCA [38], and MaxMatch [39]. The sec-
ond is the statistics-based approach, which determines relevant
matches based on the statistics of the data such as XReal [40]. The
third category isminimal tree/graph-based approach, which consid-
ers keyword matches in sub-trees/subgraphs of the data that con-
tains all or part of the query keywords [41,42].

3.3. The query process approaches

In this section, we review different proposed methods in pro-
cessing an XML query. The existing approaches are classified into
structural joins and holistic joins.

3.3.1. The structural join approach
The list-based approach [30] proposed the first structural joins

algorithm known as the MPMGJN (Multi-Predicate MerGeJoiN)
algorithm. In XML data, each mode is encoded with the region
labeling scheme i.e. (start, end, level). To evaluate a query as ‘‘a/b’’,
structural joins will be done by comparing two lists of nodes, aList
and bList consisting of occurrences of the nodes with tags a, b
respectively. Two cursors, cur_a and cur_b, pointing to the head
of the aList and bList respectively, are created. The core limitation
of this approach is accessing a node several times during the
matching [4,43].

The stack based approach [44] improved MPMGJN by utilizing a
single stack to operate binary structural join. To evaluate a query
‘‘a/b’’, the algorithm pushes the node with tag a into a stack and
when it finds the node tagged b, it tries to produce the result with
the existing node tagged a. The advantage of this approach is that
each node in the input list is scanned only once in contrast to MP-
MGJN. However, both the MPMGJN and the stack-tree approaches
decompose queries intomultiple binary relationshipswhichmight
generate large intermediate results.

3.3.2. The holistic joins approach
Unlike the structural joins approach, in the holistic joins ap-

proach, the query is evaluated holistically without decomposing it
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intomultiple binary relationships. Therefore, this approach can re-
duce the intermediary join results. [45] proposed novel approaches
called PathStack and TwigStack to minimize the intermediate re-
sults in the memory. In their approach, each individual query
node is associated with its own stack. Each node is pushed into
a stack with a pointer to the closest ancestor in the parent stack.
The structure of multiple stacks and pointers maintain the an-
cestor–descendant relationship easily. The difference between the
two methods is that PathStack is proposed for a linear path query;
while TwigStack, which is an extended version of PathStack aims
to evaluate a general twig query. The main limitation of their ap-
proach is that if relational data is published as XML data, there
will be an explosion of intermediate data because the stack-based
structure is not supported efficiently if the workload does not in-
volve document recursion [43]. The extension version of the holis-
tic approach has been proposed using pipelining, joining multiple
inverted lists at one time based on B+-tree indexes to eliminate in-
termediate results [46].

Twig2 Stack [47] employed hierarchical stack encoding to
evaluate a twig query and a Generalized Tree Pattern (GTP). For
each query node, a hierarchical stack HSq is maintained. HSq
contains a list of stack trees sorted in post-order. A stack tree is
an ordered tree whose nodes are a stack of data nodes. Each node
in the stack has a list of pointers to the top of the stacked nodes
matching the query relationship. Twig2Stack evaluates a query in
a bottom-up manner to reduce the double phase of TwigStack to
a single phase. [48] argued that the limitation of Twig2Stack is its
expensive memory usage, due to it keeping all query leaf matches
in memory until the tree is completely processed, as they could be
part of a match. In addition, there is a complication in maintaining
the ancestor–descendant relationship in a complex hierarchical
stack structure.

TJFast [49] evaluates a query on data encoded by extended
Dewey labeling which helps in deriving all element names along
the path from the root-to-the element. TJFast is a holistic twig join
algorithm that only needs to access the leaf node label of a query.
Therefore, disk access will be reduced compared to other holistic
approaches. However, TJFast possibly outputsmany path solutions
that do not contribute to any final answer [50].

Several indexing schemes have been proposed in order to
improve the performance of XML path queries. However, despite
the past efforts, the focus was mostly on utilizing an index to
assist in effectively processing the structural part in twig queries.
However, thesemethods do not distinguish between the structural
and content search. Leaf nodes with values and internal nodes
without values in XML data have different characteristics, thus,
processing the content in the sameway as processing the structure
will lead to expensive structural joins to search for content. Add
to this shortcoming, the semantic information of XML data has
been ignored in most previous studies for either value or non-
value nodes. Therefore, the limitation of the previous approaches
is that they scan unrelated portions of data that are semantically
related to the query. This work eliminates these shortcomings of
the past approaches by proposing a new XML data indexing and
query processing method which leverages the semantics of XML
data into its indexing construction for better query performance.

4. Preliminary knowledge

In this section, we cover some important knowledge that
needs to be clarified before presenting the proposed method. As
mentioned before, we deployed our previous work [11] as a pre-
processing step before indexing XML data. Thus, in the discussion
on object-basedXMLdata partitioning in this section,we introduce
the importance of employing the concept of object in our work
and we state the definitions of the object and the object partitions.
After this, themodels of XML data, Schema and queries are defined
as preliminary knowledge which needs to be understood before
introducing our indexing methods.
4.1. Object-based XML data partitioning

We adopt an object-based XML data partitioning technique,
called OXDP [11]. In particular, OXDP contains a set of rules that
can discover useful semantic information and identify objects
within an XML Schema. XML data has rich features and consists
of a variety of nested objects in its structure. Hierarchies are the
primary characteristics of XML data. Thus, OXDP preserves these
while enhancing its efficiency through optimization and semantic
improvement.

The XML semantics basically envisioned in our work relate to
the XML features that enable us to identify XML data based on the
meaning of their tags in addition to the relationships between the
tags. Such identification facilitates grouping and partitioning rel-
evant data in order to provide semantically structured data. Since
XML Schema or XSD represents XML objects and their semantic
structure and provides the ability to define and manipulate XML
document context, it has been selected as a feature of our pro-
posed partitioning method. Our semantic model of XML in OXDP,
called XTree, is very important particularly for object identifica-
tion, establishing logical relationships, associations, aggregations,
and generalizations before partitioning begins. Definitions 1 and 2
are used to build the concept of objects in our method.

Definition 1 (Object). An object of an XML document is defined
as a complex element type of XML Schema associated with that
document. In other words, an object is a non-leaf element that
consists of simple or other complex elements.

Definition 2 (Object-based Partition (Opart)). An Object-based
Partition is a partition of XML data that consists of a single object
or multiple or nested objects.

4.2. Schema and data model

Both XML Schema and data are modeled as large, ordered node-
labeled trees T (N, E) where each node nϵN corresponds to an XML
element and each edge between the nodes (ni, nj)ϵE is used to
identify the containment of node nj under ni in T . Each leaf node
lni of XML data contains a value denoted by value(lni).

Fig. 2 shows a purchase order schema which describes a pur-
chase order for a home products ordering and billing application
generated byW3C [13]. Fig. 3 shows the XML data tree correspond-
ing to the schema in Fig. 2. Both trees have elements connected by
edges but the data has values in each leaf node.

4.3. Query model

The focus of our work is on XML queries with or without
value predicates, either a simple path or with branches. An XML
query Q consists of nodes, labeled edges, and query predicate
Q (NQ , EQ , PQ ) where each node qiϵNQ represents a query tag
that adheres to a set of XML document elements. A labeled
edge between two nodes (qi, qj)ϵEQ indicates a structural con-
straint, which involves operators ‘‘/’’ and ‘‘//’’ denoting a ‘‘P–C’’
parent–child relationship and an ‘‘A–D’’ ancestor–descendant re-
lationship respectively. A query predicate is held between brack-
ets ‘‘[ ]’’ in query Q including other structural constraints and a
filter of content constraints. The filter of content constraints evalu-
ates true based on the corresponding XML document nodes. A list
of N-ary tuples is generated to produce a final result of matching
Q to the XML document D, where N is the number of query tags
and each tuple (n1, n2, . . . , nk) contains the XML document nodes
n1, n2, . . . , nk which identify the matched results of Q in T .
Query predicate: A query predicate PQ is a combination of all
or some of (NQ , EQ )|(NQ , EQ , VPQ )|(NQ , EQ , VPQ , PQ ) where each
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Fig. 3. Purchase order XML data.
qiϵNQ is a query tag within the predicate brackets, each eiϵEQ is
an edge between two query tags, and each viϵVPQ is a value that
can match the value of leaf node lni at the data model and PQ is
another predicate representing a branching point.

Consider a queryQ2 = ‘‘//shipTo[/state = ‘VIC ’]/name’’ where
‘‘shipTo’’, ‘‘state’’, ‘‘name’’, ‘‘/’’, ‘‘//’’ are structural constraints and
‘VIC’ is a content constraint. ‘‘[/state = ‘VIC ’]’’ in Q2 is called a
predicate which is a content constraint in this query and can be a
combination of content and structural constraints.

5. Theoretical framework object-based Content and Structure
XML indexing

This section explains the utilization of the semantics of the
structure and the content of XML data and schema during the
index construction phase. The Structure Index is introduced first
to maintain the structural constraints of XML queries. Thereafter,
we represent the Content Index which is proposed to improve the
performance of querying constant values within XML data. Our
methodology takes into account exploiting the semantic nature
of XML data to improve query performance. In order to achieve
this goal, we adopt OXDP as the pre-processing phase before
constructing the index. In this paper, we utilize such rules in
determining XML document’s objects and then partitioning the
data based on the discovered objects (refer to [11] for more detail).

As can be seen in Fig. 1, the system goes through three impor-
tant stages: (i) building the knowledge of XML Schema Objects
using OXDP as in [11], (ii) index construction where the system
leverages the notion of objects to construct its indices, namely the
Schema Index, the Data Index and the Value Index; and (iii) query
processing to process a user-query either a simple path query or a
twig query. The system utilizes the notion of objects to create an
XML index in order to trim the search space and gain better per-
formance for XML queries.

In Figs. 2 and 3, shipTo and its descendants are considered
Opart1 in our example and billTo and its descendants are consid-
ered Opart2. Afterwards, tokenizing all distinct elements of XML
Schema aswell as tokenizing all distinct value inside XMLdata take
the first place of constructing our indices. In a schema or a data, at-
tributes and their associated values are treated as simple elements
with values.

Definition 3 (Element Token (eT)). An element token is an identi-
fier that encodes each distinct element’s tag name of XML Schema.
Definition 4 (Value Token (vT)). A value token is an identifier that
indicates each distinct leaf element’s value of XML data.

In Fig. 2, each element of the schema is tokenized. For instance,
the schema elements: ‘‘purchaseOrder’’, ‘‘shipTo’’, ‘‘state’’ and
‘‘postcode’’ have ‘‘eT0’’, ‘‘eT1’’, ‘‘eT8’’ and ‘‘eT6’’ as their tokens
respectively. Element tokens represent all elements in the schema
or the data. In contrast, value tokens are created only from the data
with values. In Fig. 3, the values ‘‘Waterdale Road’’, ‘‘3081’’ and
‘‘VIC’’ are tokenized to ‘‘vT3’’, ‘‘vT4’’ and ‘‘vT6’’. Both eT and vT are
implemented as integers to eliminate the computational overhead
caused by the string comparisons.

Preliminaryworkswere published in [51,52], however thework
has been extended here with an integration model to prove the
scalability of the proposed indiceswith the increase of the data size
and the semantic connectivity of the underlying XML documents.
The following subsections describe the Structural indexing and the
Content indexing.

5.1. Structural indexing

Structure Indices, composed of the Schema Index and the Data
Index, are proposed mainly to cope with the structural part of
XML queries in an efficient way. These indices can evaluate ar-
bitrary query structures including ‘‘/’’ or ‘‘//’’ as well as branch-
ing queries. As mentioned above Fig. 2 shows the schema tree for
the PurchaseOrder schema and it consists of two object partitions
as outputs of OXDP. The object partitions are Object1 (purchase-
Order(shipTo(name(Fname, Lname), street, postcode, city, state)))
and Object2 (purchaseOrder(billTo(name(Fname, Lname), street,
postcode, city, state))).

5.1.1. Schema Index
A Schema Index consists of element tokens of the schema

associated with the Schema Object and the Path of Schema Object
that consists of the ID of the object-based partitions. Table 1 shows
the components of the Schema Index of the purchaseOrder schema.
The components of each index will be presented as the following
definitions.

Definition 5 (Schema Object (So)). A Schema Object is a set of
tokens including an element token of a parent element tag, which
is a complex element of XML Schema, alongside the element tokens
of its children tags. Consider So as the set of element tokens
So (eTparent , eTchild(1), . . . , eTchild(k)), where eTparent is the element
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Table 1
Schema Index for the PurchaseOrder schema.

Tokenized tags Schema object
Tags Tokens Tags Tokens So Tokens

PurchaseOrder eT0 Lname eT4 So1 eT0 eT1 eT9
ShipTo eT1 billTo eT9 So2 eT1 eT2 eT5 eT6
State eT8 Fname eT3 eT7 eT8
Name eT2 postcode eT6 So3 eT2 eT3 eT4
Street eT5 city eT7 So4 eT9 eT2 eT5 eT6

eT7 eT8

Path of schema object

Path Schema object Objects

P1 So1 So2 So3 Obj1
P2 So1 So2 Obj1
P3 So1 So4 So3 Obj2
P4 So1 So4 Obj2

Table 2
Data Index.

Data Index 1: path of data object

dPaths Path of So Path Of Do

dp1 So1 So2 So3 Do1 Do2 Do3
dp2 So1 So2 Do1 Do2
dp3 So1 So2 So3 Do1 Do4 Do5
dp4 So1 So2 Do1 Do4
dp5 So1 So4 So3 Do1 Do6 Do7
dp6 So1 So4 Do1 Do6

Data Index 2:

Opart 1

Data Object Tokens XML data position

Do1 eT0 eT1 eT1 eT1 0 1 9 17
Do2 eT1 eT2 eT5 eT6 eT7 eT8 1 2 5 6 7 8
Do3 eT2 eT3 eT4 2 3 4
Do4 eT1 eT2 eT5 eT6 eT7 eT8 9 10 13 14 15 16
Do5 eT2 eT3 eT4 10 11 12

Opart 2

Do6 eT9 eT2 eT5 eT6 eT7 eT8 17 18 21 22 23 24
Do7 eT2 eT3 eT4 18 19 20

token of the parent node, eTchild(i) is the element token of the parent
associated children within the schema and k is the number of the
parent’s children.

For example, Table 1, So1 in the Schema Object table consists
of the tag tokens that connect the root ‘‘purchaseOrder’’ with its
children (‘‘shipTo’’, ‘‘billTo’’) represented by tokens eT0, eT1 and
eT9. Only distinct So is stored in the Schema Object in Table 1. For
instance, So3, which represents ‘‘name’’ elements as the root with
its children, is stored once. It is important to highlight that in the
Schema Object, we represent the object as a parent and its direct
children tags and not its descendants. For instance, ‘‘name’’ has
‘‘Fname’’ and‘‘Lname’’ as its childrenwhich have not been included
in So2 and So4.

Definition 6. Path of Schema Object (p): The Path of Schema
Object is a set of So located on the same path from the root to a
leaf node of the XML Schema.

In the same table, the Path of Schema Object ‘‘p1’’ is a set of
SchemaObjects So1, So2, So3 located in the samepath from the root
‘‘purchaseOrder’’ to the leaf nodes ‘‘Fname’’ and ‘‘Lname’’ including
all elements in between such as ‘‘shipTo’’ and ‘‘name’’.

5.1.2. Data Index
Another index is the Data Index which consists of two indices.

In the first index (Data Index 1), each Path of Schema Object is
associated with all its corresponding Path of Data Object. It can be
represented by Definitions 6 and 8. The second index (Data Index
2) consists of all Data Objects ‘‘Do’’ grouped by each object partition
defined in 7. Table 2 shows the Data Index of purchaseOrder XML
data.

Definition 7 (Data Object Do). A Data Object is a pair of a set
of element tokens associated with a set of their positions inside
XML data. Consider Do (eTparent , eTchild(1), . . . , eTchild(k), Posparent ,
Poschild(1), . . . , Poschild(k)) where eTparent is the element token of
the parent node, eTchild(i) is the element token of the parent’s asso-
ciated children and k is the number of the parent’s children within
XML data.

For example, consider ‘‘Do2’’ in Table 2 as an example of theData
Object for So2 (eT1, eT2, eT5, eT6, eT7 and eT8), which corresponds
to the twig pattern (‘‘shipTo’’, ‘‘name’’, ‘‘street’’, ‘‘postcode’’, ‘‘city’’
and ‘‘state’’). The values 1, 2, 5, 6, 7 and 8 are identifiers of the
XML data position ofDo2. EachDo of the Data Object representing a
specific So of the Schema Object should contain the same sequence
of tokens determined by the So.

The positions of XML data are generated during a depth-first
traversal of the tree and a number is sequentially assigned at each
visit.

Definition 8 (Path of Data Object (dp)). A Path of Data Object is a
set of Do located on the same path from the root to a leaf node of
the XML data.

For instance, from Tables 1 and 2, ‘‘p1’’ consisting of ‘‘So1, So2,
So3’’ in the Schema Index is corresponds to twoPaths of DataObject
‘‘dp1’’ and ‘‘dp3’’ containing ‘‘Do1,Do2,Do3’’ and ‘‘Do1,Do4,Do5’’
as a set of Data Objects respectively.

5.1.3. Use cases: answering twig queries using the Structure Index
This section demonstrates how the Structure Index can be uti-

lized to process the structural part of twig queries using our object-
based approach. By applying our pruning strategy, the query
execution times are found to be more optimized in comparison to
earlier work in the area. This optimization technique will be de-
scribed later.
Using the Structure Index to handle P–C relationship. In Fig. 2, ‘‘Q1 =
billTo[/city][/postcode]’’ is used as an example to show how our
indexing technique can be utilized to retrieve the answer to XML
queries with P–C relationships from XML data. First of all, from
the Schema Index, the nodes of twig query Q1 are converted into
tokens using the tokenized tags as shown in Table 1. The query
nodes are ‘‘billTo’’, ‘‘city’’ and ‘‘postcode’’ and their tokens are eT9,
eT6, and eT7, respectively. eT9 is the root of So4 at the Schema
Index in Table 1. eT6 and eT7 are the children of eT9 in So4. As long
as eT6 and T7 with their parent eT9 are in the same Schema Object
So4, the Path of Schema Object that ends with So4 is P4 which is
the candidate path to assist in finding the data. Table 2 accesses
the Data Index using the Path of Schema Object which assists in
finding all Do(s) in the P4. It can be said that Path of Data Object
‘‘dp6’’ is a path of connected Data Objects and it is against the Path
of Schema Object P4. The answer in Table 2 will be retrieved from
Data Object2 by matching the tokens of Q1 with the tokens of the
XML data in Data Object. For instance, in Q1, dp6 consists of So1
and So4 as a Path of Schema Object and Do1Do6 as a Path of Data
Object at Data Index 1, each of which consists of tokens and XML
data position in Data Index 2. As a result, eT9, eT6, and eT7 have
one answer in XML data which is 17, 22 and 23.
Using the Structure Index to handle ancestor–descendant (A–D)
relationship. In some cases, there is a need to navigate XML
data to answer a query with A–D relationships. Our method is
able to handle this case more efficiently. In Fig. 2, the Q2 =
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Table 3
Schema Object Dictionary.

Token (Path of Schema Object, Object)

eT1 (P1,Object1)(P2,Object1)
eT2 (P1,Object1)(P2,Object1)(P3,Object2)(P4,Object2)
eT3 (P1,Object1)(P3,Object2)
eT4 (P1,Object1)(P3,Object2)

shipTo[//Fname][//Lname] is used to demonstrate our technique
handling of A–D relationship. eT1, eT3 and eT4 are the tokens of
Q2 tags i.e.‘‘shipTo’’, ‘‘Fname’’ and ‘‘Lname’’, respectively. eT1 is the
root of So2: eT1 eT2 eT5 eT6 eT7 eT8 in Table 1. It can be observed
that So2 is in P1 and P2 in the Path of Schema Object.We search the
descendant Schema Objects So3 to find eT3 and eT4. Therefore, the
candidate path is P1. It can be seen that Path of the Schema Object
connects all SchemaObjectswhich are the twig patterns in the data
at the Schema Index and Path of Data Object does the same job in
XML data. Similar to use case 1, the Path of Schema Object ‘‘P1’’ is
utilized to access the desired XML data positions. In the Data Index
1, ‘‘P1’’, which consists of So1So2So3, is equivalent to dp1, dp3, dp5
which consist of Do1Do2Do3,Do1Do4Do5 and Do1Do6Do7 respec-
tively. Thereafter, the data will be retrieved from the Data Index.
The produced results should be 1 3 4, 9 11 12, and 17 19 20.

5.1.4. Optimization phase of the Schema Index
In order to speed up index processing further, we aim to avoid a

large number of joins in the Schema Index to retrieve the targeted
Path of Schema Object; the Schema Object Dictionary (SoDic) in
Definition 9 is proposed to link the tokenized tags, the Schema
Object and the Path of Schema Object as an optimized step in
processing the Schema Index. SoDic reduces the number of Tokens,
So and Path of So required for joining process. It is achieved by
pruning SoDic based on the intersection of object IDs.

Definition 9. Schema Object Dictionary (SoDic) is an optimized
dictionary for the Schema indices, consists of a combination of
Tokenized Tags, Schema Object and Path of So. It links each token
with all possible Paths of So and the object onwhich eachpath ends.
SoDic is represented as ‘‘(eT, (p, Opart))’’ where ‘‘eT’’ is the element
token, ‘‘p’’ is the Path of Schema Object and ‘‘Opart’’ is the partition
ID where the element exists.

Schema Object Dictionary in Table 3 consists of element tokens of
the Schema associated with a set of pairs consisting of the Paths of
Schema Object and ID of the object-based partitions. For instance,
eT3, which is a token element of Fname, exists in P1 that is in Opart
1 and also exists in Opart 2 in P3. In the case of the element ‘‘name’’,
it exists in Object1 at P1 and P2 and in Object2 at P3 and P4. If we
would like to answer the path query: ‘‘name/Fname’’, the Object-
based intersection process will be introduced in Section 6.2. It will
chose candidates P1 and P3 for further processing as explained in
more detail in the query processing Section 6.

The components of the Structure Index with the applicable use
cases were introduced in the current section. We also showed
how our method can process P–C and A–D relationships. Then, the
Schema Object Dictionary was proposed as an optimization step
to accelerate the search process at the Schema Index. The next
section is a description of the Value Index that is used for the
content searching of XML data. Note that even in the case when
XML Schema is unavailable, our method is still effective, but we
need to scan the document once to obtain the distinct structure of
the data to build the Schema Index and then scan it again to build
the Data Index.
5.2. Content indexing

To index the content of XML data, the Value Index is proposed.
The Value Index is built from the Schema Index, the Data Index and
XML data. It keeps the semantic connectivity between the nodes
of XML data to produce an efficient performance for a query with
value predicates. The construction of the Value Index begins with
tokenizing all values and storing them according to their schema
design. Secondly, the index stores all the value tokens with their
corresponding Data Objects according to their data context.

As can be seen in Fig. 4, the Value Index consists of all the object
partition identifiers associated with a set of the Path of Schema
Object. Each path contains all the element tokens of the leaf nodes
only. The value tokens of the corresponding element token are
associated with their Data Objects.

Definition 10. Consider a Value Index as VI = Opart1, . . . ,Opartk
where Oparti is an object partition identifier and k is the number of
object partitions. Consider for each object partition identifier of VI
as Oparti = Leaf (p1), . . . , Leaf (pm) where each Leaf (pj) is a Path
of Schema Object exists in Oparti and m is the number of the Path
of Schema Object. Let Leaf (pj) = eT1, . . . , eTn is a Path of Schema
Object consisting of a set of tokens of leaf elements in the XML data
and n is the total number of element tokens. For each eTi, there is a
set of value tokens associated with its corresponding Data Objects
eTi = ⟨vT1, {Do1, . . . ,Don}⟩, . . . , ⟨vTy, {Do1, . . . ,Don}⟩ where y is
the number of value tokens and n is the number of Data Objects
per each value tokens.

Fig. 4 depicts the Value Index in only ‘‘Opart1’’. The rest of the
partitions will have similar representation. ‘‘Opart1’’ has ‘‘p1’’ and
‘‘p2’’ as its Path of Schema Object where each of them has the
tokens of the leaf elements ‘‘eT3, eT4’’ and ‘‘eT5, eT6, eT7, eT8’’
respectively. It can be seen that ‘‘eT2’’ in ‘‘p2’’ was not considered
since it is an element token of non-leaf nodes. The last level of this
index is the association of the value tokens and its associated Data
Objects ⟨vT1,Do3⟩ and ⟨vT7,Do5⟩ depicted in the same figure.

The redundancy of the data within an XML document increases
the index size inmost of the previousworks. In our index, this issue
has been taken into consideration as shown by Remark 1.

Remark 1. There is a single value token for all matched values
located in the same object partition, the same Path of Schema
Object and with the same element tokens.

By applying Remark 1, we save memory and reduce the search
time. It will be more practical for data that often has a redundancy.
For instance, on a small scale, let us say if purchaseOrder XML
data has 10 shipTo names with the same shipTo address, it is more
precise to ignore the redundant data of the address and record the
address only once. On a large scale, this redundancywill negatively
affect the performance of a query processed over the index. It is
important to highlight thatDataObjects associatedwith each value
tokenwill assign the position of that value’s parent nodewithin the
data as the Definition 7. This feature will improve the efficiency
of processing the query by trimming the search space in the Data
Index later.

5.2.1. Use case: answering a query using the Value Index
With both the Schema Index and the Data Index, either single-

path queries or branching queries can be answered as discussed
before. In the following example, we can see the difference be-
tween evaluating the query with or without value predicates. For
instance, consider Q3 = ‘‘/purchaseOrder/shipTo[/street][/state]
is a query without the value predicate. The element tokens of the
query nodes are ‘‘eT0,‘‘eT1, ‘‘eT5 and ‘‘eT8. From the Schema In-
dex,‘‘eT0 is associatedwith (p1, Opart1), (p2, Opart1), (p3, Opart2),
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Fig. 4. Value Index.
(p4, Opart2), eT1 is associated with (p1, Opart1), (p2, Opart1) and
eT5 and eT8 are associated with (p2, Opart1). To trim the search
space, we undertake the object-based intersection on Opart be-
tween ‘‘eT0 and ‘‘eT1, then between the intersected result and each
child of ‘‘eT1 separately i.e. ‘‘eT5 and ‘‘eT8. The final result from the
Schema Index will be (p2, Opart1). Then, from the Data Index in
Table 2, ‘‘dp2, ‘‘dp4 and ‘‘dp6 are retrieved based on the ‘‘p2 of the
Schema Index in Table 1. Since ‘‘dp2, ‘‘dp6 and ‘‘dp4 consist of a set
of Data Objects, the position of the query nodes will be retrieved
from the Data Objects, which are located in Opart1, by matching
the query element tokens with the element tokens of the Data Ob-
jects. The final results of the query would be ‘‘0, 1, 5, 8’’, ‘‘0, 9, 13,
16’’ and ‘‘0, 17, 21, 24’’ as can be seen from Fig. 3 and Table 2.

The Value Index in conjunction with Structure Indices can be
used to evaluate arbitrary queries with different value predicates
such as a simple value predicate, a single path ending with value
predicates or a branched path ending with value predicates. The
functionality of the Value Index will be discussed using this part
of the previous query of Q3 ‘‘shipTo[/street = ‘‘WaterdaleRd. To
evaluate this sort of query, we begin by performing the evaluation
of the values before processing the structural part. In doing so, we
reduce the total number of scanned elements because the Value
Index groups values of an XML document within objects. By ap-
plying this semantic-based technique, the search will be trimmed
semantically based on each object. In the given query, the Schema
Index of ‘‘street’’ is eT5 associated with (p2, Opart1). This means
that only Opart1 needs to be accessed. In addition, the index adds
the Path of Schema Object as identifiers that assist in decreasing
the search space of the values. In our example, the search spacewill
be trimmed to those that have ‘‘p2’’ within the partition ‘‘Opart1’’.
Another advantage is that instead of preceding an aggressive string
search looking formatching values of the query condition, element
tokens will eliminate irrelevant values. Thus, the condition ‘Wa-
terdale Rd’ will be mapped to its value token and then the token
will be looked at from eT5 without the need to scan all the value
tokens within the path ‘‘p2’’. The output of this index is the value
token, which is ‘‘vT3’’ in the query, leading us to the right Data Ob-
ject which is Do2. The benefit in finding the Data Objects, i.e.‘‘Do2’’,
is that only relatedData Objectswill visit theData Index to produce
the final results.

In summary, the proposed indices have four features to facili-
tate the evaluation of twig queries in an optimum execution time.
The indices are able to: (i) preserve the details of parent–children
elements through the objects; (ii) preserve the details of all ob-
jects located in each path of the schema and data as in the Path of
Schema Object and the Path of Data Object; (ii) partition and keep
links between interconnected data based on object-based seman-
tics and (iv) deploy the concept of object in evaluating XML queries
with and without value predicates.

6. Query processing

The index construction takes place before the actual com-
mencement of query processing. This section details the algo-
rithms that process queries based on the concept of objects. It
Fig. 5. Overview of the system algorithms.

shows how a twig query is constructed to build the structure of
the root and children. Thereafter, it presents query processing al-
gorithms and how they are interconnected with each other.

6.1. Query construction

A method called TreeQueryBuilder is invoked when a twig
query is started. TreeQueryBuilder is used to analyze a user-
entry query into nodes and identify parent and children nodes.
A branched query is constructed into query nodes, each of which
consists of a root tag, a root token and its children’s tags and to-
kens. Twig query nodes are presented in our algorithm with the
following definition.

Definition 11. Twig query nodes (Tqn) are a set of nodes associ-
ated with their token and represented as Tqn (nroot , n1, . . . , nk,
eTroot , eT1, . . . , eTm), where nroot is the twig root node tag, each ni
is a child of nroot , k is the number of children in this twig and eTj is
the token of the node ni and m is the number of children tokens.

6.2. Query process algorithms

Our algorithm ‘‘ProcessQuery’’ is a recursive function decom-
posing a branched path into multiple single paths. An overall view
of the main algorithm and its interaction with other functions are
shown in Fig. 5 and Algorithm 1. The algorithm starts by apply-
ing the intersection based on the objects from the Schema Object
Dictionary ‘‘SoDic ’’ of all query nodes ‘‘qNode’’ located on the same
query path at line 13. This intersection process will end up with
an intersected SoDic among all the query nodes within the path to
help us use the information of the Path of Schema Object ‘‘p’’ and
the object ‘‘Opart’’ where the search will be conducted in the next
step. Then, at lines 4–8, it evaluates the path ending with a value
predicate using the function ‘‘EvaluateContent ’’ and the path with-
out a value predicate is evaluated by ‘‘EvaluateStructure’’. Finally,
‘‘MergeResult ’’ will be invoked at line 20 to merge the results after
finding them by the evaluation algorithms.
Object-based intersection. In order to find the semantic connectivity
between XML query nodes, the object-based intersection is
invoked by the main method. The Intersection method, as shown
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Input: qNode, c_SI ‘‘current Schema Index’’, path, depth
Output: Query nodes position within the data

1 if ¬qNode.Children then
2 path.Add(qNode);
3 i_SI← Intersect(c_SI,SchemaIndex[qNode]);

foreach p of i_SI do
4 if qNode.ValuePredicate then
5 xNums← EvaluateContent(p,path,Opart)
6 else
7 xNums← EvaluateStructure(p,path,Opart);
8 end
9 res.Add(xNums);

10 end
11 return res;
12 end
13 i_SI← Intersect(c_SI, SchemaIndex[qNode]);
14 firstOccurrence← true;
15 path.Add(qNode);
16 foreach c in qNode.Children do
17 temp← ProcessQuery(c, i_SI, path, depth+1);

if firstOccurrence then
18 result← temp; firstOccurrence← false;
19 else
20 result←MergeResult(result, temp, depth);
21 end
22 end
23 return result;

Algorithm 1: ProcessQuery

Input: SoDic , SoDictionary
Output: iRs

1 foreach SoD in SoDic do
2 if ! SoDictionary.Contains(SoD.object) then
3 continue;
4 end
5 iRs.Add(SoD.object );

temp=SoDictionary[object];
6 foreach So in SoD.PathOfSo do
7 if temp.Contains(So) then
8 iRs[object].Add(So);
9 end

10 end
11 end
12 return iRs

Algorithm 2: Object-based intersection

Fig. 6. Object-based intersection.

in Algorithm 2, is done between the query nodes of each root-to-
leaf path. The first step of the algorithm is to intersect SoDic of the
query rootwith SoDic of thewhole data. This scenario handles cases
of parent–child (P–C) and ancestor–descendant (A–D) edges inside
the twig query aswell as the links between objects since the Path of
SchemaObject keeps the interconnectivity between objectswithin
a partition and among partitions. Fig. 6 is an example which shows
how the intersection is performed, based on the concept of objects.
The example has a branched path query:shipTo[/Fname][/Lname].
Processing this query starts by searching inside SoDic using the
root of the query, which is ‘‘shipTo’’. The query is split into
‘‘shipTo//Fname’’ and ‘‘shipTo//Lname’’. Table 3 shows SoDic of
each query node. Each SoDic of the child/descendant query nodes
is intersected with SoDic of its parent/ancestor node. Fig. 6 shows
the intersection between SoDic[shipTo] and SoDic[Fname] and the
intersection between SoDic[shipTo] and SoDic[Lname]. The final
result provides the candidate Path of Schema Object which is
considered a key to access the Data Index to trim the search
space, resulting in an accelerated query process. The search on the
Schema Index is much faster than on the Data Index because the
Schema Index is built fromXML Schema and its size is smaller than
the Data Index built from XML data.
Content and structure evaluation. After the intersection process is
complete, both the EvaluateContent and EvaluateStructure search
inside the Data Index to find XML node positions within XML data.
Query paths ending with a value predicate are evaluated by the
function ‘‘EvaluateContent’’ and others without a value predicate
are evaluated by ‘‘EvaluateStructure’’. These two functions are
independent of each other, i.e. the whole path can be processed
completely by only one of them without the need for the other.
The difference between them is that EvaluateContent utilizes the
Value Index to find the candidate Data Objects which hold the
condition of the value predicate before proceeding the structural
search. Thus, we can say that EvaluateStructure can do only the
structural search whereas EvaluateContent can do both structural
and content search. The main advantage of EvaluateContent is its
capability to trim the search space of the scanned elements by
searching of query values before the query structure. The details of
EvaluateContent will be shown later. After evaluating the content
and structure of the query and obtaining the XML nodes positions,
the result will be merged through MergeResult which keeps the
structural order of the node and produces final results.
EvaluateContent. Algorithm 3 can perform two main functionali-
ties. The first is the content search which starts from line 1 and
then embeds the structural search from line 8, continuing with Al-
gorithm 5 at line 13. The content search uses the Value Index to
retrieve only the participating Data Objects by filtering the value
predicate using the information coming from the Schema Index as
‘‘p’’ and ‘‘Opart’’. After this, a structural searchwill be done on these
XML nodes that exist within the participated Data Objects. At line
8, it goes through the related portion of the first the Data Index that
matches ‘‘p’’ to check the last Do of the ‘‘dp’’ if it is matched with
Do coming from the Value Index as line 10. The search space is nar-
rowed down to these Path of Data Object ‘‘dp’’ that endwith thatDo
of the Value Index. Then, continuing with Algorithm 5, each Do of
Data Index 2 will be visited with regarding to Do of Data Index 1 as
in line 2. It is well known that each Do consists of the tokens of the
nodes associated with their positions. At lines 4–5, if a query node
token is matched with a node token of Do, its position is added to a
temporal result collector. Once the leaf node of the query reaches
line 18, the temporal result will be added to the list of the final re-
sults.
EvaluateStructure. In Algorithm 4, the structural part of a path
query is evaluated. At line 1, all the Paths of Data Object are
retrieved from the Data Index 1. These paths are matched with the
Path of Schema Object from the object-based intersection on the
Schema Index. Then, the algorithm manipulates each Path of Data
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Input: p:‘‘Path Of Schema Object’’, quP: ‘‘query path’’, Opart:
‘‘Object partitions’’

Output: XML nodes positions
1 foreach viObject in ValueIndex[OPart] do
2 viPath = viObject[p];
3 viToken = viPath[quP[quP.Count-1].Token];
4 if !viToken[quP[quP.Count-1].vPred] then

continue;
qv= quP[quP.Count-1].vPred;

5 for vTi ϵ viToken[qv] do
6 d = viToken[qv][i];
7 PathsOfDo = DataIndex1[p];
8 foreach dp in PathsOfDo do
9 if dp[dp.Count-1] != d then

continue;
TmpR = new List (); k = 0;

10 for Doj ϵ dp do
11 Continue Algorithm 5;
12 end
13 if (Rt .Count=quP.Count) Result.Add(Rt );
14 end
15 end
16 end
17 return Result;

Algorithm 3: EvaluateContent

Object to obtain the participating Data Object starting from line
3. Then, using Algorithm 5, which is an extension of Algorithm 4,
Data Objects will be retrieved from the participating objects from
Data Index 2. Thereafter, each query node token will be checked
with Data Objects’ tokens to find the position of XML nodes. This
function assists in eliminating non-participating paths and objects,
thus, the search space is reduced.

Input: p:‘‘Path Of Schema Object’’, quP: ‘‘query path’’, Opart:
‘‘Object partitions’’

Output: XML nodes positions
1 PathsOfDo = DataIndex1[p];
2 foreach dp in PathsOfDo do
3 for Doj ϵ dp do
4 Continue Algorithm 5;
5 end
6 if (Rt .Count=quP.Count) Result.Add(Rt );
7 end
8 return Result;

Algorithm 4: EvaluateStructure

Linking objects. Our method has the ability to link object partitions
should the query requires so. This can be done by the object-
based intersection method which assists in preserving correctness
when linking the object partitions. Practically, most XML queries
require access to a single partition but in this technique, we aim
to let our indexing and processing method fulfill different query
requirements.

For instance, Fig. 7 and Table 4 show a simple example of XML
data partitioned into two nested objects. This example has been
chosen to elaborate the linking technique between partitions of
nested objects. Our running example, purchaseOrder, does not
have this structure type. Object2 of Fig. 7 is nested from Object1.

To do the link between partitions, a track of all siblings with the
same parent is kept as (‘‘A’’, ‘‘B’’), (‘‘B’’, ‘‘C’’, ‘‘E’’)(‘‘D’’, ‘‘F’’, ‘‘G’’), and
a track of all twigs in the same path from the root to the leaf also
is kept (‘‘A’’, ‘‘B’’)(‘‘A’’, ‘‘B’’, ‘‘D’’) where D is a nested object of B. If
the query ‘‘B[/C][//F]’’ is executed, it can be seen that B and C are in
object2 and D is in object3. Also A is located in So1 and B is located
in So1 and So2 and D is located in So3. The path which connects
So1 with So2 and So2 with So3, is ‘‘P2’’. Thus, this path connects
the object2 with the object3. Our method is more efficient when
querying from one object partition. However, this example shows
that our proposed idea can work effectively even when the query
is evaluated from different object partitions.

1 object=DataIndex2[Opart or viObject];
2 foreach doϵ object[Doj ] do
3 for eTi ϵ do.Tokens & k < quP.Count do
4 if eTi=quP[k].Token then
5 Rt .Add(do.Pos[eTi]);
6 if k > 0 then
7 if quP[k].Tag[0] != ’/’ then
8 yp=nDepth[Rt [Rt .Count-1]];
9 yc=nDepth[Rt [Rt .Count-2]];

10 if yp != yc+1 then
11 Rt .Remove(Rt .Count-1);
12 continue;
13 end
14 end
15 end
16 k++;
17 if k=quP.Count&quP[k-1].leaf then
18 if Rt .Count=quP.Count then
19 R.Add(new (Rt ));
20 end
21 Rt .RemoveAt(Rt .Count-1);
22 k- -;
23 end
24 if k=quP.Count ∥ quP[k].leaf then

break;;
25 end
26 if !quP[k].leaf then break;;
27 end
28 end

Algorithm 5: Find matched element tokens

In summary, our index leverages the advantage of the semantic
workload of queries during the construction of its indices. This
characteristic using XML data partitions coupled with an efficient
linking technique among partitions to process queries will have a
significant impact on the performance of XML queries. From this
point of view, it is known that not all parts, called objects in this
paper, of XML data are equal in ‘‘access rate’’; some objects are
more frequently used than others. Therefore, it is obvious that the
‘‘access rate’’ to some index nodes is highly likely to vary, because
of their relativity to the position of the index structure. Ourmethod
utilizes the object-based intersection in addition to its ability to
discard irrelevant objects and the Path of Data Object to reduce
query response time.

7. Experimental results

7.1. Experimental environment setup

A prototype system, including all the algorithms of our
proposedmethod, was implemented using C#.Net. All XML indices
in this paper were loaded into RAM before running the queries,
thus the IO cost of reading the index data is not required. All the



224 N.S. Alghamdi et al. / Future Generation Computer Systems 37 (2014) 212–231
Fig. 7. Linking technique.

Table 4
Illustration of linking technique.

E eT So Tokens

A eT1 So1 eT1 eT2
B eT2 So2 eT2 eT3 eT4 eT5
C eT3 So3 eT4 eT6 eT7
D eT4
E eT5 Paths Path of So
F eT6 P1 So1 So2
G eT7 P2 So1 So2 So3

Table 5
Different characteristics of each dataset.

Parameter DBLP Auction Sigmod Yahoo

# Nodes 3332131 157 11527 30210
Depth max. 6 5 6 5
# Fan-out 22 5 4 5
# Distinct E 36 32 11 32
Opart 8 2 2 2

experiments were conducted on an Intel Core 3.2 GHz P–C with
6.00 G RAM running Windows 7.

In order to study the performance of our Structure Index in
processing XML queries, we compare it with the state-of-the-
art TwigX-Guide [7]. TwigX-Guide has outperformed other twig
querying systems, taking advantage of both the path summary in
DataGuide [17] for efficient path queries with parent–child edges
and the region encoding in TwigStack [45] in its ability to process
twig queries. TwigX-Guide outperformed other well known
methods, such TwigStack, TwigStackXB[10] [45], TwigINLAB [53]
and TwigStackList [54], in most queries for the comparison done
by [7]. It also has comparable results in other queries. TwigX-Guide
is not publicly available at this time; it has been implemented
based on their algorithm description.

In order to study the improvement in XML query processing
with value predicates by our proposed indices, a series of exper-
iments was conducted. Our Value Index performance is compared
with the standard value indexwith a focus on the value predicates.
The structural part of the query in both methods is the same. We
use our Structure Index including the Schema Index and the Data
Index to process the structural part of the query and the content
part of the processing is done by both our the Value Index and the
standard value index.

In most of the past research, the standard indexing method for
values when value predicates exist in XML queries is to index each
value with its node position ID. When performing joins, a small
amount of node IDs will be returned for further joins. We compare
our proposed Value Index with the standard value index.

7.2. Datasets

The datasets used in the experiment are shown in Table 5. These
datasets were obtained from the University of Washington’s XML
repository [55]. The chosen datasets differ in their characteristics.
The DBLP dataset has a shallow structure with a recursion in some
of its element names. The document trees in the SigmodRecords
and Yahoo datasets were used due to their nested structure.
Additional information is provided in Table 5, including the max-
imum depth, the number of elements, and the number of object
partitions for each dataset.

7.3. Experimental metrics

To evaluate the performance of our proposed algorithms, two
metrics were used. The first metric obtains CPU cost by calculating
the average execution time of a query. Secondly, the total number
of scanned elements is measured during a joining process. This
metricwill provide a good reflection of the ability of our algorithms
to trim the search space and to skip portions of the data.

7.4. Evaluation criteria

The performance of the Structure Index is compared with
TwigX-Guide based on the type of relationships (P–C, A–D, or
mixed). The average query processing times for a given twig query
is calculated. Asmentioned earlier, the query processing time is the
time taken by our processing algorithmexcluding the off-line stage
i.e. building the Schema Index and the Data Index. Added to these
criteria, we include simple paths and branch paths with values in
the predicates.

7.5. Queries

Table 6 presents the evaluation queries. Each query is coded
QXN, where X represents S (SigmodRecords), D (DBLP), or A
(Auction Data), and N is the query number within the respective
dataset. These queries have different characteristics in terms of
the number of access objects, the depth of the path, the type of
edge relationship and the twig structure. The experimental queries
are divided into two groups: (i) queries without predicates in
Table 6(a), and (ii) queries with predicates in Table 6(b).

The queries QS1 to QD6 in Table 6(a) have only P–C edges
connecting their nodes and need to access only a single object.
They are twig queries with a different number of nodes, their
branches varying from 1 to 3. The query answer will be retrieved
from a single object. In the queries, QS7–QD11 from the same table
only have an A–D relationship between their nodes. Some need to
access one object partition and others need to access two object
partitions to retrieve the data. The maximum depth of retrieved
data is 7 in QS7 and QS8, 5 for QD9 and 4 for QD10 and QD11. The
queries from QS12 to QD17 concern the performance of the twig
queries with mixed edges which is the hybrid type of relationship
connecting between nodes (P–C and A–D). They also consist of a
different number of nodes and branches. QS13 needs to access two
objects to obtain the final results. However, the rest need to access
one object to retrieve the answer of the query.

The queries in Table 6(b) are used to evaluate the Value Index.
QD9 andQD11 are simple path querieswhereas the rest are branch
queries. QD6 and QS5 contain only the P–C relationship, while the
rest contain hybrid edges of P–C and A–D. We have a variety of
branch numbers in the branched queries. For example, QS1 and
QS2 have two branches whilst QD3, QD4, and QD5 have 3, 4, 5
branches respectively. The type of value predicates is also different
among the queries, QA9, QS5, and QD8 have path-value predicates
while QA10, QS4, and QS5 have path-branch-value predicates and
the rest are merely value predicates.

7.6. Performance analysis

7.6.1. Evaluate the Structure Index
We analyze the performance by varying the type of relationship

between query nodes.
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Table 6
Queries for the experiment.

(a) Queries without value predicates

Q Queries # Obj Depth

QS1 SigmodRecord/issue[/volume][/number] 1 3
QA2 root/listing/auction_info/high_bidder 1 5

[/bidder_name][/bidder_rating]
QA3 root/listing/auction_info[/current_bid] 1 4

/time_left
QD4 /dblp/mastersthesis[/title]/author 1 3
QD5 /dblp/book[/ee]/year 1 3
QD6 //phdthesis[/year][/series][/number] 1 4
QS7 articles[//title][//author] 2 7
QS8 issue[//volume][//author] 2 7
QD9 //inproceedings//title[//i][//sub][//sup] 1 5
QD10 //inproceedings[//month][//url][//ee] 1 4
QD11 //inproceedings[//month][//url][//ee]//title 1 4
QS12 SigmodRecord/issue[/volume][//title] 1 5
QS13 article[/title][//authors] 2 7
QD14 //inproceedings[//title/i][//year] 1 4
QD15 /dblp/article[/journal][//sup] 1 3
QD16 /dblp/incollection[/booktitle][//ee] 1 3
QD17 //article/title[//i][//sub] 1 4
QD18 /dblp/phdthesis[/series][/number][/year]/title 1 3

(b) Queries with value predicates

QXN Query pattern # Obj Depth

QA1 //auction_info[/current_bid=
‘‘$620.00’’]/time_left

1 5

QA2 /root//auction_info[/location= ‘‘LOS ANGELES,
CA’’]/high_bidder/bidder_name

1 5

QA3 /root/listing[//location= ‘‘LOS ANGELES,
CA’’]/auction_info/time_left

2 4

QA4 //auction_info[/current_bid=
‘‘$620.00][/num_items= ‘‘1’’]/time_left

1 5

QA5 //auction_info[/current_bid=
‘‘$610.00’’][/num_items= ‘‘1’’][/started_at=
‘‘$100.00’’]/time_left

1 5

QA6 //auction_info[/current_bid=
‘‘$610.00’’][/num_items= ‘‘1’’][/started_at=
‘‘$100.00’’] [/num_bids= ‘‘16’’]/time_left

1 5

QA7 //auction_info[/current_bid=
‘‘$610.00][/num_items= ‘‘1’’][/started_at=
‘‘$100.00’’] [/num_bids= ‘‘16’’][/location=
‘‘Allentown, PA 18109 ’’]/time_left

1 5

QA8 //listing[/seller_info/seller_name=
‘‘cubsfantony’’]/auction_info/current_bid

1 4

QA9 //listing[/auction_info[/current_bid=
‘‘$620.00’’][/num_items= ‘‘1’’]]
/bid_history/quantity

1 4

QS1 //issue[/volume= ‘‘11’’]/number 1 3
QS2 //article[/title= ‘‘Architecture of Future Data Base

Systems’’.]//authors
1 3

QS3 /SigmodRecord[/issue[/volume= ‘‘11’’][/number
= ‘‘1’’]/articles//title]

2 5

QS4 /SigmodRecord/issue//article[/initPage=
‘‘30’’][/endPage= ‘‘44’’]/title

2 5

QS5 /SigmodRecord/issue[/articles/article[/endPage=
‘‘44’’][/initPage= ‘‘30’’]]/volume

2 5

QD1 //article[/author= ‘‘Frank Manola’’]/title 1 3
QD2 //article[/editor= ‘‘Paul R. McJones’’]/title 1 3
QD3 //article[/editor= ‘‘Paul R. McJones’’][/volume=

‘‘SRC1997-018’’]/title
1 3

QD4 //article[/editor= ‘‘Paul R. McJones’’][/journal=
‘‘Digital System Research Center Report’’]/year

1 3

QD5 //article[/editor= ‘‘Paul R. McJones’’][/journal=
‘‘Digital System Research Center Report’’][/volume
= ‘‘SRC1997-018’’]/year

1 3

QD6 /dblp/article[/author= ‘‘Tor Helleseth’’]/year 1 3
QD7 /dblp/inproceedings[/author= ‘‘Tor

Helleseth’’]/title//sub
1 4

QD8 /dblp/inproceedings/title[/i= ‘‘C’’]/sub 1 4
QD9 /dblp/inproceedings/title[/sub= ‘‘INF’’] 1 4
QD10 /dblp/inproceedings/title[/sub= ‘‘INF’’]//sub 1 4
QD11 /dblp/inproceedings//i[/sub= ‘‘n, n’’] 1 5
CPU cost. We compare the average improvement of the CPU time
for three different criteria: for only P–C queries, A–D queries and
mix of both.

For only P–C twig queries, despite the strength of TwigX-Guide
in processing and optimizing P–C twig queries, the Structure Index
outperforms TwigX-Guide in processing these types of queries, as
shown in Fig. 8(a). For instance in QS1, TwigX-Guide decomposes
the query into two paths ‘‘SigmodRecord/ issue[/volume]’’ and
‘‘SigmodRecord/issue[/number]’’. The answer to each path is
retrieved directly from the DataGuide and it only needs one join
to yield the final result. However, our index is able to trim the
search space in the Schema Index as well as in the Data Index. It
gains an advantage from its index construction since it preserves
the details of all objects located in each path of the schema and
data as in Path of So and Path of Do. This feature supports our
approach to handle P–C queries more efficiently. Fig. 8(a) shows
how our index outperforms TwigX-Guide when querying P–C twig
queries in SigmodRecords, Yahoo and DBLP datasets. The average
improvement over all the queries with P–C edges is 44.36%.

For only A–D twig queries, TwigX-Guide retrieves qualified data
from A–D queries based on a region encoding labeling. It incurs a
large number of joins that causes a significant delay. The proposed
index in this paper has the ability to skip large portions of Schema
Objects through object-based intersection as well as discarding
irrelevant objects and paths from theData Object. Thus, it performs
significantly better than TwigX-Guide for A–D queries, as shown in
Fig. 8(b). The average improvement over all the queries with A–D
edges is 80.82%.

For mixed edges twig queries, TwigX-Guide performs better
in P–C compared to A–D and performs better in mixed edges
compared to A–D, since it uses path matching from DataGuide
instead of node matching which reduces the number of joins
that need to happen only on A–D. Our index outperforms TwigX-
guide in this group of queries as depicted in Fig. 8(c). It performs
significantly better than TwigX-Guide for queries with hybrid
edges by around 88.87%.

The overall average improvement of the evaluation times for all
experimental queries is around 69.68%.
Matching and joining cost. In the previous section, wemeasured the
elapsed time of processing the query inside the CPU. However, this
part of the evaluation focuses on two main tasks during the CPU
time which are matching query patterns and merging the results.
Fig. 9 depicts the percentage cost of matching the query patterns
and merging the results in our method in Fig. 9(b) and TwigX-
Guide in Fig. 9(a). The figures label each column with the time
measurement in milliseconds and the total number of results is
shown underneath each query label.

Fig. 9 reveals that our method performs better in matching
query patterns in terms of timemeasurement compared to TwigX-
Guide. The cost of matching patterns differs based on the type of
relationship between the query nodes. It can be noticed that the
matching cost increases when processing queries with A–D rela-
tionships as QD9, QD10 and QD11 in both approaches especially,
when processing a query over a large data size such as DBLP.

It is obvious from Fig. 9(a) that in most queries, join costs in-
crease dramatically in TwigX-Guide when the number of query re-
sults increases, as can be seen in QS7, QS12 and QS13. On the other
hand, the cost tends to be 1 millisecond when the result is close
to 1 or closer as in QD11 and QD10. However, in our method, it
can be seen that the significant increase in the merge cost which
occurs in TwigX-Guide no longer exists in our method. We can ob-
serve that the join costs are slightly higher in some queries com-
pared to TwigX-Guide as can be seen from the time measurement
in QS7, QS12 and QS13 in Fig. 9(b). Ultimately, our method shows
the overall superiority in performing the joining process.
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Fig. 8. The performance of twig queries in milliseconds.
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Fig. 9. Query processing cost in ms Table 6(a).
Fig. 10. The query used in the experiment on changing the number of branches.
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Fig. 11. Changing the number of branches (time is in microseconds).

Changing the number of branches. We select QD18 which is
‘‘/dblp/phdthesis [/series] [/number] [/year]/title’’ from DBLP, with
four branches and then varying the number of branches from 1 to 4
as in Fig. 10. The CPU time to process the queries is shown in Fig. 11.
It can be seen that the CPU cost of both methods does not increase
as the number of branches in the queries increases since the
number of output results vary, thus, the number of joined elements
varies as well. However, the cost of TwigX-Guide is much more
than the cost of the Structure Index. This is because our method
reduces the search space to the object partition that includes
‘‘phdthesis’’ instead of searching all data as TwigX-Guide does.
Varying the size of entry documents. We compare the performance
of the Structure Index and TwigX-Guide with variable entry doc-
ument sizes (from 467–2800 KB). We measure the elapsed query
processing times and the scale up performance is computed using
Eq. (1) as proposed by [56]. QS1, which represents a P–C query, and
QS12, which represents a query consisting of P–C and A–D edges, is
adopted. According to our experiment results, the execution times
are less than those of TwigX-Guide. Figs. 12 and 13 depict that the
execution times increase linearly with the document size in both
approaches. This observation is consistentwith the expected trend.
However, it can be seen that the proposed index in this paper scales
better than TwigX-Guide as the document sizes increases.

In order to compute the size of scalability performance, Eq.
(1) is used where tAvg is the execution time for query processing
and tAvgbase is the execution time for processing a base case when
processing the smallest size of entry documents. As long as the
document size is growing, a positive (or negative) value of the
scalability indicates that the cost of processing a twig query is
increasing (or decreasing). While processing QS1 and QS12, both
approaches performed in a linear time while the size of the
documents was growing. In spite of this, it can be seen that our
index scales better than TwigX-Guide due to the gradual growth of
the size scale-up factor.

Scaleup =
tAvg − tAvgbase

tAvgbase
(1)

Search quality. Search quality was measured based on terms of
accuracy and completeness. Standard precision and recall metrics
have been utilized to measure accuracy and completeness. The
search accuracy was indicated by the precision measures which
determine the fraction of results in the approximate correct
answer. On the other hand, search completeness was indicated by
the recall measures which determine the fraction of all the correct
results found in the approximate answer.

Precision =
|DSR ∩ SSR|
|SSR|

(2)

Recall =
|DSR ∩ SSR|
|DSR|

. (3)

If precision measures the percentage of the output nodes that
are desired and recall measures the percentage of the desired
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Fig. 12. Varying the size of entry documents (SQ1 Table 6(a)).
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Fig. 13. Varying the size of entry documents (SQ12 Table 6(a)).
nodes that are output [57], the symbols of Eqs. (2) and (3) will be
interpreted as DSR which refers to desired search results and SSR
which refers to system search results. The desired / correct search
results are the answers returned by SQL/XML Oracle 11g while
system search results are the answers generated by our system
using the Structure Index.

To compute the search quality (precision and recall) of our
method,weperformed an intersection between the results for each
query presented in Table 6(b) in ourmethodwith the results of the
same queries run on the SQL/XML oracle engine. Then we divided
the intersected results on the SQL/XML results when calculating
recall and on the results of our method to calculate precision.
Table 7 illustrates the search quality results. From the table, we
could see that ourmethod achieves a high search quality of around
98% completeness or precision and 100% recall. We can conclude
that pruning the search space using the concept of objects did not
affect the search quality.

7.6.2. Evaluate the Value Index
The efficiency of the Value Index which is based on objects was

studied. As previously mentioned, the system supports a search
by content and structure. To achieve this goal, our index provides
mechanisms to process the content and structure efficiently.
Structure and Content Indexes are combined to answer regular
path queries with predicates over values.

We rely on our indices in finding the value predicates before
finding and matching the node position. The rationale is that a
content search normally results in high selectivity. By performing
a content search first, we can reduce the complexity of structural
joins. A content search based on a comparison of the specified value
predicates works as a filter prior to the structural search.
CPU cost. We compare the time performance of our Value Index
with the standard value index. In Fig. 14(a), the experiments run
on an Auction dataset. The queries represent a combination of
different criteria as mentioned in Section 7.5. Our index is 2 to 4
orders of magnitude more efficient than the standard one in all
queries. For instance, while our index takes about 0.1735 ms to
retrieve one answer of QA7, the standard index, when querying
data of the same size, takes almost 0.2518 ms. The standard index
performs well since it uses our Structure Index to search the
structural part of the query. However, our method performs better
by combining the strength of the object-based Structure Indexwith
the strength of the object-based Value Index. The objects in our
Value Index carry semanticmeaning and in each value stored based
on their paths and tokens within an object to provide fast access to
right values that match to the value predicates. This is in contrast
to using the standard value which does not carry any semantic
meaning, resulting in the consumption of search time to find the
right matched values.

Fig. 15(a) and (b), show the execution time of the queries evalu-
ated over the DBLP dataset. Our experiments reveal that our Value
Index outperforms the standard value index. For example, QD6 re-
trieves 15 results from data of 3 332131 nodes. Our index needs
about 600 ms to produce the results while the standard requires
around 900 ms. Since the standard value index is a node-based in-
dex, it implies that increasing the total number of nodes increases
the size of the data which needs to be scanned and checked. This is
because it does not have a specific technique to assist in skipping
irrelevant portions of data which exists in ours. Our Value Index
trims the search space based on the objects. For instance, in QD6,
our method needs to access only the part of the data that is re-
lated to the ‘‘article’’ node. However, the standardmethod searches
based on the node and needs to access many nodes which do not
participate in the final results. The results of Fig. 14(b) support the
earlier experiment outcomes. Our index took less time to evalu-
ate the queries over SigmodRecords dataset. We can notice that
QS5 has a significant performance because all the relationships
between the query nodes are P–C while the other queries are a
hybrid of P–C and A–D. We can observe a large difference in the
performance because of the type of relationships. Our method
gains more benefits in improving the query performance from the
P–C relationship than the standard does.
The total number of scanned elements. The main purpose of this
experiment is to indicate the capability of our index to avoid
scanning irrelevant portions of the data. Fig. 16 is the total number
of visited elements during the evaluation of the Auction data. The
total number in our index is reduced by 68% compared to the
standard index.

As the same outcome, Fig. 17(a) and (b) show that the total
number of visited elements decreased by 59.6% and 77.7% for DBLP
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Table 7
Search quality.

Queries QS1 QD4 QD5 QD6 QS8 QD9 QD10
Structure Index 67 5 5 1 3737 9 1 Recall:100%
SQL/XML 67 5 5 1 3737 4 1

Queries QD11 QS12 QS13 QD14 QD15 QD16 QD17
Structure Index 1 1504 1504 748 364 107 344 Precision:98%
SQL/XML 1 1504 1504 748 364 107 344
(a) Auction data. (b) SigmodRecords data.

Fig. 14. The CPU time for datasets (time is in microseconds).
Fig. 15. The elapsed time for DBLP dataset (in milliseconds).
Fig. 16. The total number of scanned elements for Auction data set.

and SigmodRecords respectively. This is evidence of the efficiency
of exploiting the semantics of XML data in constructing the Value
Index. Since all the query nodes have a semantic connectivity
between them that have a similar representationwith the data, our
Value Index utilizes this significant which results in the reduction
of the search space.

The total number of scanned elements is also affected by the
type of relationships. In QS5, the average reduction is 98.5% of the
total number scanned by each method. This leads us to conclude
that the high selectivity caused by a P–C relationship reduces the
number of elements to check in order to produce the result.
Changing the number of branches. We select QD5 from DBLP, with
four branches and then vary the number of branches from 2 to 4 as
shown in Fig. 18. The CPU time to process the queries is shown in
Fig. 19(a) whereas the total number of checked elements is shown
in Fig. 19(b). It can be seen that the CPU cost of both methods
increases as the number of branches in the queries increases.
(a) DBLP dataset. (b) SigmodRecords dataset.

Fig. 17. The total number of scanned elements.
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Table 8
Search quality.

Queries QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9 QS1 QS2 QS3 Search Quality

Value Index 1 1 1 1 1 1 1 1 1 3 1 4 Recall
SQL/XML 2 1 1 2 1 1 1 1 2 3 1 4 97%

Queries QS4 QD1 QD2 QD3 QD4 QD5 QD6 QD7 QD8 QD9 QD10 QD11 Search Quality

Value Index 1 22 1 1 1 1 15 1 2 1 1 1 Precision
SQL/XML 1 22 1 1 1 1 15 1 2 1 1 1 100%
Fig. 18. The query (QD5) used in the experiment on changing the number of
branches.

However, the cost of the standard value index is much more than
the cost of the Value Index. This is because that the standard index
needs to scan more elements than ours, as shown in Fig. 19.
Varying the size of entry documents. We compare the performance
of the Value Index and the standard index with different entry
document sizes varying from 500 KB to 3000 KB. We measure
the CPU Cost to process a query as well as calculating the scale
up performance using Eq. (1) as proposed by [56]. We process
QS1 with the value predicate in Table 6(b) in different document
sizes. According to our experiment results, the execution times
are less than those of the standard index. Fig. 20 depicts that
the execution times increase linearly with the document sizes in
both approaches. However, it can be seen that the Value Index
in this paper scales better than Standard index as document size
increases. In the first two experiments shown in Fig. 20(b), size
scalability has gradual growth. Thereafter in the experiments, it
remains steady in both approaches. Also, by adopting the size
scale-up factor, it can be indicated that the Value Index scales
better than the standard index.
Search quality.

Search quality is measured by precision as in Eq. (2) and recall
as in Eq. (3). We captured the desired/correct search results using
SQL/XML Oracle 11g as the search quality of the Structure Index
whereas the system search results are the answers generated by
our systemusing the Value Index.Weused the queries in Table 6(a)
to perform this part of the experiment.

Table 8 displays the search results and the search quality of
queries over the Value Index. The table reveals that our method
obtains an average of 97% recall and 100% precision.

8. Conclusion and future research

This paper proposed the Structure Index to handle the struc-
tural part of XML queries and the Content Index to handle the
content part. The indices utilized the semantics of XML Schema
and XML data in their construction. In addition, this paper intro-
duced the query processing algorithms on the proposed indices.
(a) The elapsed time in milliseconds. (b) The total number of scanned elements.

Fig. 19. Varying the number of branches.
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Fig. 20. Varying the size of entry documents (QS1 Table 6(b)).
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Our method can evaluate branching queries, which is considered
the most complex part of query processing over XML data due to
the complexity of traversing data to findmatching results,more ef-
ficiently. It utilizes the advantage of XML data being self-described
to enhance the notion of a frequently-accessed data subset by em-
ploying an object-based data partition. The Schema Index is ma-
nipulated using the object-based intersection process to trim the
search space and avoid unnecessary joins. One advantage of the
Schema Index is instead of iteration on a large index to find the
matching trees, the Schema Index usually has a smaller index size
compared to an index built only based on the data. Irrelevant data
scanning is discarded in the Data Index by eliminating irrelevant
objects and paths. The search space is trimmed when evaluating
the value predicates because processing the query over the Value
Index before drilling down to the Data Index.

Our experiment shows that the proposed method outperforms
TwigX-Guide when we compare its performance on different
path edge types i.e. (P–C, A–D, or mixed). The calculated average
query processing times for a given query indicates that our
technique is a viable solution for processing branching queries. The
performance evaluation proves the benefits gained from applying
the semantic-based indices in trimming the search space and
avoiding unnecessary data scanning. Different query patterns with
different predicates have been evaluated. The evaluation results
on different XML datasets indicate that our proposed method
improves a performance by applying the semantic concepts in its
Content Index over the non-semantic index.

There is some existing research on processing twig querieswith
Boolean predicates. [58,59] proposed an algorithm for path and
twig query respectively using NOT predicates. Recently, [60,61]
proposed algorithms to evaluate twig queries with AND, OR and
NOT. However, there are still several gaps which need to be
covered. Therefore, in our future research, we need to investigate
how to maintain the indices to be able to serve other types of
predicates. In fact, Boolean predicates are an important part of the
query. Since they have not been widely investigated, in our next
work, we would like to focus on this part of the query especially
when all the Boolean operators, i.e. AND, OR, NOT, come in a single
query.
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