
Comput Sci Res Dev (2014) 29:1–19
DOI 10.1007/s00450-010-0132-2

R E G U L A R PA P E R

XTrigger: XML database trigger

Anders H. Landberg · J. Wenny Rahayu · Eric Pardede

Received: 2 September 2009 / Accepted: 5 August 2010 / Published online: 26 August 2010
© Springer-Verlag 2010

Abstract An ever increasing amount of data is being ex-
changed and stored in the XML data format brings with it
a number of advanced requirements to XML database func-
tionality, such as trigger mechanism. Triggers are commonly
used to uphold data integrity constraints and are yet to be
rigorously defined for XML. To make trigger functionality
for XML databases as practical and applicable as it is in
the relational context, the hierarchical nature of the XML
data model must be considered. However, current research
on XML triggers shows clear limitations with respect to
multi-document applicability and ancestor-descendant rela-
tionships.

We introduce path-level granularity in combination with
the novel concept of trigger scope, which plays a critical
role in the validation of complex constraints. In order to
effectively and efficiently support both traditional data in-
tegrity constraints and advanced semantically aware con-
straints, a trigger methodology that embeds several points of
innovation in the context of XML triggers is hence proposed
and deeply investigated in this paper.

Keywords XML · Trigger · Path granularity · Trigger
scope

A.H. Landberg · J.W. Rahayu · E. Pardede (�)
Department of Computer Science and Computer Engineering,
La Trobe University, Bundoora, VIC 3083, Australia
e-mail: E.Pardede@latrobe.edu.au

A.H. Landberg
e-mail: A.Landberg@latrobe.edu.au

J.W. Rahayu
e-mail: W.Rahayu@latrobe.edu.au

1 Introduction

The concept of the database trigger was first introduced in
1976 [1]. Prior to this, the need for a mechanism to auto-
matically react to constraint violations had been identified
as necessary [2–4]. Some of the most common areas where
triggers can be used are: monitoring constraints on the data
[5–7], view maintenance [7], temporal changes [18], ver-
sioning [19] and logging manipulation of data [5]. However,
several authors show how entire business logic can be incor-
porated into triggers [8].

The W3C standard does not yet include an XML trigger
support method [9]. Therefore, this paper investigates and
discusses what is lacking in previous approaches, the rea-
sons for these absences, and it considers solutions where the
XML trigger best fulfils its duty within the XML database.

As a fundamental functionality of XML databases, the
development of XML trigger methodologies poses a number
of requirements.

First, trigger granularity is a fundamental and low-level
underlying concept that discusses the level of detail in which
modified data is to be treated by a trigger. This involves de-
termining the partitions of data that make up a particular
grain. As triggers provide reactive functionality in response
to XML data updates, it is crucial to identify which parts
within an XML document are impacted during the update
[10, 20, 21]. This is so important because the structure of
XML is hierarchical instead of flat. Therefore, in the XML
context, one type of granularity may be the set including
a particular target node together with its parent and child
nodes [11].

When examining data with this granularity, each target
node is not being considered by itself alone, but as part of
this hierarchical relationship. Similar to how sibling nodes
can be put into a horizontal relationship, namely to be on the
same hierarchical level, nodes can also be put into a vertical

mailto:E.Pardede@latrobe.edu.au
mailto:A.Landberg@latrobe.edu.au
mailto:W.Rahayu@latrobe.edu.au

2 A.H. Landberg et al.

Fig. 1 Ancestor and descendant nodes

relationship which considers neighbouring nodes on differ-
ent hierarchical levels. The consideration of such a vertical,
hierarchical node relationship in regards to trigger granular-
ity is vital because it strongly draws focus to the concept of
data hierarchy that is one of the major discrepancies between
relational and XML data models [12].

Figure 1 illustrates a situation where the (highlighted)
node Specifications has been modified by a database
update. When making changes to Specifications,
subsequent changes in nodes FeatureProduct, Pro-
ductPageGeneralSpecs, ProductSpecific, etc.
may be necessary to uphold constraints along the ancestor-
descendant axis.

A second requirement is the support for multiple docu-
ments. This is so because apart from a document-internal
structuring, which is hierarchical, there also exists a further
structuring within the database, namely the structuring of
documents. As such, several documents in an XML database
may contain similar types of information, i.e. have a simi-
lar or even the same structure. The reasons for this can be
that slightly different content has been grouped into differ-
ent documents to maintain a better overview, or, that some
operations can be performed quicker on these separate doc-
uments.

The issue arises when circumstances force a certain op-
eration to be monitored for several XML documents within
a database. These documents could either have a similar
(or even the same) structure, hence possibly having a com-
mon schema definition, or belonging together in some other
way of relationship such as linking. As an example, the
ACM SIGMOD record XML edition1 contains collections

1Available for download at http://www.sigmod.org/record/xml.

Fig. 2 Multiple identical triggers

of XML documents which apply to a common DTD. If all
these documents should be monitored by a trigger to ensure
that after a deletion important parts of the documents are
backed up, it would be desirable to have a trigger concept
that is capable of applying to a collection of documents. Or,
even more convenient, to the respective schema definition,
which indirectly would link the trigger to the collection of
documents.

A possible solution to the above described problem is to
apply one trigger to each of the documents. Such a scenario
is illustrated in Fig. 2. In current approaches [5–7] this is
the only possibility to solve such a scenario. However, this
will inevitably result in redundant triggers, as it takes one
trigger with the same functionality for each document. So
in the case of a change in the trigger code, each of them
will have to be rewritten, which again will lead to errors and
inconsistency.

Another way around this problem would be to merge
XML documents so that all data is in one document. Then
it is sufficient to apply a single trigger to this document that
monitors the desired operations and takes action where nec-
essary. Although this approach does not bear the risk of hav-
ing multiple identical triggers, it forces data to be joined that
now must be separated by queries.

In a previous work on XML triggers, we proposed the
fundamental concept of path-granularity and how it solves
a number of current approaches’ limitations with respect to
vertical node relationships [17]. In this publication we re-
introduce this concept in combination with trigger scope.

Proposal This paper proposes two interconnected con-
cepts in XML database triggers, namely (i) path-level gran-
ularity and (ii) trigger scope. The path-level granularity is
a novel concept that considers vertical node relationships
during updates on XML data. XML triggers with this new
functionality will overcome current approaches’ limitation
in respect to node-relationships and granularity and make
the trigger more applicable and useful for more complex

http://www.sigmod.org/record/xml

XTrigger: XML database trigger 3

constraint checking as we proposed in a recent publication
[22].

The concept of trigger scope is an extension to the con-
text within which the trigger can be applied to by defining
the entities in the database that are affected by the trigger. As
current approaches only limit their trigger to be applicable
to one single document instance (single document context),
it must be considered what would be the impact and benefits
of extending this context. These extensions can be made in
order to apply the trigger to (i) a schema, and (ii) all docu-
ments in the database.

Organisation Section 2 gives background information on
context paths and nodes that will be used to determine the
trigger granularity and scope. Section 3 proposes definitions
and methodologies to specify the new level of granularity
and apply it to the XML context as well as the new lev-
els of trigger scope. Section 4 classifies XML trigger types
and offers a comprehensive trigger categorisation. Section 5
discusses execution issues that result from the trigger cat-
egories. Sections 6 and 7 describe the implementation that
was done in order to prove and evaluate the proposed con-
cept. Related work is summarised in Sect. 8. Finally, Sect. 9
concludes the paper and offers ideas for future work.

2 Preliminaries

Following definitions are necessary to describe a context
path. First, it is important that the nodes in a document tree
are be labelled in a way that uniquely identifies them. Also,
the labelling must allow further definitions being dependent
on it. In our approach, we use the pre-order and post-order
scheme [13, 14].

Notation A ‘/’ is a single separator between two nodes A
and B, where B is a child node of A.

Definition 1 A root node root is defined as a tuple (pre,
post), where preorder value pre = 1 and post-order value
post = 2n, and where n is the number of nodes in the tree.

Definition 2 An intermediate node interm is defined as a
tuple (pre, post), where pre > 1 and post < 2n and post-
pre > 1.

Definition 3 A leaf node leaf is defined as a tuple (pre,
post), where post-pre = 1.

Definition 4 A context node con is defined as con ∈ {root,
interm, leaf}. The context node is the node that is being ad-
dressed to by a trigger’s event path.

Definition 4a A context node con has pre-order and post-
order values (precon, postcon).

Definition 5 An ancestor node anc of a context node is de-
fined as anc ∈ {root, interm}.

Definition 5a An ancestor node anc of a context node is
defined as a tuple (preanc,postanc), where preanc < precon
and postanc > postcon.

Definition 6 A descendant node desc of a context node is
defined as desc ∈ {interm, leaf}.

Definition 6a A descendant node desc of a context node is
defined as a tuple (predesc,postdesc), where predesc > precon
and postdesc < postcon.

Definition 7 A Valid Path VP = N1/N2/N3/ . . . /Nm/, with
length m, where N1 is a root node, and node Ni + 1 is a de-
scendant node of Ni , and Nm is a leaf node (1 ≤ i ≤ m − 1).

Definition 8 A Context Path CP is a valid path that contains
a context node.

Definition 8a A Context Path CP = {A,c,D}, where the
set of ancestor nodes A = {a1, a2, a3, . . .} and the context
node c and the set of descendant nodes D = {d1, d2, d3, . . .}.

Definition 9 The number of context paths of a context node
is equal to the number of leaf nodes that are descendants of
that context node.

Definition 9a A root context node has k context paths,
where k = all valid paths in the tree. Hence, context paths
= valid paths.

Definition 9b A leaf context node has 1 context path.

To illustrate the above defined node-labelling scheme and
context node and context path definitions, consider Fig. 3.
The context node con is marked with a bold circle, and
all nodes that stand in a vertical node relationship to it are
shaded in grey colour. All the nodes that are coloured grey
will be considered by the path-level granularity. The remain-
ing nodes are of no importance. The context node with la-
belling (13, 22) has the following context paths related to
it:

CP1 = /(1,26)/(10,25)/(13,22)/(14,17)/(15,16)

CP2 = /(1,26)/(10,25)/(13,22)/(18,19)

CP3 = /(1,26)/(10,25)/(13,22)/(20,21)

Note that the total number of context paths within a doc-
ument is equal to the sum of context path of all context

4 A.H. Landberg et al.

Fig. 3 Labelled document tree

nodes. So given that there are n context nodes with pn con-
text paths each, then the total number of context paths is
p1 + p2 + · · · + pn−1 + pn.

3 Incorporating granularity and scope into triggers

Based on the preliminary definitions described in the pre-
vious section, the notions of XML trigger granularity and
scope will be formalised and outlined in this section.

3.1 Granularity

This section defines three levels of granularity that can apply
for an XML trigger: node, path, and document granularity.

3.1.1 Definitions for trigger granularity

Definition 10 Trigger granularity GX of a trigger T is de-
fined as a tuple T (X,P,N), where granularity level X ∈
{Node,Path,Document}, and P is the set of valid paths, and
N is the number of trigger executions.

Proposition 1a Node granularity GN for a trigger T is de-
fined as a tuple T (X,P,N), where X = Node, and P =
a valid path that specifies the set of context nodes, and N =
size of (context nodes).

Proposition 1b Path granularity GP for a trigger T is de-
fined as a tuple T (X,P,N), where X = Path, and P =
a valid path that specifies the set of context nodes, and N =
size of (context paths).

Proposition 1c Document granularity GD for a trigger T

is defined as a tuple T (X,P,N), where X = Document, and
P = a valid path that specifies the set of context nodes, and
N = 1.

Example 1 Given a trigger T , and given X = Path, and
given P = ‘/A/B/C’, and given N = 5, then this means
that there exist 5 context paths that traverse context nodes
specified by ‘/A/B/C’, and that T will be executed 5 times.

3.1.2 Vertical and horizontal granularity

This section defines the methods and techniques that are
used to incorporate path-granularity to the XML trigger
mechanism. The notions of vertical node granularity and
horizontal node granularity are introduced.

Vertical node granularity Vertical node granularity re-
gards each node as belonging to a vertical relationship that
includes ancestor and descendant nodes. Similarly, horizon-
tal node granularity addresses a particular node and its sib-
lings.

A path is a set of related nodes that belong to vertical
relationship as explained above. The set of nodes in such a
relationship is a subset of the document, and as such it must
be considered as an additional level of trigger granularity. As
previous research has neglected the path notion in respect to
granularity [5, 7], paths and nodes that are interconnected
with the modified node, are neglected, too. This means that
neither ancestor nodes (FeatureProduct, Product-
Page), nor descendant nodes (GeneralSpecs, Prod-
uctSpecific, Additional, . . .) are being considered
when making updates (see Fig. 1).

Horizontal node granularity Horizontal node granularity
considers nodes which stand in a horizontal relationship
towards one another. As for the granularity, current ap-
proaches introduce two different levels, namely node-level
and document-level granularities [6]. They represent the
XML equivalent of row and statement granularities in the re-
lational context. Node-level granularity considers each trig-
ger event separately, and the XPath expression in the trig-
ger’s event part is associated with a single event. Document-
level granularity assumes that each trigger considers at once
all relevant event instances.

Hence, a document-level trigger is fired once for all mod-
ified nodes. Although this mapping from the relational to the
XML context works for some cases, it neglects the basic dis-
crepancies between the different data models.

In Fig. 4, nodes 10 and 11 have been modified by an up-
date statement and have been matched by a trigger event
path. In the left example, the (node-level) trigger will be
fired twice for node 10 and 11. In the right example in

XTrigger: XML database trigger 5

Fig. 4 Node and document
level granularity

Fig. 4, the (document-level) trigger will be fired once for
both nodes.

As can clearly be seen, neither of these existing ap-
proaches to granularity solve the above described problem,
as they only consider horizontal node relationships and do
not focus on vertical node relationships

3.1.3 Trigger path methodology

Based on the previously proposed concepts, this section out-
lines how we form a path-level trigger methodology. Our
main contributions in this section aim to extend XML trig-
ger path methodologies, and are as follows:

1. Applying the concept of a context path into trigger exe-
cution based on the context path definition

2. Expressing the new path-granularity using a proposed
syntax

First, we will discuss the concept of context paths. To do
this, it is necessary to analyse which nodes in a document
tree will possibly be affected by an update. We will refer to
these nodes as context nodes. In existing research papers,
context nodes are often referred to as affected nodes [7, 8].
Similarly, a context document is a document that is modi-
fied, i.e. that contains context nodes.

Figure 5 illustrates the steps that are necessary to perform
path-level granularity. The first step is to identify the context
node. This is the node, or set of nodes, that is affected by an
update statement, such as an insertion, deletion, or modifica-
tion of nodes. All ancestor and descendant nodes of the con-
text node are extracted and represent a sub-tree of the entire
document tree. The second step traverses this sub-tree and
assembles the context paths. These context paths are then
available to the trigger in the form of transition variables
during execution.

The advantage of this level of granularity is that content
of various node types in an entire document sub-tree can be
considered by a single trigger and that all relevant paths that
traverse the context node are considered. A path-level trigger
will therefore create one event instance for every path that
traverses the context node.

Next, we will focus on the syntax that is necessary to de-
scribe a trigger that incorporates path-level granularity. The

expression DO FOR EACH [doc|path|node] on line
5 in the listing specifies the level of granularity. doc and node
denote document-level and node-level granularities respec-
tively, and path denotes path-level granularity.

When a trigger is fired and after its condition (refer to line
4 in the below listing) has evaluated to true, it will be exe-
cuted according to its level of granularity (see line 5). In ac-
cordance with our definitions, a trigger with path-level gran-
ularity will therefore be fired once for each context path that
traverses the context node. If the number of context nodes in
a document is n, then the trigger will be fired for each con-
text path of each of the n context nodes. When a trigger is
fired, its action body, denoted by <XQuery-expr> in the
listing, is executed according to the level of granularity.
XML Trigger Syntax

1. CREATE OR REPLACE XMLTRIGGER
<trigger-name>

2. ON [insert|modify|delete]
3. OF [doc(<document-name>)

/<update-path>|
schema(<schema-name>
/<update-path>)|doc(ANY)]

4. IF <XPath-qualifier>
5. DO FOR EACH [doc|path|node]

[<XQuery-expr>]
6. END XMLTRIGGER;

3.2 Scope

Scope is defined as an enclosing area in which something
carries out actions on some content that is within this area.
The challenge is now to map this definition to the trigger
context, and in particular, to the XML database trigger con-
text.

3.2.1 Definitions for trigger scope

Definition 11 Trigger scope SX of a trigger T is defined as
a tuple T (S,M), where scope level S ∈ {Schema, Schema-
less}, and execution multiplicity M ∈ {1, Multiple}.

Definition 11a Instance scope SI for trigger T is defined as
a tuple T (S,M), where S = Schema-less and M = 1.

6 A.H. Landberg et al.

Fig. 5 Identification and
assembly of context paths

Definition 11b Schema-less scope SSL for trigger T is de-
fined as a tuple T (S,M), where S = Schema-less and M =
Multiple.

Definition 11c Schema scope SS for trigger T is defined as
a tuple T (S,M), where S = Schema and M = Multiple.

3.2.2 Trigger scope methodology

Based on above proposed definitions, this section explains
our proposed methodology to extend the trigger scope.

Our main contributions for this section aim to extend
XML trigger methodologies, and are as follows:

1. Extending XML triggers’ applicability to multiple doc-
uments

2. Identification and definition of scope levels
This paper introduces two additional types of scope.

Schema scope assumes that there exists a schema definition
that describes documents. A schema scope trigger can be
applied to a schema and hence applies to all documents cor-
responding to it. Schema-less scope assumes that there are
documents that are not corresponding to any schema def-
inition. Hence, a trigger with schema-less scope will only
consider documents that have no associated schema associ-
ated.

The new levels of trigger scope are instance, schema, and
schema-less scope. They are ordered in ascending granu-
larity, regarding a document instance as the smallest grain
of scope and the set of all documents (addressed by the
schema-less scope) as the largest grain.

3.2.3 Instance scope

A trigger which is applied to a single document instance
in an XML database is defined as being an instance scope
trigger. Hereby it is irrelevant whether this particular doc-
ument has got a schema definition associated to it or not.
Current approaches apply their trigger to a particular docu-
ment instance (see Fig. 6) and the notion of a trigger scope
has not been considered yet. However, the existing papers’
approaches can be classified as instance scope triggers.

Fig. 6 Instance scope

3.2.4 Schema scope

When defining the trigger, an associated schema definition
(XML Schema, DTD, Relax NG) must be provided that cor-
rectly describes a collection of documents. It is important
to note that when providing a schema as trigger scope, all
documents that conform to it will possibly be affected by
the trigger, dependent on the trigger’s event and condition
paths. As such, the schema serves as identification of the
set Sschema of documents which must be considered. So,
whenever a document which conforms to a certain schema
is modified, it must be checked if there are any triggers as-
sociated to that schema. If the trigger’s condition evaluates
to TRUE and is fired, it will be executed according to its
level of granularity within the context document. The gran-
ularity of the schema-trigger applies to each document that
conforms to the specified schema as illustrated in Fig. 7.

3.2.5 Schema-less scope

This scope level is similar to the schema scope, as it includes
a collection of documents rather than a single document in-
stance by itself. It includes documents that do not have an
associated schema (see Fig. 8). Hence, it includes the set
Sschema-less of all documents that are not considered by the
schema scope trigger. The schema-less scope provides the
possibility to make a trigger available throughout the entire
set of documents in the database.

Referring back to the XML trigger syntax listing, line 3
illustrates how the scope level can be defined. To define a

XTrigger: XML database trigger 7

Fig. 7 Schema scope

Fig. 8 Schema-less scope

schema-scope trigger, the keyword “schema” is used, and is
followed by the schema’s file name in brackets. For the con-
ventional instance-scope trigger, the XML document can be
referred to by its file name enclosed by the keyword “doc”.
To apply a trigger to all documents in the database, we use
“doc(ANY)” to denote this.

4 XML trigger categorisation

Table 1 shows how the new trigger types are classified ac-
cording to their scope and granularity levels. The labels are
to be read as follows: S and G denote scope and granular-
ity respectively. The subscripted abbreviations N , P , and
D for the scope stand for node, path, and document level.
Subscripts I , S, and SL for the granularity level stand for
instance, schema, and schema-less level.

In the examples that will follow, the nodes in the docu-
ment tree illustrations are labelled with incrementing num-
bers instead of the pre-order and post-order labelling tech-
niques for simplicity reason.

Note SIG∗ refers to all triggers with instance-scope, in-
dependent of their granularity. Therefore, SIG∗ = {SIGN ,
SIGP , SIGD}. The same yields for the notation S∗GD ,
where S∗GD = {SIGD , SSGD , SSLGD}.

Table 1 Trigger types, where: Node ⊂ Path ⊂ Document

Granularity Trigger scope

Instance Schema Schema-less

Node SI GN SSGN SSLGN

Path SI GP SSGP SSLGP

Document SI GD SSGD SSLGD

4.1 Trigger SIGN

Scope The scope of the trigger is an XML document in-
stance. To declare a trigger of type SIG∗, an XML document
instance (“filename.xml”) must be explicitly specified. The
trigger will then listen to modifications that are performed to
this document instance only. It is not important whether this
document has a schema associated with it, as the document
instance is explicitly declared within the trigger.

Granularity Within the instance scope, a node-level trig-
ger will execute n times, where n = number of context
nodes. For each node in the document which (i) matches
the modification operation’s update path, and (ii) matches
a node-level trigger’s event path, an event instance will be
generated and the trigger will then be executed for each of
these instances.

Transition variables As explained above.

Trigger execution multiplicity This category specifies how
many times this type of trigger will possibly be executed
during an arbitrary modification operation on an XML doc-
ument. Hereby it is being distinguished between single ex-
ecution and multiple executions as well as the number of
context nodes, context paths, and context documents.

– Single execution on single document if context nodes = 1
– Multiple executions on single document if context nodes

> 1

8 A.H. Landberg et al.

Listing 1 Insert statement

INSERT BELOW node (2)
node(5)
node(6) (node(8) node(9) node(10)
node(11) node(12))
node(7)

Listing 2 Trigger SIGN example code

ON INSERT BELOW fn:
document(<XML doc 1>)/root/2
IF <trigger condition>
FOR EACH NODE DO <trigger action>

As this trigger type can only be applied to a single docu-
ment instance, trigger execution multiplicities are limited to
a single document. In case there is only one context node,
the execution multiplicity is 1. For nCN context nodes, there
will be nCN trigger executions.

Example Figure 9 shows a scenario where three nodes are
being inserted into an XML document tree. One of the newly
inserted nodes, node 6, contains child nodes 8 to 12. An
example insert statement could look like in Listing 2. The
nested child nodes of node 6 are enclosed in round brackets
in the insert statement following their parent node.

4.2 Trigger SIGP

Scope See scope of SIGN trigger.

Granularity Within the instance scope, a path-level trig-
ger will execute nCP times, where nCP = number of context
paths. For each path in the document which (i) contains the
context nodes addressed by the modification operation’s up-
date path, and (ii) has the property “path-level trigger’s event
path IS SUBSET OF document path”, an event instance will
be generated and the trigger will then be executed for each
of these instances.

Transition variables The SIGP trigger will execute for
each identified context path. As such, the transition variables
$old and $new are bound to the respective context path for
each execution.

Note that different context paths can belong to different
context nodes, i.e. context node A has CPa1 and CPa2 and
context node B has CPb1. For this reason it is necessary to
introduce an additional transition variable $con, which de-
notes the context node and is available only for path-level
triggers.

Trigger execution multiplicity

– Single execution on single document if context nodes =
1 v context paths = 1

– Multiple executions on single document if context nodes
≥ 1 v context paths > 1.

A context node can have many context paths. Hence,
a single execution can only occur if there is one context node
which has one context path.

Example The scenario in Fig. 10 demonstrates how a delete
operation (see Listing 3) is monitored by a SIGP trigger. In
this example, the trigger (see Listing 4) is fired in reaction
to the deletion of (context) nodes 5 and 6. The deletion of
node 6 also leads to a cascading deletion of all descendant
nodes. For these two nodes, the following context paths are
now considered by the trigger.

CP1 = /root/2/5

CP2 = /root/2/6/8

CP3 = /root/2/6/9

CP4 = /root/2/6/10

CP5 = /root/2/6/11

CP6 = /root/2/6/12

The above described trigger executes six times, once for
each context path. For the first execution, $con will contain
node 5, as this is the context node which has context path
CP1. For executions 2 to 6, $con will contain node 6, and
the transition variable $old will contain CP2 to CP6 respec-
tively.

4.3 Trigger SIGD

Scope See scope of SIGN trigger.

Granularity Within the instance scope, a document-level
trigger will execute once for all context nodes in that docu-
ment. As opposed to the node-level trigger SIGN where an
event instance is created for each context node, this trigger
creates only one event instance.

Transition variables During trigger execution, variables
$old and $new are bound to the set of all context nodes, or,

Listing 3 Delete statement

DELETE node(5)
node(6) (node(8) node(9) node(10)
node(11) node(12))

Listing 4 Trigger SI GP example code

ON DELETE BELOW fn:
document(<XML doc 1>)/root/2
IF node(5) AND node(6)
FOR EACH PATH DO <trigger action>

XTrigger: XML database trigger 9

Fig. 9 Trigger SI GN example
scenario

Fig. 10 Trigger SI GP example
scenario

in case of a single context node, to that node only. So, given
the case that there are n context nodes when the trigger fires,
$old and $new will contain a set of n nodes. The availability
of these transition variables is identical to the SIGN trigger.

Trigger execution multiplicity

– Single execution on single document if context nodes ≥ 1

This is independent of how many context nodes were
identified. So even if there are many context nodes of the
same type, the trigger will still only be fired a single time.

Example The example used to demonstrate the SIGD trig-
ger in action is the same as for the example used for the
SIGN trigger. However, there is a significant difference.
First, consider the scenario in Fig. 11, the insertion oper-
ation in Listing 1, and the SIGD trigger example in List-
ing 5. As pointed out in the figure by the perforated ellipse,
the trigger will be executed once for all the context nodes
and its transition variable $new will contain the set of these
context nodes. The contents of the $new variable are shown
in Listing 6.

Listing 5 Trigger SI GD example code

ON INSERT BELOW fn :
document(<XML doc 1>)/ root /2
IF <trigger condition>
FOR EACH DOC DO <trigger action>

Listing 6 Content of $new transition variable

<(node 5)>
. . .
</(node 5)>
<(node 6)>
<(node 8)> . . . </(node 8)>
<(node 9)> . . . </(node 9)>
<(node 10)> . . . </(node 10)>
<(node 11)> . . . </(node 11)>
<(node 12)> . . . </(node 12)>
</(node 6)>
<(node 7)>
. . .
</(node 7)>

10 A.H. Landberg et al.

Fig. 11 Trigger SI GD example
scenario

4.4 Trigger SIGD

The trigger class SSG∗ includes all schema-scope triggers
SSGN , SSGP , and SSGD . The differences between the trig-
gers in this class are the same as the instance-scope triggers’,
and therefore it is not necessary to discuss each individual
type by itself within this section.

Scope SSG∗ triggers can be applied to a collection of
XML documents, rather than to a single document instance
(SIG∗ triggers). To specify the scope of this trigger type, the
collection of documents must be specified. This is done by
supplying the trigger with an XML schema definition.

Granularity Because SSG∗ triggers can be seen as a col-
lection of SIG∗ triggers, the concept of granularity is the
same. The only difference is that the SSGN trigger can pos-
sibly be fired after modifications on various XML docu-
ments as opposed to a single document.

Transition variables With equivalent granularity behaviour
as SIG∗ triggers, the concept of the transition variables is
mostly equivalent, too. Given the case that there is a collec-
tion of 100 documents C = {d1, d2, . . . , d99, d100} that have
a common schema, and there is an SSG∗ trigger that has
been applied to this schema. Now given the case that some
modification is being made to d86, the user that implements
the trigger needs a way to identify the context instance. To
do this, an additional transition variable $doc is introduced
that holds the instance name of the respective context in-
stance.

Trigger execution multiplicity Refer to the SIG∗ trigger
class’ execution multiplicity section.

Example Figure 12 illustrates the example that was already
explained in the “Transition variables” part of this section.
To point out the usefulness of this trigger class, the scenario

Listing 7 Trigger SSGD

ON INSERT fn: schema(<XML schema 1>)
IF \$doc != null
FOR EACH DOC DO <increment
the document counter>

Listing 8 Trigger SSGP

ON INSERT BELOW fn: schema(<XML
schema 1>)/root/2
IF \$doc > ’ doc 99 ’
FOR EACH PATH DO <record all paths
into a path index table>

Listing 9 Insertion of new XML document

INSERT DOCUMENT ’doc101. xml ’

Listing 10 Insertion of new nodes

INSERT BELOW fn:
document(’doc101.xml’)/root/2
’<(node 5)> . . . </(node 5)>
<(node 6)> . . . </(node 6)>
<(node 7)> . . . </(node 7)>’

considers two consecutive operations O1 and O2 on the col-
lection C of documents described by schema s1. Two SSG∗
triggers SSGD and SSGP are being applied to s1 and will
monitor document—and node insertions.

First, a new document d101: ‘doc101.xml’ is to be in-
serted into the database. This document has s1 associated to
it. Then, three new nodes will be inserted into that document.
SSGD and SSGP monitor insertion of new documents and
insertion of new nodes for the above mentioned collection
specified by s1. Listing 7 and Listing 8 show the triggers.
Listing 9 and Listing 10 show the operations performed on
the database.

O1 will trigger SSGD . The trigger’s event states insertion
of documents that conform to s1. As d101 has this schema

XTrigger: XML database trigger 11

Fig. 12 Trigger class SSG∗
example scenario

associated to it and trigger SSGD’s condition holds true (the
document name is not null), SSGD is executed.

For the second operation, O2, three nodes are inserted be-
low node 2. This insertion operation triggers SSGP , whose
event path matches the insertion path. Hence, the trigger
will be executed for each context path of the newly inserted
nodes. As all inserted nodes are leafs, there will be three
context paths considered by the trigger.

4.5 Trigger SSLG∗

The trigger class SSLG∗ includes all schema-less scope trig-
gers SSLGN , SSLGP , and SSLGD . The differences between
the triggers in this class are the same as the instance-scope
triggers’, and therefore it is not necessary to discuss each
individual type by itself within this section.

Scope The class of SSLG∗ triggers can be regarded as an
extension to the SSG∗ trigger class. It applies to documents
that have no schema associated to them as well as to docu-
ments that have an associated schema, i.e. to all documents.

Granularity The concept of granularity is identical to the
SSG∗ trigger class’.

Transition variables Identical to the SSG∗ trigger class’.

Trigger execution multiplicity Refer to the SIG∗ trigger
class’ execution multiplicity section.

5 XML trigger execution

After this classification, it can be observed that there are cer-
tain similarities and hierarchical ordering among the trigger
types.

For each level of granularity, the trigger scopes are hier-
archical (see Table 2). Therefore, for each granularity level
that is chosen, the scope can be selected from the above ex-
plained. The hierarchical ordering of scope levels is from
left to right, where instance scope is below schema and
schema-less scopes.

For each level of scope, the trigger granularity is hierar-
chical (see Table 3). Node granularity is hierarchically be-
low path granularity, which again is hierarchically below
document granularity. Therefore, for each scope level that
is chosen, the granularity can be selected from the above ex-
plained.

5.1 Execution order

The hierarchical ordering of triggers can now be illustrated
as follows (see Table 4). This is also the recommended exe-

12 A.H. Landberg et al.

Fig. 13 Trigger execution order

Table 2 Scope hierarchy

Granularity Trigger scope

Instance Schema Schema-less

Node

Path → Scope hierarchy →
Document

Table 3 Granularity hierarchy

Granularity Trigger scope

Instance Schema Schema-less

Node

Path ↓ Granularity hierarchy ↓
Document

Table 4 Execution hierarchy

Granularity Trigger scope

Instance Schema Schema-less

Node

Path ↘ Execution hierarchy ↘
Document

cution hierarchy for triggers that are fired simultaneously in
response to the same update operation. It is desirable to ex-
ecute the trigger types according to their hierarchical order-
ings from low to high, such that the updates are performed
on the smallest grain of data first (node) and then on paths
(sets of nodes) and documents (sets of paths).

In the following scenario there are 6 documents in the
database. Documents 1–3 do conform to a schema defini-
tion, where documents 4–6 have no schema associated to
them. Trigger SSG∗ is a schema-scope trigger, which means
it applied to documents 1–3. Trigger SSLG∗ applies to all
documents that have no schema associated to them. Trigger
SIG∗ is an instance-scope trigger which has been applied to
document 3.

It is assumed that SSG∗, SIG∗, and SSLG∗ have identical
events and conditions. This means, that for a given update
operation on document 3, they will fire simultaneously. In
such a case, it is necessary to identify the order in which the
different types of trigger will be executed. If the conflicting
triggers are of the same type, it does not matter in which
order they are executed. The below scenario only specifies
the scope level of the triggers. For simplicity, the granularity
it omitted.

In Fig. 13, document 3 is affected by three triggers dur-
ing an update operation. All triggers are fired in response
to the update. According to the execution hierarchy, trigger
SIG∗ will be executed first, then trigger SSG∗, and last trig-
ger SSLG∗.

6 Implementation and case study

Figure 14 gives a rough overview over the components that
were necessary to realise the XML trigger support proto-
type. The user interface component was added in to make
interaction with the database and the trigger functionalities
easier and better visible to the user. The BDB XML com-
ponent represents the Oracle Berkeley XML database [15]
which can be accessed by the XML trigger support system
using the BDB XML Connection component. It was neces-
sary to develop two parsers in order to support (i) the XML

XTrigger: XML database trigger 13

Fig. 14 Trigger support system
architecture

trigger syntax (to create a new XML trigger) and (ii) the up-
date syntax which had to be adjusted to be more suitable for
the system.

Although the main functionalities all are carried out
by the XML trigger engine component, several additional
classes with helper- and utility methods were developed to
support the XML trigger functionality. Figure 15 shows a
screen shot of the interaction with the command line prompt
when creating a new XML trigger.

The communication between the components works as
follows. After the user enters a command which is recog-
nised by the system, it is sent to the parser component for
further processing. If the user has entered a trigger cre-
ate statement or a database insert- or delete statement, the
parser will return the respective trigger- or query object. This
parsed input is then passed to the XML trigger engine which
determines the type of database operation and initiates asso-
ciated trigger processing. When data needs to be analysed or
evaluated which resides in the database, then the BDB XML
Connection component is invoked. It has methods that en-
able access to the XML database (represented by the BDB
XML component) in various ways.

The XML trigger engine is the core component of the
XML trigger support system. Its main functionalities in-
clude the detection of triggers that can be fired in response
to an update statement, the evaluation of these possible trig-
gers, and the execution of triggers whose evaluation was
successful.

Implementation tools and system The prototype is imple-
mented in JAVA SE 5.0 and utilises an existing API to inter-
act with the Berkeley XML database. The Eclipse IDE 3.2.2
was used to develop the system.

6.1 Case study

Product information for a large online-shopping website is
stored in an XML database. For each product, there is one
XML document. Particular information, such as the product
name and price, is often retrieved separately so that sub-
scribers to this service can make price comparisons with
similar products. One document in the catalogue is used
to promote lowest-price products. Hence, it is necessary to
keep this document up-to-date, whenever new products are
added or old products are taken out of the visible catalogue.

Another important task of the database system is to main-
tain a collection of meta-data keywords for each product.
Preferably, the extraction of keywords is done automatically

Fig. 15 Create a path-level XML trigger

Listing 11 Validate product ID SSGN trigger

1 INSERT XMLTRIGGER
validateProductIdTrigger

2 ON insert OF schema
(‘ProductCatalogue.xsd’)
/ProductPage/FeatureProduct

3 IN product.dbxml
4 IF true
5
6 DO FOR EACH NODE
7
8 IF (substring(\$new [@id], 1, 3)
!= ‘PRD’)

9 THEN RAISE_ERROR()
10
11 END TRIGGER;

upon new product insertion. Figure 16 illustrates the case
study. Further, it must be ensured that the format of the
product ID is correct. To maintain and check the complex
constraints on this database, we create five XML triggers
that monitor insertions, updates, and delete statements to the
database.

Triggers The first trigger validateProductIdTrigger (List-
ing 11) ensures that the format of the product ID is correct
and starts with the three capital letters ‘PRD’. When new
products are inserted into the database, this trigger is exe-
cuted for each FeatureProduct node that is inserted, and its
ID is validated. If the validation fails, an error is raised.

The second trigger alertBargainTrigger (Listing 12)
checks if a new product was inserted into the lowest prices
document. For each newly inserted product, the trigger

14 A.H. Landberg et al.

Fig. 16 Product catalogue
scenario

Listing 12 Alert when a new lowest price product is inserted SI GN

trigger

1 INSERT XMLTRIGGER alertBargainTrigger
2 ON insert OF doc(‘LowestPrices.xml’)/
3 IN product.dbxml
4 IF true
5
6 DO FOR EACH NODE
7
8 IF (\$new/ProductPage/FeatureProduct
/PriceRange[@min]

9 < doc(‘LowestPrices.xml’)
/PriceInfo/MinPrice)

10 THEN SEND_BARGAIN_ALERT ()
11
12 END TRIGGER;

sends a notification alert if the price of the inserted prod-
uct has the currently lowest price.

The third trigger updateMetadataTrigger (Listing 13) is
a path-level trigger that monitors insertions of new product
records and then extracts the content of each context path’s
text node. This extracted value is then inserted into a docu-
ment that records products’ meta-data.

The fourth trigger updateLowestPricesTrigger (List-
ing 14) is an document-level trigger (SSGD) which retrieves
the minimum price attribute from the product’s price range
and makes a check against a document which stores lowest
and highest prices. If the minimum price of the newly in-
serted product is the lowest, then it will be replaced and a
new version of the lowest-prices document is created.

The fifth trigger returnToPrevVersionTrigger (Listing 15)
monitors documents deletions in the database. If the product
is deleted whose price is listed as the lowest one in the price-
info document, this deletion must either (i) be prevented
and the next higher layer (e.g. application layer) must be in-
formed, or (ii) the lowest-price document is set back to the
previous version. In this scenario the trigger will raise an ap-
plication error. The granularity of this trigger is document-
level (SSGD).

Listing 13 Update meta-data SSGP trigger

1 INSERT XMLTRIGGER
updateMetadataTrigger

2 ON insert OF doc(‘ProductPage.xml ’)
/ IN product.dbxml

3 IF true
4
5 DO FOR EACH PATH
6
7 \$id = \$new/ProductPage

/FeatureProduct[@id]
8
9 INSERT NODE doc(‘ProductMetaData’)

/Products/
10 Product[@id = \$id]/Keyword
11 <Keyword>
12 \$new/ProductPage/descendant::text()
13 </Keyword>
14
15 END TRIGGER;

Evaluation The insertion of a new product document
caused the path-level trigger updateMetadataTrigger to ex-
ecute n number of times, where n is the number of context
paths that were identified for the context node. For each
of the paths, the text node was extracted and its content
recorded.

The updateLowestPricesTrigger trigger that was fired in
response to the insertion caused a new version of the lowest-
prices document to be created and at the same time the alert-
BargainTrigger trigger sent a notification because the prod-
uct inserted had the lowest price that had been recorded to-
date. The XML data from the old version was written into
a new file, and the file was then modified, i.e. the price was
updated.

The delete operation caused the returnToPrevVersion-
Trigger trigger to be fired. The version of the current lowest-
price document was detected and then deleted. Then, the
previous version of that document was copied to become the
current version.

XTrigger: XML database trigger 15

Listing 14 Update low prices SSGD trigger

1 INSERT XMLTRIGGER
updateLowestPricesTrigger

2 ON insert OF schema
(‘ProductCatalogue.xsd’)
/ IN product.dbxml

3 IF doc(’ LowestPrices .xml’)
/ PriceInfo / MinPrice

4 [. <\$ new/ProductPage/FeatureProduct
/PriceRange[@min]]

5 DO FOR EACH DOC
6 \$ version = doc (’LowestPrices’)

/PriceInfo[@version]
7 COPY (doc(’LowestPrices’)) doc

(’LowestPrices_v’ + \$version)
8 \$version += 1
9 UPDATE ATTRIBUTE
10 doc (’LowestPrices.xml’)

/PriceInfo[@version] = \$version
11 DELETE doc(’ LowestPrices ’)

/PriceInfo/MinPrice
12 INSERT doc(’ LowestPrices ’)

/PriceInfo/MinPrice
13 <MinPrice prodIdRef =

’\$new/ProductPage
/FeatureProduct[@id]’>

14 doc (’LowestPrices.xml’)
/PriceInfo/MinPrice/text()
</MinPrice>

15 END TRIGGER;

Listing 15 Return to previous version SSGD trigger

1 INSERT XMLTRIGGER
returnToPrevVersionTrigger

2 ON delete OF schema
(’ProductCatalogue.xsd’)
/IN product.dbxml

3 IF doc(’LowestPrices’)/ PriceInfo
/ MinPrice

4 [.= \$new/ProductPage/FeatureProduct
/PriceRange[@min]]

5 DO FOR EACH DOC
6 \$ version = doc (’LowestPrices’)

/PriceInfo[@version]
7 DELETE DOCUMENT doc(’LowestPrices’)
8 \$version -= 1
9 COPY (doc(’LowestPrices’

+ \$version)) doc (’LowestPrices’)
10 END TRIGGER;

7 Experimental Performance Evaluation

In this section, we evaluate the effectiveness of the pro-
posed trigger methodology. We compare it to a traditional
approach, whereby the trigger is replaced by a sequence
of manual XQuery updates. The following figures show
how the comparison is made against manual XQuery up-
dates which perform similar or the same functionality. As
can be seen, the traditional approach requires context path
traversals of all possible context nodes. In the new method,
the context node is known, and using our proposed trigger
methodology, the trigger will only be executed on the rele-
vant context paths.

We compare the two approaches by running queries
against individual XML documents. The reason why we
tested against individual documents is so that we could have
a fairer comparison with a manually implemented XQuery
approach. Further, we decided to perform our comparisons
on the lowest scope level (instance scope) because a test on
multiple document instances would result in an equal in-
crease in cost for both approaches. Thus, a comparison on
a document-collection can be deduced by multiplying the
cost of processing a single document by the number of doc-
uments in the collection, given that the cost of processing
each document is the same.

The tests described in this section were conducted using
the above described implementation of a trigger engine on
a machine equipped with a 2.0 GHz Intel Pentium M 760
processor and 1 GB DDR2 memory, running Windows XP
professional as operating system.

As there is no trigger functionality available in existing
XML databases, we used our developed trigger engine that
incorporates path-level granularity as well as the above sug-
gested XML trigger syntax.

We used a set of eight equally structured XML docu-
ments, all of which had been generated from the SIGMOD
Record that is available online. The largest set contained
n = 23047 nodes, the next largest 7

8n nodes, until finally the
smallest set contained n

8 nodes.
The queries and triggers were divided into three test

groups.
In the first group, a trigger was applied to the context

node, and all queries were executed on the root node, such
that the number of context nodes was equal to 1, and the
number of context paths was equal to n, where n is equal
to the number of leaf nodes in the document. In the second
group, the trigger was applied to an intermediate node, and
test queries were executed such that we generated various
ratios of actual context nodes versus possible context nodes.
In the third group, triggers were applied to leaf nodes, and
therefore, executing queries resulted in a number of context
paths equal to 1.

This test configuration allows us to thoroughly test the
path-trigger against a traditional alternative method in all

16 A.H. Landberg et al.

Fig. 17 Actual/possible context nodes ratio vs. cost

possible scenarios, and to analyse how both methods per-
form.

The major advantage of the XML trigger approach is that
it identifies actual context nodes on compile-time, as op-
posed to the traditional approach, where context nodes are
identified on query-time. In order to make the difference
between the two approaches more clear, refer to the two
graphs in Fig. 17. They represent normalised ratios of ac-
tual/possible context nodes (A/P.CN), and the related com-
putational cost (Cost). The cost curve in this figure repre-
sents the additional computational cost that the traditional
approach would require as opposed to the new path-trigger.

Graph A/P.CN is created by choosing an arbitrary num-
ber of (intermediate) context nodes from the smallest doc-
ument by querying for example /SigmodRecord/issue/ar-
ticles/article [authors/author=‘Michael Stonebraker’], and
then querying all other documents in such a way that the
number of actual (identified) context nodes stays constant.
This means that with growing document sizes and constant
number of actual context nodes, the ratio actual/possible
context nodes will decline.

The graph that represents the cost is opposite propor-
tional of the former graph, and represents the expected per-
formance differences between the approaches. With declin-
ing ratios A/P.CN, the computational cost will exponentially
increase for the traditional method, as no context nodes are
known in advance, and an increasing number of redundant
node checks need to be performed.

Figure 18 shows the result of the first set of experiments,
as previously described for scenario 1. Here, we choose the
root node to be the context node. This scenario is an excep-
tional case, as none of the approaches clearly outperform
each other. The reason for this is that the ratio A/P.CN is 1,
and therefore we don’t expect any large differences in per-
formance. Nevertheless, we observe that our approach per-
forms slightly better. This is due to the more effective way
of identifying and assembling context paths at trigger exe-
cution. The XML trigger can do context path identification

Fig. 18 Context node is root node

Fig. 19 Context node is intermediate node

on compile-time, so this is the cost difference that is visible
in the graphs.

The second scenario is tested, and its results are displayed
in Fig. 19. The x-axis describes a decreasing A/P.CN ratio
for test documents 1 to 8, and we can now start to see the
resemblance with our expected outcomes from Fig. 17. An
intermediate node has been chosen to be the context node,
and with an increasing number of sibling nodes that are pos-
sible (before trigger evaluation), but not actual (after suc-
cessful trigger evaluation) context nodes, the performance
gap grows larger.

Our test results for the last scenario are given in Fig. 20,
where the context node is a leaf node, and therefore, the
number of context paths and decreasing A/P.CN ratios, the
XML trigger clearly outperforms the traditional approach,
and our test results show the closest resemblance with our
expected graph in Fig. 17. The reason for this is that the
traditional approach requires traversing all possible context
nodes, all which are leaf nodes, and leads to a very clear ex-
ponential growth in cost. On the other side, the XML trigger
stays almost constant in cost as opposed to the traditional
method, and even performs better than in scenario 2.

Figure 21 summarises the resulting graphs of the test sce-
narios, and shows the performance patterns of the traditional
and new approaches. It can be observed that for XML trig-

XTrigger: XML database trigger 17

Fig. 20 Context node is leaf node

Fig. 21 Performance patterns

gers that operate on leaf and intermediate nodes give the
largest difference in performance when being executed. Leaf
nodes are usually the nodes where the actual data is stored,
and therefore are queried most often, followed by interme-
diate nodes, which represent aggregations or summaries of
the underlying data. For this reason, the XML path-trigger
is much preferred, as its performance addresses especially
these node types.

Summarising the above graphs, it can be said that if the
number of context nodes for which the trigger executes is
equal to the number of possible context nodes, the traditional
method performs nearly at the same efficiency, as nearly no
redundant traversals and node checks are necessary. How-
ever, with increasing difference between possible context
nodes and identified context nodes, the new method clearly
outperforms the traditional approach.

8 Related work

This chapter provides a summary of the literature review that
was conducted in the area of XML triggers. Besides a very
limited amount of previous research in this new area, the
review confirmed that several aspects of XML triggers had
not been covered in enough detail and some aspects had not

been considered yet. In the following sections the literature
review’s findings are summarised and discussed according
to a set of predefined criteria.

Trigger granularity Despite the big differences between
relational and XML data, the levels of granularity were
almost directly adopted from the relational model by all
existing literature. What is in the relational context row-
level and statement-level has now become node- level and
document-level granularity [5]. Some approaches refer to
document-granularity as set-granularity [8] or statement-
granularity [6]. Another group only addresses the node-
level granularity for the reason of simplicity in presenting
the approach [7, 16]. Although different terms are used, they
describe one and the same thing. So is the node level trig-
ger equivalent to the row-level trigger and the document-
or set-level trigger equivalent to the statement-level trig-
ger, for XML and relational contexts respectively. Further
granularity levels, such as the path-granularity, are not dis-
cussed by any previous research works. In a previous paper,
we proposed path-granularity, however, not in conjunction
with the notion of trigger scope [17]. Also, in this paper we
have further elaborated the implications on extending XML
triggers with the combination of path-granularity and scope,
which includes the execution hierarchies and classifications
of XML triggers.

Transition variables The largest group of works refers
to the trigger’s transition variables as old and new (or
old_node and new_node) [6–8, 16]. In each case, these
variables represent the affected nodes before and after the
update operation has taken place. One approach remains
where a single transition variable $delta is used [5].

A rather unusual way of dealing with transition vari-
ables is introduced in [5], which also has a remarkable way
of dealing with the distinction between different levels of
granularity. First, the paper introduces the transition vari-
able $delta, which represents the set of nodes that was in-
serted/deleted by the simple XPath expression e in the event
part. $delta is available in both the condition and action
parts. Depending on whether the variable is being used or
not, the trigger is said to be of node-level or document-level
granularity, respectively.

Other approaches [6, 7] have the same set of transition
variables for both node and document level granularities.

The types of transition variables that are available in a
trigger, depends on the type of the trigger itself. Conceptu-
ally, this is similar to the relational database triggers, where
for example an INSERT trigger only has the :new transi-
tion variable, which holds the value of the newly inserted
data. With XML triggers, this concept has been adopted by
the majority of approaches. However, some strategies in the
choice of transition variables, such as for example Bailey et

18 A.H. Landberg et al.

Table 5 Comparison of existing XML trigger approaches

[8] [16] [5] [6] [7]

Trigger structure

Event-Condition-Action
√ √ √ √ √

ECA plus additional components X X X
√ √

Granularity

Node-level
√ √ √ √ √

Document-level
√

X
√ √

X

Considers node relationships X X X X X

Trigger execution

Update decomposition X X X
√

X

Compile-time analysis X X X X
√

Trigger scope

Instance scope
√ √ √ √ √

Schema scope X X X X X

Other levels of scope X X X X X

al. [5], are not very efficient, because they only provide a
single type of variable. The drawback of this is that it can-
not be distinguished whether this transition variable refers to
new or old data. Another shortcoming is that it is unusable
for the distinction between node and document granularity,
because for node granularity the transition variable must be
a set of document nodes, whereas for document granularity
the transition variable is an XML subset (subtree).

Scope One limitation that has been overseen by all ana-
lysed literature is found in the context of the trigger’s scope.
The scope levels that have been proposed so far are incom-
plete as they do not address the fact that a trigger may not
only be applied to document instances, but may well be ap-
plied to a schema (if existent) as well. A “multi-document”
support is not possible with existing trigger techniques,
which means that a trigger does not yet have the functional-
ity to be applied to a collection of XML documents.

Triggers in general represent an important factor to add
a dynamic and reactive feature to database systems. It has
been found that not only traditional tasks of the XML trig-
ger are in demand, such as enforcement of constraint vio-
lations and view updates. New application domains such as
the support of business rules in applications are increasingly
popular for XML triggers. The analysis of recent research
in the area of triggers for XML databases shows that there
are some unresolved problems which may be the reason that
there is still no standardized XML trigger. A summarising
comparison is shown in Table 5.

This research paper has proposed methods to fill in these
gaps and made a contribution to the field of XML triggers.

9 Summary and future works

This paper has proposed two new concepts for XML trig-
gers, namely path-granularity and scope. Resulting from
these novel XML trigger extensions, we have constructed a
categorisation of trigger types, and have introduced a formal
model to express them.

Path-granularity adds a further level of fine-grained doc-
ument segmentation during trigger execution, by which hor-
izontally related ancestor and descendant nodes are bound
to context-paths and can be accessed and manipulated when
the trigger is fired.

Trigger scope is an extension that enables XML triggers
to be applied to more than one document. A trigger can
be applied to document instances and schemas. In the lat-
ter case, the trigger applies to all documents that have the
schema registered.

We have analysed and evaluated our approach in respect
to the execution strategies that will govern the different trig-
ger types, and implemented a prototype trigger execution
engine. Finally, a performance evaluation discusses test re-
sults of the new trigger types against traditional methods.

Future work involves optimising the context-path detec-
tion and further exploring application areas where the path-
level granularity and trigger scope can be effectively used.

The conclusion of this paper is, that the proposed con-
cepts of XML trigger granularity and scope have proven to
be a beneficial to XML trigger approaches, and it can im-
prove the robustness and integrity of XML databases.

References

1. Eswaran KP (1976) Specifications, implementations and interac-
tions of a trigger subsystem in an integrated database system. Tech
rep, IBM Research Report RJ 1820, IBM San Jose Research Labo-
ratory, San Jose, California

2. Ceri S, Cochrane R, WidoM J (2000) Practical applications of trig-
gers and constraints: Success and lingering issues (10-year award).
In: VLDB. Morgan Kauffman, San Mateo, pp 254–262

3. Fan W, Siméon J (2000) Integrity constraints for XML. In: PODS.
ACM, New York, pp 23–34

4. Fan W (2007) XML publishing: Bridging theory and practice. In:
DBPL. Springer, Berlin, pp 1–16

5. Bailey J, Poulovassilis A, Wood PT (2002) An event-condition-
action language for XML. In: WWW. ACM, New York, pp 486–
495

6. Bonifati A, Braga D, Campi A, Ceri S (2002) Active XQuery. In:
ICDE. IEEE, New York, pp 403–412

7. Rekouts M (2005) Incorporating active rules processing into update
execution in XML database systems. In: DEXA workshops. IEEE,
New York, pp 831–836

8. Bonifati A, Ceri S, Paraboschi S (2001) Active rules for XML:
A new paradigm for e-services. VLDB J 10(1):39–47

9. W3C. W3c recommendations. Available at: http://www.w3.org/
TR/#Recommendations

10. Tatarinov I, Ives ZG, Halevy AY, Weld DS (2001) Updating XML.
In: SIGMOD. ACM, New York, pp 413–424

http://www.w3.org/TR/#Recommendations
http://www.w3.org/TR/#Recommendations

XTrigger: XML database trigger 19

11. Barbosa D, Mendelzon AO, Libkin L, Mignet L, Arenas M (2004)
Efficient incremental validation of XML documents. In: ICDE.
IEEE, New York, pp 671–682

12. Bailey J, Poulovassilis A, Wood PT (2002) Analysis and opti-
misation of event- condition-action rules on XML. Comput Netw
39(3):239–259

13. Grust T (2002) Accelerating XPath location steps. In: SIGMOD.
ACM, New York, pp 109–120

14. Jagadish HV, Al-Khalifa S, Chapman A, Lakshmanan LVS, Nier-
man A, Paparizos S, Patel JM, Srivastava D, Wiwatwattana N,
Wu Y, Yu C (2002) Timber: A native XML database. VLDB J
11(4):274–291

15. Brian D (2006) The definitive guide to Berkeley DB XML (Defini-
tive guide). Apress, Berkely

16. Bonifati A, Ceri S, Paraboschi S (2001) Pushing reactive services
to XML repositories using active rules. In: WWW. ACM, New
York, pp 633–641

17. Landberg AH, Rahayu JW, Pardede E (2007) Extending XML
triggers with path-granularity. In: WISE. Springer, Berlin, pp 410–
422

18. Wang F, Zaniolo C, Zhou X (2008) ArchIS: an XML-based ap-
proach to transaction-time temporal database systems. VLDB J
17(6):1445–1463

19. Marian A, Abiteboul S, Cobena G, Migner L (2001) Change-
centric management of versions in an XML warehouse. In: VLDB.
Morgan Kaufmann, San Mateo, pp 581–590

20. Ghelli G, Onose N, Rose K, Simeon J (2008) XML query opti-
mization in the presence of side effects. In: Proceedings of the 2008
ACM SIGMOD

21. Benedikt M, Bonifati A, Flesca S, Vyas A (2005) Verification of
tree updates for optimization. In: Lecture notes in computer science,
vol 3576. Springer, Berlin, pp 379–393

22. Landberg AH, Rahayu JW, Pardede E (2010) Privacy-aware ac-
cess control in XML databases. In: ADC. CRPIT, ACS, Washing-
ton, pp 85–92

Anders H. Landberg is a PhD can-
didate at the Department of Com-
puter Science and Computer Engi-
neering La Trobe University and is
supervised by Assoc. Prof. Wenny
Rahayu and Dr. Eric Pardede. His
research areas include Data Privacy,
Data Security, XML Databases, Health
Information Systems.

J. Wenny Rahayu is an Asso-
ciate Professor at the Department
of Computer Science and Computer
Engineering La Trobe University.
Her research areas cover a wide
range of advanced databases topics
including XML Databases and Data
Warehousing, Object-Relational Databases,
and Semantic Web and Ontology.
She is currently the Head of Data
Engineering and Knowledge Man-
agement Laboratory at La Trobe
University.

Eric Pardede is a Lecturer at the
Department of Computer Science
and Computer Engineering La Trobe
University. His current research ar-
eas include Data Modeling, XML
Databases, Data Quality, Informa-
tion Systems and Software Engi-
neering.

	XTrigger: XML database trigger
	Abstract
	Introduction
	Proposal
	Organisation

	Preliminaries
	Incorporating granularity and scope into triggers
	Granularity
	Definitions for trigger granularity
	Vertical and horizontal granularity
	Vertical node granularity
	Horizontal node granularity

	Trigger path methodology

	Scope
	Definitions for trigger scope
	Trigger scope methodology
	Instance scope
	Schema scope
	Schema-less scope

	XML trigger categorisation
	Trigger SIGN
	Scope
	Granularity
	Transition variables
	Trigger execution multiplicity

	Trigger SIGP
	Scope
	Granularity
	Transition variables
	Trigger execution multiplicity

	Trigger SIGD
	Scope
	Granularity
	Transition variables
	Trigger execution multiplicity

	Trigger SIGD
	Scope
	Granularity
	Transition variables
	Trigger execution multiplicity

	Trigger SSLG*
	Scope
	Granularity
	Transition variables
	Trigger execution multiplicity

	XML trigger execution
	Execution order

	Implementation and case study
	Implementation tools and system
	Case study
	Triggers
	Evaluation

	Experimental Performance Evaluation
	Related work
	Trigger granularity
	Transition variables
	Scope

	Summary and future works
	References

