
Computer Standards & Interfaces 37 (2015) 60–72

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i
XSDyM: An XML graphical conceptual model for static and
dynamic constraints
Norfaradilla Wahid a,b, Eric Pardede a,⁎
a La Trobe University, Australia
b Universiti Tun Hussein Onn Malaysia, Malaysia
⁎ Corresponding author at: Department of Computer Sc
La Trobe University, Bundoora VIC 3083, Australia.

E-mail addresses: nwahid@students.latrobe.edu.au (N
E.Pardede@latrobe.edu.au (E. Pardede).

http://dx.doi.org/10.1016/j.csi.2014.06.001
0920-5489/© 2014 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 29 November 2013
Received in revised form 6 June 2014
Accepted 25 June 2014
Available online 8 July 2014

Keywords:
Graphical
Modelling
XML
Dynamic constraints
Business rules
Datamodelling is not only important to visualise the structural schema of data, but also to show the intended in-
tegrity constraints. In this paper, we propose a modelling approach called XML Static Dynamic Modelling
(XSDyM).While a text-based schema definition is often themost commonmethod used to describe XML, graph-
icalmodelling ismore accepted as it is capable of visualising the schemadefinitionmore effectively for the reader.
Conveying the dynamic constraints on XML graphical model requires a special treatment as the constraints basi-
cally comprehend the state transitions. It is important for an XML modelling to keep the basis as precise as pos-
sible to satisfy the nature of XML and at the same time be able to represent the constraints in an effective way.
Using the XML tree-based modelling as the basis of the work, we proposed our own approach to convey the
state transitions of the constraints,where it is inspired from thewell-known state diagramand adopt some useful
features of ORMmodelling.We evaluate the correctness of our proposedmodelling using amodelwhich involves
the checking of model transformations between the modelling and the equivalent XML schema languages.
ience & Computer Engineering,

. Wahid),

1 Deontic rules im
not. For example: it
or no smoking is perm

2 Alethic rules imp
business, typically be
was born on at most
© 2014 Elsevier B.V. All rights reserved.
1. Introduction

XMLallows us tomodel information systems in a natural and intuitive
way and to express information tomatch the waywe do our business. In
the field of XML databases, modelling the structure of the data and their
integrity constraints is an issue that should be considered in XML re-
search. This is because XML has a unique structural nature that differs
from any other type of database format which usually can be modelled
using popular modelling tools like the Unified Modelling Language
(UML), Entity–Relationship Diagram (ERD), and Systems Modelling Lan-
guage (SysML). Anothermodelling tool that has become popular recently
is Object Role Modelling (ORM). Every modelling approach has been
proven to have its own strengths to handle different rules and constraints.

Data modelling is important not only to visualise the structural
aspect of the data, but also to show the intended integrity constraints
or semantics of the data. A large body of work has been conducted
e.g. [4,33,18] which particularly discusses not only the structure but
also the integrity constraints that XML data should have with regard
to business rules. XML data is often viewed as edge labelled graphs
or trees as the natural essence of the semi-structural model. But, as far
as we are concerned, none of the work on expressing XML constraints
proposes a proper modelling approach to convey the constraints.
A lot of effort has been expanded on expressing and maintaining
integrity constraints in XML. According to Ref.[23], constraints can be clas-
sified as static and dynamic. Almost all the existingworks on XML concern
static constraints anddiscuss the conditionof constraints at any time space.
A dynamic constraint is another type of constraint to express the condition
that involves facts/requirements between two and more states during
their transition within a given state space [30]. In a managerial context, a
dynamic constraint can be seen as representations of ‘real world’ con-
straints and business rules [7]. We suggest that, the dynamic constraints
come from soft rules while static constraints come from hard rules (both
frombusiness rules). In terms of business rulemodalities [9], dynamic con-
straints are mostly treated as deontic1 rather that alethic2 constraints.

Modelling dynamic constraints, particularly in XML, is a challenge
that we need to face. Different to static constraints, we need to focus
on visualising the state transition properties instead of only static
requirements at any particular state of time as is required in static
constraints. At the same time, the modelling should be able to convey
both types of constraints as dynamic constraints might be degenerated
from static constraints. Research in ORM is one of the most active areas
of research in modelling different data structures and different types
of constraints, including dynamic constraints. Unfortunately, the
pose obligations, which may be violated, even though they should
is obligatory that each employee is married to at most one person
itted in any office.

ose necessities, which cannot, even in principle, be violated by the
cause of some physical or logical law. For example: each employee
one date.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2014.06.001&domain=pdf
http://dx.doi.org/10.1016/j.csi.2014.06.001
mailto:nwahid@students.latrobe.edu.au
mailto:E.Pardede@latrobe.edu.au
http://dx.doi.org/10.1016/j.csi.2014.06.001
http://www.sciencedirect.com/science/journal/09205489

Fig. 1. Basic XML data on tree modelling.

61N. Wahid, E. Pardede / Computer Standards & Interfaces 37 (2015) 60–72
effectiveness of ORMcanbeovershadowedby the unnecessary complexity
of the model if it is to be implemented in XML. ORM is constructed from
the connections of entities and roles. Therefore, in order to convey XML,
we have to have roles for each connection between nodes. Ref. [5] showed
that althoughORMcan specify awide variety of data constraints, including
mandatory roles, uniqueness, subsets, exclusion, frequency and ring con-
straints, it fails to describe integrity constraints, which play an important
role in maintaining XML data. It is also hard to capture some specific
XML characteristics, such as order and hierarchical structure. Therefore,
based on this intuition,we believe that ORM is not the best tool to visualise
XML and its constraints.

Work has been conducted onmapping the ORMdesign into a compat-
ible XML Schema [3] in order to conform to the XML specifications and na-
ture. It is possible toobtain ausefulmatchingXMLbasedon theORM, but it
requires extra effort (based on the proposed work) including ‘anchoring’
and ‘fact type grouping’ between the elements and at the very least, re-
quires the creation of a dummy element to become the ‘root’ of XML
tree. They also addressed a few limitations or incompatibilities of the
ORM and XML Schema. Therefore, based on this discussion, we make an
assumption that, to ensure compatibility between the two of them, steps
must be followed since both are different in terms of structural strength
and properties.

It is well known that XML is typically visualised using a tree-based or
a graph-based modelling approach with the nodes conveying elements
and attributes while some vertices show connections between the
nodes as in Fig. 1. Without doubt, this is the most common method
used to visualise XML. We would like to maintain this simplicity and
at the same time be able to express more complex properties into the
model such as conveying the internal transition of the node states.

There is quite a large body of work on XML conceptual modelling. Ac-
cording to Ref. [5], thework can be categorized into three; i.e. (i) based on
ORM/NIAM [3], (ii) based on ER, e.g. ERX [24], XER [28], EReX [19] and
XSEM [21], (iii) based on a tree structure or graph, e.g. ORA-SS [16] and
GOOSSDM [26] and (iv) based on a Semantic net [25]. Even though
there is a selection of modelling for XML and a few are based on tree/
graph modelling, unfortunately none of the approaches provides a way
to convey a good range of integrity constraints, particularly for dynamic
constraints, although a few have the ability to model static constraints,
like inclusion dependencies and functional dependencies.

Research on collaborating the ‘state diagrams’ [29] and modality is
not new. It is actually well-known that the family of modal logics is
defined via graphs called Kripke structure.3This is basically a graph
whose nodes represent the reachable states of the system and whose
edges represent state transitions. A labelling function maps each node
to a set of properties that hold in the corresponding state. Temporal
logics are also traditionally interpreted using Kripke structures [13].

In this paper, we propose a modelling approach which will take
the XML tree-based modelling as the basis approach. Using this basis,
we retain a few useful features of ORM into our work as it has rich
modelling notations specifically for modelling the dynamic constraints.
We proposed the transition features on themodelling inspired from the
state diagram to visualise the dynamic constraints of the data.We called
it XML Static Dynamic Modelling (XSDyM). Therefore, the main contri-
bution of this paper is the proposal of a special modelling approach
which is useful for static and dynamic constraints in XML data.

1.1. Outline

The outline of this paper is as follows: Section 2 gives the background
of ORMand state diagram. In Section 3,we defined our approach together
with the related definitions and details. In Section 4,we present the trans-
formation rules between the modelling and XML grammar languages.
In Section 5, we show the correctness checking of our proposed approach
3 A variation of non-deterministic automaton proposed by Saul Kripke[17] used inmod-
el checking to represent the behaviour of a system.
based on thework in Ref.[20]. In Section 6, we provide a discussion of the
strengths and weaknesses of both ORM and our modelling approaches.
We conclude our paper in Section 7.
2. Background

Two concepts are essential in order to understand this paper i.e. the
notations of ORM and related XMLmodelling, and the definition of state
diagrams used in the paper. In later sections, we detail the modelling of
dynamic constraints using both approaches. We briefly introduce them
in this section.
2.1. Object Role Modelling (ORM)

We assume the readers are familiar with ORM so here we briefly men-
tion some basic features of the modelling environment. Interested readers
are invited to read [8,6,10] for the full specification of ORM and ORM 2.

Object RoleModelling (ORM) is a conceptualmodellingmethod that al-
lows the semantics of a universe of discourse to be modelled at a highly
conceptual level and in a graphical manner. It has been used commercially
for more than 30 years as a database modelling methodology, and has re-
cently become popular in many areas such as ontology engineering, the
modelling of business rules, XML-Schemas, datawarehouses, requirements
engineering, and web forms. ORM has an expressive and stable graphical
notation. It supports n-ary relations and reification, as well as providing a
fairly comprehensive treatment of many “practical” and “standard” busi-
ness rules and constraint types. Furthermore, compared with, for example,
EER or UML, ORM's graphical notation is said to be more stable since it is
attribute-free; in otherwords, object types and value types are both treated
as concepts. ThismakesORMimmune to changes that causeattributes tobe
remodelled as object types or relationships. ORM also offers the automatic
verbalization of the diagram into pseudo-natural language sentences.
From a methodological viewpoint, this verbalization capability simplifies
communicationwith non-IT domain experts and allows them to better un-
derstand, validate, or build ORM diagrams.

In Fig. 2.1, we show a few basic components of ORM and thenwe show
aminimal example of an ORMmodel in Fig. 2.2. Based on the example, we
have some relationships between entities Country, Person, University and
Gender shown in soft rectangles. The relationship between the entities is
recognized by the existence of role boxes accompanied by the role names
to connect the entities. For example in the figure, a connection between
the entities Person and University is a role “graduated from”. As mentioned
earlier, ORM offers a wide range of notations to express business rules and
constraints. Some are uniqueness constraints, mandatory role constraints,
set-comparison, exclusive-or, frequency and value constraints, ring con-
straints, etc. To illustrate the value constraints, we show in the figure the
textual (value) of ‘M’ and ‘F’ noted in curly braceswhichmeans that a Gen-
der can only exist between these two values. On the other hand, the dark

Fig. 2. (2.1) ORM basic notations. (2.2) ORM example of an employment information model.

62 N. Wahid, E. Pardede / Computer Standards & Interfaces 37 (2015) 60–72
circle notations attached on the entity Person illustrates themandatory role
in its connection with Country.

2.1.1. ORM and dynamic constraints
Based on the proposed work by Halpin in Ref. [12], we require the

use of textual constraints as the language to convey the dynamic con-
straints. Textual constraints may be noted on the diagram by footnote
numbers, with the textual reading of the constraints provided in foot-
notes that can be both printed and accessed interactively by clicking
the footnote number. There is still no standard to define dynamic
constraints and we have to rely on the textual constraints. We show
an example of using textual constraint in Fig. 3.

As XML is simply formed by connecting element nodes and attribute
node, adding additional textual information on the model may appear
awkward. Therefore in [31], we shows our approach of conveying
dynamic constraints usingORM,by simply showing the transitionsof states
using a unary role called updates to show that there is a possible transition
within that particular entity (refer Fig. 4). Since thework is on object com-
position,we differentiate the object entity using an old notation of ORM. As
the constraints become bigger, the modelling will see relatively complex
roles and relationships in order to model dynamic constraints.

Hence, in our opinion, to model an XML document using ORM is a
daunting task as it is necessary to create roles on every connection of
nodes, hence the model will become unnecessarily complex more
than the normal XML tree model.

2.2. The state diagram

A state diagram is a type of directed graph used in computer science
and related fields. They are used to give an abstract description of the be-
haviour of a system. This behaviour is analysed and represented in a series
of events, which could occur in one or more possible states. Each diagram
usually represents objects of a single class and tracks the different states of
its objects through the system.

State diagrams have been popular to graphically represent finite
state machines. In more specific work, the idea of state diagrams has
also been successfully used to illustrate the states an object can attain
as well as the transitions between those states in the Unified Modelling
Language (UML), where they are also called a state machine diagram or
state-chart diagram.
Fig. 3. An example of dynamic constraint modelling using ORM by Halpin [12].
Formally, we can define a state diagram to consist of a set of states,
S, a set of actions A and a transition function δ that maps out the edges
of the graph, i.e. shows how actions result in state changes. Each edge
of the state diagram shows what happens when you are in a particular
state s and executes some actions a, i.e. which new state s could be in.

An input δ is a pair (s, a) of a state and an action. In some applica-
tions, there is only exactly one new state that could result fromapplying
action a in a state s. For these applications, we can give δ the type signa-
ture δ : S × A → S. However, in some state diagrams, it might not be
possible to execute certain actions from creation states. When we
need to support these possibilities, each output of delta must be a set
of states. So the type signature δ : S × A→ P(S).

State diagrams of various sorts, and constructs similar to state dia-
grams, are used in a wide range of applications. Therefore, there are
many different sets of terminologies for equivalent and/or subtly differ-
ent variations on this idea. In particular, when a state diagram is viewed
as an active device, i.e. as a type of machine or computer, it is often
called a state transition or an automaton. In automaton, start
Fig. 4. An example of our refined ORM to show a dynamic constraint of XML in [31].

image of Fig.�2
image of Fig.�3
image of Fig.�4

63N. Wahid, E. Pardede / Computer Standards & Interfaces 37 (2015) 60–72
states are also known as initial states while end states are usually called
end states or goal states.

Fig. 5 is a state diagram of automaton M. It has three states, labelled
q1, q2 and q3. The arrow pointing at it from nowhere indicates the start
state. The accept state q2 is the one with a double circle. The arrows
going from one state to another are called transitions.

3. Proposed modelling approach

Our proposed approach is inspired by the ability of state diagram
modelling to show state transitions in an easy way, but, the aim of our
paper is not to follow the semantic flow of automata as has been
discussed in a previous work on automata, logic and XML [22,27]. We
are aware of the fact that we need to follow some unique procedures
to achieve an interchangeable model of an XML tree and the automata
model. Therefore wewould like to make a restriction that our proposed
modelling approach only takes the essence of the state diagram ap-
proach and is based on the intuition of the tree modelling approach
with the existence of some events (transition).

The intention of our proposedXMLmodelling approach is to develop
a method where the user does not have to struggle between the trans-
formations of the normal XML-tree model to other modelling. The goal
is to keep themodelling based on the normal XML-treemodel but at the
same time, to offer more components to allow the expression of
constraints or rules on it, especially for dynamic constraints. We will
use the following definitions to support our notions of model.

Definition 1. Let tree T ¼ N; E; r;Σ;λð Þ be the XML tree in document D.

– N is a set of nodes.
– E ⊆ N × N is a set of edges.
– r is the root node.
– Σ is the set of element name appearing in D.
– There is a subset of Σ that associates with attributes att.
– λ is the labelling function that associates an element namewith each

node other than the root, where λ: L − {r} → Σ.

Therefore, we generalise the definitions above to suit our approach
and define the XSDyM tree as follows:

Definition 2. XSDyM tree, TM is constructed from 6 tuples where TM ¼
N; E; r;Σ;λ; S;ℜ; δð Þð Þ.
– (S,ℜ, δ) is a tuple set, which comes together in the case of the tran-

sition of states.
– S is the states. An n ∈ N associates with state S where nS ∈ S is the

state of n in the time space.
– ℜ is the set of rules and δ is the transition function, δ= S×ℜ, i.e. δ :

S × ℜ → S′.
– For each transition function δ there must be at least one rule ∈ ℜ.

If there exist no dynamic constraint(s) in tree TM, then (S, ℜ, δ) can
be an empty tuple where (S, ℜ, δ) = ϵ.

Definition 3. Let TS be a time space, where TS={ti|0 b i b x}. x is a finite
number and ti is a discrete time point. The transition function δ as in
Definition 3involves the move from the current state at a current time
Fig. 5.Well-known state diagram for automata theory.
point ti to a new state where Sti to Sti jSt j
n o

where tj is the new time

point and j = {(i + x)|(i − x)}. Therefore, S0 ¼ Sti jSt j
n o

.

In most common conditions, dynamic transitionmight occur in local
states, i.e. within the same node, n that is, the transition function is de-
noted for state nSti

→nSt j
. An example can be found in the earlier discus-

sion. There might be cases where we want to constrain the transition
between different nodes, from a state to another state i.e. nSti

→n0
St j

.

For instance the dynamic Functional Dependencies involve dynamic
dependencies of two different sets of nodes on the left and the right of
the equation (see [32]).

As explained in the Background section, very limited research has
been conducted on dynamic constraints, and currently ORM is the
most promising approach for dynamic rules. Therefore, as defined earli-
er, our approach is a unification of the XML treemodel with the essence
of the state diagram and utilizes some ORM components to strengthen
our model.
3.1. The modelling

3.1.1. An example conference paper data model
The implementation discussed in this paper is based on the “Con-

ference Paper” example presented in the Introduction of this paper,
i.e. see Fig. 1. The model of Conference Paper consists of two main
subtrees, i.e. Person and SubmittedPapersubtrees. For each Person
element, it contains the Authored Paper and Email Address. Authored
Paper also includes Paper Title and Status of the paper as the children.
Each Person will also has a Name attribute. On the other hand,
SubmittedPaper offers to list down all the Paper Titles that have
been submitted.

Using this example, we present the data and constraint modelling
using our notations as summarized in Tables 1 and 2. It is important
tomention thatwe also extend this datamodel with additional relevant
entities to suit our discussions below in particular for dynamic con-
straint modelling.
3.1.2. Entity type and relationships
As mentioned in Ref. [1], semi-structured database instances are

generally seen as a labelled graph. Labels are sometimes attached
to edges and sometimes to vertices. The labels are meant to convey in-
formation about logical data organization. Therefore, it is obvious that
we opt for the second choice w.r.t. labels corresponding to XML tags.

Table 1 presents the notations to convey themost basic component of
the XML tree, i.e. conveying the nodes. In our approach, we treat the en-
tities, i.e., the element and attribute nodes using different components.
The soft rectangle is used for elements and the oval is for attributes.
Therefore, in Fig. 1, it is shown that the element nodes are Conference
Paper, Person, Authored Paper, Email Address, Paper Title, SubmittedPaper
and Status, whereas there is an attribute for the element Person which
is Name.
Table 1
Basic XSDyM modelling components.

Component Description

Entity type
Element node of XML

Attribute node of XML

Relationship
Common element to element/attribute connections
Node referencing, or dependencies

image of Fig.�5
Unlabelled image
Unlabelled image
Unlabelled image

Table 2
XSDyM modelling component for dynamic constraints.

Component Description

Relationship arrow
The ‘s’ in the circle marks the state transition i.e.
to mark the transition function δ
Arrow connection line to another

C:n To be used together with state's circle, to
marked the restriction on the state counting or
the time-frame.

Dynamic direction
→ To mark future direction of dynamic state
← To mark history direction of dynamic state
↔ To mark both future and history direction of

dynamic state

Association
Union symbol to mark the union of nodes or a
node is a member of an object

−−−−−−− Connecting the association-ship symbol
ALL All of child/parent or sibling
FIRST The first of child/parent or sibling
LAST The last of child/parent or sibling
x x number of child/parent or sibling
CHILD/PARENT To mark child or parent of the aim node
SIBLING To mark sibling of the aim node

State constraint expression
i. State position, S Let sequence of states si − 1, si, si + 1

S
Current state, si

Ŝ
Goal state, depends on the dynamic direction
i.e. si − 1 or si + 1

ii. Changeability

DEL
Delete operation

INS
Insert operation

REP
Replace operation

iii. Special restriction (to support
changeability constraint)

ONLY
To mark uniqueness constraint

&&
AND operator

||
OR operator

!
NO operator

64 N. Wahid, E. Pardede / Computer Standards & Interfaces 37 (2015) 60–72
Meanwhile, the second section of the table lists all the connection
arrows in the modelling. The standard connection line to connect
between entities and attribute in the model will be straight lines,
while an arrowwith a dashed line is used to show the referencing or de-
pendencies between nodes where necessary. The connection arrows
shown in Table 2 will be used particularly for dynamic constraints and
will be discussed in the next subsection.

Fig. 6 shows aminimal example of static constraints. Since this paper
only focuses on dynamic constraints, we will avoid further discussion
on the modelling of static constraints. It is shown in the model that,
the Paper Title element node under Person sub-tree has made a value
reference to Paper Title under SubmittedPaper using the dashed line
arrow, i.e. it makes some value dependencies to another node value.
4 Context Free Grammar.
5 RCT ‘|’ bextN producesRCT | bextN, i.e.‘|’ stands for a vertical bar, not for anOR

logical disjunction.
3.2. Expressing the dynamic constraint

To provide away to express the constraints as precisely and simply as
possible, we propose a standard grammar to verbalize the constraints.
This will allow us to mark the constraints explicitly on the model when-
ever necessary and is more feasible than fully depending on textual
constraint as in ORM. Based on Definition 3, the rules, ℜ will mark the
constraints as the transition function δ occurs. The following is the tem-
plate for expressing constraints on transitions.

• Rule Context Transition, RCT for rulesℜ is the form to specify the details
of transition context and the related state changing requirement. It
can be written in two ways, i.e. (i) using Full Term, “context name
sÕs”, or (ii) using Simplified Term, “sÕs”.
context name refers to the element/attribute name and eO is the
connecting operator. The default for eO operator is “to”, but it might
come from any relevant binary operator. The context transitionℜ con-
struction is inspired from the‘ constraint expression’ in ORM.
Refer to Fig. 7 for an example of the modelling. Both figures in Fig. 7
can be described as a model to convey the dynamic constraint on
Salary value, where each updated value must always be a higher
value than the current Salary value, i.e. Salary value at the next state
must be higher than at the current state.

• Grammar of the rule ofℜ. If the complete rule is taken as a stringwhich
can be derived from ℜ of CFG4 below:
bruleN → RCT

bruleN → RCT ‘|’ bextN5

bextN → b extN ; bextN | enumeration sequence | change-

ability | dependability

bextN → ∈.

◊ enumeration sequence is to show the sequence of the allowed up-
date input based on the existing state. Fig. 8 is showing the example
of enumeration sequence of valid Status over time. We listed all the
valid conditions in the rule expression. For instance in this case,
valid Status changes include from Single to Married and fromMar-
ried to Divorced, whereas state transition from Single to Divorced
is not an allowed transition.

◊ changeability specifies update operation constraint, for example, we
need to show that some elements cannot be deleted or cannot be
updated on the query update operation. Refer to Fig. 10 where it
shows a case where deletion is not allowed on the nodes marked
by !DEL.

◊ dependability conveys any element node additional information
about referencing or dependencies. But, if the constraint isminimal,
the user can simply show the referencing using the dashed line
arrow (please see Table 1). For example onewants to denote a con-
straint is specifically Functional Dependencies, it can be marked by
the “FD” and can use the “key” or “non-key” for referencing. Details
on this will be captured in the future work.

• Rule expression of ℜ can be made using the template, [bruleN]. This is
the point where the user can choose to write the constraint as a refer-
ence by using a footnote writing style as used in ORMmodelling. But,
to allow this, we need to use the Full Term of context transition, RCT.

Using the template is rather straight forward. For example, to convey
a dynamic constraint “updating an age to smaller value is not acceptable”,
can simply be written as age : sbŝ½ �. In this case, age is the context name
whilesand ŝare the standard to note the current state and thenext state,
and b is the binary operator.

We include in this paper examples of using the modelling approach
for different requirements.

3.3. Dynamic constraint special features

3.3.1. Dynamic direction
In Ref. [23] the authors claimed that dynamic transition can occur in

different directions of temporality, i.e. future-based or history-based.
The first is to show the constraints of the next state while the second

Unlabelled image

Fig. 7. Different ways of conveying local dynamic constraints.

Fig. 6. Static referential constraints in XML.

65N. Wahid, E. Pardede / Computer Standards & Interfaces 37 (2015) 60–72
is to show the constraints based on the previous state. Therefore, we
differentiate these two conditions by using different directions of the
state arrow. Hence, in seOŝ notations, we have to make sure that s is
always the state of where the state transition started, while ŝ is the
statewhere itmoved to regardless of whether it is a future state or a his-
tory state. Notice that to convey the transition of states, we use a special
arrow marked with an ‘s’.

As seen in Fig. 9, we use an anti-clockwise arrow to express a
dynamic constraint on Salary which is based on the history state. The
constraint in themodel is saying that the current Salarymust be always
the same as with the previous ones for each transitionwhich occurs. On
the other hand, Fig. 7 shows a future-based constraintwhere the figures
use clockwise arrows on the models.

The dynamic directions accommodate Definition 3, where the new
state can be at tj where j = {(i + x)|(i − x)}. Therefore, if j = i + x
this means that the dynamic constraint is future-based, whereas if j =
i − x it is said to be history-based constraints.
3.3.2. The time frame
In the case of temporality, one might want to bind the constraints

to a certain count or time-frame. In our modelling, we use the C:n to re-
strict the state count and C:t to restrict the time-frame of the transitions.

For example, time : SbŜ
h i

C : n ¼ 3 says that the counting of the con-

straints is restricted to three states only, whereas, time : SbŜ
h i

C : t ¼
0800−1000f g specifies that the temporality of the constraints is be-
tween periods 0800 and 1000. We do not set any restriction on the
Fig. 8. Example of enumeration sequence on state transition.
time unit/measurement as it may differ according to business
requirements.

3.3.3. Constraint locality
In an XML environment, transitions of dynamic constraints may

occur locally within a specific node, i.e. local constraints, or could also
occur between different nodes, which we refer as non-local transitions,
i.e. non-local constraints. We believe that our modelling approach is ca-
pable of conveying both types of constraints. The following discussions
give a few related examples of using our modelling components, as
summarized in Table 2.

3.3.3.1. Local constraints. A local dynamic constraint is the condition
where the constraint is meant for one specific node or a group of nodes
without a “semantic dependencies” between them. Figs. 10 to 15 show
a variety of local dynamic constraint models.

Two examples of local constraints are the single node constraints
[30] and the cumulative node constraints [31]. All the figures in Fig. 7
to 9 are some examples of single node constraints. On the other hand,
Fig. 10 shows a modelling example of cumulative node dynamic
constraints as proposed in Ref. [31].

As the reader can see, the involved nodes are connected together
using dashed lines, whichmodel the cumulativity of the nodes (treated
as an object in Ref. [31]). An element node, a, is connected to the union
symbol with a ‘mandatory entity’ component (dark black dot) where it
Fig. 9. History-based dynamic constraints.

image of Fig.�7
image of Fig.�8
image of Fig.�9
image of Fig.�6

Fig. 10. Cumulative node dynamic constraints.

66 N. Wahid, E. Pardede / Computer Standards & Interfaces 37 (2015) 60–72
has different strengths on the required constraint to the data being up-
dated. Notice that this other feature is inherited from the ORM (manda-
tory roles). The diagramon the right has similar semantics to the one on
the left, except that the constraint is written in footnote-style, therefore
a reference name needs to be created to represent the node collection.
In this case we use Obj as the reference in the model, hence the same
name is used in the referred constraint argument.

Fig. 11 shows an example of cumulative node constraints on a
subtree. The words ALL CHILD in this example marks such a condition,
where the constraint applies on Address and all the children of the node.

Notice that in Fig. 3, we show our refined ORMmodelling to suit the
dynamic constraints in [31]. In conjunctionwith this,we remodelled the
same XML constraint using our approach in Fig. 12. As can be seen, in
addition to the removal of role usage in the modelling, a few unneces-
sary element nodes have been removed from the model. The node up-
Fig. 11. Cumulative node constraints in a subtree.

Fig. 12.Modelling Fig. 4 into our modelling approach.
date and instance has been simplified using our ‘dynamic transition’
notation. Therefore, our modelling is a much simpler and more precise
approach compared to modelling in ORM.

All the specifications above are used on the local constraints where
all the dynamic constraints exhibit no dependencies on nodes other
than itself or its own object, i.e. everything is meant for its own node
and the states.
3.3.3.2. Non-local constraints. We propose a non-local constraint as an-
other case of dynamic constraint where it is constructed from the
nodeswithin the same or different trees and there is at least one seman-
tic reference or dependency between the nodes. An example of a non-
local constraint is shown in Fig. 6 with the assumption that the refer-
ence is at a different state to create a dynamic environment.

Given a set of node X and a set of node Y.X and Y can form anon-local
constraint if the δ function involves dependencies, implication, referen-
tial, or special binary operation, i.e. monotone “semantic relation” be-
tween the two sets. In 3, the tuple (S, ℜ, δ) is a tuple set where it
comes to convey the generic type of dynamic constraints which is
based on state transition (or called transition constraints in Ref.[11]),
i.e. in this case δ is a transition function. In the non-local constraint
the problem does not particularly involve the transition of states
where δ = S × ℜ, instead, δ carries the integrity of set X to set Y but at
different states. For example if there exist functional dependencies be-
tween X and Y and we would like the constraint to be extended to an-
other time state, it becomes a dynamic constraint of X (at the current
state) connected to Y (at the new state) by functional dependencies, in-
stead of a transition.

Another example of modelling non-local constraints is shown in
Fig. 13. Let's consider, in this case, that there is an inclusion dynamic con-
straint6 of collective nodes X and Y. It is shown in the model that X is
constructed from nodes a and bwhile Y is constructed from a, b and Sal-
ary. The rule constraint can be expressed using the notations

X;Y : SX⊆ŜY
h i

in a footnote style. In this case, SX⊆ŜY should be read as

at current state S of X, X has an inclusion dependencies on the next state
of Y.

The static behaviour of the dependencies could also be conveyed by
using the notation of SX⊆SY . This is obviously shown by the occurrence
of S in both state notations.

As mentioned in Ref. [5], most existing conceptual modelling partic-
ularly for XML has the main limitation of being short of mechanisms to
specify more data semantics, including integrity constraints. We admit
that in some circumstances, the graphical model is not the best option
for modelling the constraints because of complexity. However our ap-
proach provides an alternative to visualise the constraint on a graphical
model.
6 X ⊆ Y′.

image of Fig.�10
image of Fig.�11
image of Fig.�12

Fig. 13. Inclusion dependency example in a dynamic context.

Fig. 14. Representation of tree nodes.

67N. Wahid, E. Pardede / Computer Standards & Interfaces 37 (2015) 60–72
In a previous research of dynamic constraints in relational database
or object-oriented database, states S are usually referred as the state of
attributes'value on an entity. It can be seen in the XML database as the
node's value (or text), i.e. at the leaf node instead of the node itself as
a whole (whichmay be a mixed-content type). For instance, in the ear-
lier example of Salary transition, the discussion is indirectly about the
state transition of the Salary text value, i.e., the value held by Salary. An-
other example is on a person's Statuswhere the transition constraint ac-
tually refers to the value held by Status, e.g. single and married. Other
similar work such as on temporal database constraints also regards
that the temporality of data is on the versions of data values within a
specific time-frame. Therefore, we would like to address that this is
the most common condition of the dynamic constraints that could
exist in the XML database too.

Nevertheless, in other cases, for example in Fig. 11, the constraint
can be read as ‘no deletion’ or ‘no value deletion’ allowed on the
nodes, i.e. all the nodes rooted at Address cannot be deleted. Therefore
in an XML environment, determining the dynamic constraint is not
restricted only on the value of the element node.

4. Transformation between XSDyM and XML grammar languages

Given an XML Schema Definition (XSD) or Document Type Defini-
tion (DTD), an equivalent XSDyM can be constructed, and vice versa.
Fig. 15. An element node wit
In this section,wewill describe generic transformation rules to translate
an XSDyM model to an XML grammar using XSD. Compared to the
translation of themodel to XSD alone,we have to consider the addition-
al features of XSDyM, i.e. the dynamic constraints. As defined above,
we denote the XSDyM tree as TM ¼ N; E; a; r;Σ;λ; S;ℜ; δð Þð Þ. The main
intuition behind our translation algorithm is the assumption that our
XSDyM is a complete tuple, i.e. (S,ℜ, δ)≠ ϵ. Therefore, wemake anoth-
er assumption that the dynamic constraints will be expressed on top of
the existing schema i.e. using a supporting language for instance,
Schematron.

Our algorithm can be explained in two stages: (i) initialization, and
(ii) constraints handling. In initialization we look into the types of enti-
ties involved in the model, i.e. the element nodes, or attribute nodes.
We also look into the relationship types and translate them. This is the
basis of an XML tree. In the second stage, we handle the dynamic con-
straints respectively.

4.1. Initialization

In the initialization stage, we mainly work on the basis of the XML
tree structure, i.e. the entities, some basic relationships and the hierar-
chical structure. As mentioned, at this stage, the expected transforma-
tion language is XSD as it defines the structure of the XML. Therefore,
we do the following:

Rule 1 The root of tree will become the root of XSD.
Rule 2 Transform entity node into element or attribute in XSD.
Rule 3 Transform entity names into a valid naming convention follow-

ing XML elements and attributes.
Rule 4 If an element node has at least one child node, the node is

complexType in XSD.
Rule 5 A leaf node must be a simple type in XSD.
Rule 6 A static reference in XSDyM will be expressed as a complexType

in XSD. For example, a reference of Paper Title to Paper Title as
shown in Fig. 6 can be defined using key/keyref. The equivalent
representation in XSD can be given in Fig. 16.

Using Rule 1 to Rule 6,we construct the basic schema of XSD. Further
detailsw.r.t. XSDyM and XSD specifications are beyond the scope of our
discussion in this paper. The next sectionwill discuss the transformation
rule of dynamic constraints from the model.

4.2. Dynamic constraints handling

One of our intuitions for transformation rules is that the dynamic
constraints will be conveyed on top of XSD instead of in XSD itself. It is
motivated by the fact that dynamic constraints typically do not come
from concrete business ruleconstraints, which are expressed at the data
layer of an information system. In this paper, we use Schematron as a
medium to convey the constraints, therefore the following transforma-
tion rules are w.r.t. the transformation of dynamic constraints on
XSDyM to Schematron schema, conforming to the tuple set (S, ℜ, δ)
as in Definition 3. The selection of schema language follows our pro-
posed work in Refs. [30] and [31]. But, our approach is not limited to
these schemas.
h children in modelling.

image of Fig.�13
image of Fig.�14
image of Fig.�15

Fig. 16. Node referencing in the modelling.

Fig. 17. Constraint reference name.

Fig. 19. Node name in Schematron.

Fig. 20. Expressing enumeration sequence.

68 N. Wahid, E. Pardede / Computer Standards & Interfaces 37 (2015) 60–72
Determine locality of the constraints. If it is a local constraint follow
Rule 1 to Rule 9. If it is a non-local constraint, proceed to Rule 10. Iterate
the rules accordingly.

Rule 1 Set pattern name in Schematron as local constraint “reference
name”.

Rule 2 Set rule context=“target” as the default of rule context in
Schematron if it is a single node constraint.

Rule 3 Node name (in the case of local constraint) will be used for
checking in the test attribute of rule element in Schematron.

Rule 4 Thesand ŝ in context transitionseOŝcan bewritten in Schematron
as oldstate and newstate in test attribute of asset element
(Refer to Fig. 20). (See Figs. 17– 19.)

Rule 5 The context transition is tested in the assert test in the
Schematron (refer to Fig. 21).

Rule 6 The enumeration sequence is tested individually in different
branches of the bassert test…N but under the same rule
context in Schematron and a related tested component can
be joined using operator AND.

Rule 7 Each element of the component in [bruleN] is individually test-
ed in different branches of the bassert test…N but under the
same rule context in Schematron.

Rule 8 The intendedmeaning of transition constraint can bewritten as
text message in the assert test element. For example, in
Fig. 21, the error messages are “Salary can never decrease”
and “Not possible”.

Rule 9 The union of the nodes in themodel can be translated using ob-
ject creation in Schematron. It this case, we describe the name

attribute of pattern element as the object name, while name
attribute of context as the involved node name. Additional at-
tribute names are added to express extra information on the
node. This style of schema is based on our proposed cumulative
node constraints in [31], where we also deploy a file called
delta file in the checking. In this environment, we create a
few additional attributes on Schematron to support the con-
straint expression. The assert test can be ignored according-
ly if the constraint is only to control the existence of nodes.

Rule 10 Dynamic dependency constraints can be achieved using Rule 6
of the initialization stage and the manipulation of object crea-
tion of Rule 9 in this section. For example, if there exists, a func-
tional dependency of (X) → (Y, Z) the involved keys will be
nodes X, Y, and Z, while nodes Y and Z are constructed as ob-
jects in Schematron.
Fig. 18. Default rule context.
5. Correctness of XSDyM toXMLgrammar language and completeness
of the modelling

The set of proposed generic transformation rules described in the
previous section facilitates the systematic transformations on the con-
ceptual level of XML modelling into equivalent XSD and Schematron
on the logical level.

Each standard for requirements specifications [15] maintain that a
set of requirements should be complete. Some recommend ways to
achieve completeness that amount to requirements elicitation tech-
niques. However, none gives a way to evaluate completeness or even
assess relative completeness. There is research under way to formalize
many terms used in software and systems engineering. Ref. [2] formally
defines cohesion and coupling using a graph theory. However, there is
little information on quantifying the completeness of models, especially
at the early conceptual phase.
5.1. Correctness of model transformation

In every model transformation, there is a correlation or correspon-
dence between parts of the input model and parts of the output
model which can be specified in terms of abstract semantics and the
source and target constructs [26]. Therefore, we adapt the method in
Ref.[20] to prove the correctness of our model transformation. The au-
thor came out with an approach for the instance-based verification of
model transformations based on the concept of structural correspon-
dence. The approach is based on the assumptions that (i) it is relatively
easy to specify the correspondence criteria for a transformation, and (ii)
the correspondence rules are ‘complete’ in the sense that they cover all
the relevant semantic aspects of the transformation.

According to Ref.[20], the transformation can be accepted as correct
if a node in the source model and its corresponding node in the target
model satisfy some correspondence conditions. The correctness
checking is done in four main tasks: (i) identifying the correspondence
structure, i.e. of the input model; (ii) specifying the correspondence
conditions; (iii) creating the cross links, and (iv) checking the corre-
spondence conditions.
Fig. 21. Full example of a Schematron schema based on Rule 1 to Rule 8.

image of Fig.�16
image of Fig.�17
image of Fig.�18
image of Fig.�19
image of Fig.�20
image of Fig.�21

Fig. 22. Corresponding XSDyM model.

69N. Wahid, E. Pardede / Computer Standards & Interfaces 37 (2015) 60–72
5.1.1. Proof of correctness
We show in Fig. 22, the corresponding XSDyM structure and the

target model in XSD and Schematron where the figure occupies task
(i) of the method. The first task of the method is to identify a sufficient
set of node types from the source language that must have a corre-
sponding element in the target model.

Once the pivot nodes have been identified, in task 2, the correctness
conditions are specified for each pair of pivot nodes. This task involves
traversing the immediate hierarchy of the nodes, access the nodes' attri-
butes and associations. While in task 3, the cross links are used to con-
struct a look-up table (i.e. a map) that matches the corresponding
pivot nodes of any instance of a transformation execution. Deploying
tasks 2 and 3 produces a look-up table in Table 3 where it shows the
cross links of the input model (XSDyM) and the target model (XSD
and Schematron).

At the end of the transformation execution, we perform task (iv), i.e.
the verification conditions are checked on the instance model. This is
Table 3
Lookup table for the cross links.

XSDyM constructs Graphical notation

Entity (element)

Entity (attribute)

Naming convention free style
Leaf element

Element with child

Parent–child relation

Referencing
Non-local constraint transition(single node)

Non-local constraint(single node) — RC [EntityName: RC . . .]

Non-local constraint(cumulative)

Non-local constraint(cumulative)-RC [ObjectName: RC …]
performed by a model checker that performs scanning of the instance
models, applying the verification conditions on all the relevant nodes.

We follow the generic model checker provided in Ref. [20] and per-
form the checking on our set of nodes.

To wrap up the correctness method, Fig. 23 shows the full example
of equivalent XSD and the Schematron schema. We convey on the
model structure a few related XML constraints but restricted to local dy-
namic constraints (transformation of non-local constraintswill be in the
next contribution). This is to verify the model transformation based on
our generic transformation rule in the previous section.

5.2. Completeness of the modelling

Completeness refers to wholeness or entirety of an object [14].
Therefore, in this paper, completeness refers to the entirety of a concep-
tual model.

Based on the work of Ref.[14] we carry out the Completeness Index
(CI) as the quality metric to test the capability of our modelling. As per
our discussion earlier, completeness means that a conceptual model
should contain all true statements about the domain. Based on Ref.
[14], CI can be defined as a ratio between the number of constraints rep-
resented in a givenmodelling to the total number of constraints defined
for that problem domain. In the mean time, the aim is to get the model
to work at least at par with the ORM model in terms of handling the
static and dynamic constraint. It is important to mention that in this
paper, our modelling approach is focusing on the dynamic constraint
than the static ones. We adapt the original metric to suit our problems.
Formally, the CI is defined as follows:

Λ is a set of constraints identified from a problem domain, where
Λ= α ∪ β− (α ∩ β), i.e. α is the set of static constraints and β is the set
of dynamic constraints.

ξ be the modelling, and
f be the projection set of Λ and ξ on Λ, i.e. f = ϕξ(Λ)
n(Λ) = total number of constraints in Λ
n(ξ) = total number of constraints in f,
then CI= n(ξ)/n(Λ).
Equivalent schema representation

bxs:element…

bxs:attribute…

example: bxs:element name=“SubmittedPaper”N

Simple type, bxs:element…

bxs:complexType…

bxs:complexType… with element declaration

bxs:keyref…

bsch:pattern name …Nbsch:rule context=“target”N…

b/sch:ruleNb/sch:patternN

bsch:assert test=âĂIJ@name=Ebtity Name AND

oldstate=…Õ newstate=…”NMessageb/sch:assertN

bsch:pattern name=…Nbsch:rule

context=EntityNameNb/sch:ruleNb/sch:patternN

bsch:assert test=EntityNameNMessageb/sch:

assertN or bsch:assert test=EntityName AND

EntityName AND …(with some checking here)NMessage

b/sch:assertN

image of Fig.�22
Unlabelled image
Unlabelled image
Unlabelled image

Fig. 23. Equivalent XSD and Schematron.

70 N. Wahid, E. Pardede / Computer Standards & Interfaces 37 (2015) 60–72
Our assumption is α and β exist independently and form totally
different sets of constraints, i.e. no β is a generalisation of α, i.e. general-
isation of αmight require normalization processes. This is to have clear
distinction of completeness on both constraints.

To evaluate the completeness of the model, we define the generic
requirements of model constraints in the problem domain into few
categories as in Table 4. Assuming that the constraints as per discussion
in the previous subtopic are the requirement that needs to be achieved
in the modelling, the CI of the model stands on both the static
and dynamic constraints. As can be seen, the lines noted with Yes
imply that these constraints are comprehended by our approach,
while Yes/Noimplies that these constraints are comprehended but

image of Fig.�23

Table 4
Generic requirements and the coverage of representation using our approach.

Generic modelling requirement Representation using
the modelling

Structural Basic Yes
Extensive Yes/No

State-based constraints Static Yes/No
Dynamic Local Yes

Non-local Yes

71N. Wahid, E. Pardede / Computer Standards & Interfaces 37 (2015) 60–72
with insufficient details, i.e., there are some of the domain requirements
that still cannot be expressed using the modelling approach covered in
this paper, for example the approach has not yet provided a way to de-
note explicitly whether a set of nodes comes from a Complex Type or a
Simple Type and also the way to define a specific data-type on a node.

Therefore, based on the table, the result of our CI concluded to be
near to optimal in relation to the ability of our approach to interpret
the generic requirements into modelling. There is a need to strengthen
and establishmore features in handling static constraints, e.g., handling
more types of integrity constraints, and also the extensive details of the
XML structure based on the XSD. However, we believe that our model-
ling approach is complete to handle the requirements as presented in
the earlier part of this paper, and at standard with the ORM in handling
dynamic constraint.

6. Discussion

Wehave proposed amodelling approach for anXMLdatabasewhere
it is mainly motivated by the visualisation of dynamic constraints of
XML. We believe that our approach could also be used with any semi-
structural data of any database. In comparison with the ORMmodelling
approach, ours is much cleaner and more directed to the nature of XML
which is in the forms of a hierarchical model, etc.

Although ORM offers a huge range of graphical elements to convey
different constraints, we believe it is less suitable for the XML environ-
ment. For instance, ORM is an attribute-free modelling approach,
where all the entity types are treated the same, i.e. elements, whereas
XML requires the visualisation of attributes. ORM is constructed based
on‘ roles’, which means all relations of the entities must be with the
existence of roles which is not necessary for an XML tree model. In
addition, in the case of dynamic constraint visualisation, ORM often
depends completely on the textual constraint expressions and requires
the expression to be noted as footnotes. Nevertheless, ORM is good for a
non-structural datamodel that does not require a hierarchical structure.

Our proposed model is developed based on the natural require-
ments of XML and offers a clean approach for dealing with dynamic
constraints. However, to complete our modelling, we import some ele-
ments of ORM into our approach as mentioned in the earlier section.
Moreover, using the proposed set of rules, the proposed model can be
transformed into equivalent XSD which represents the XML structure
and Schematron which represents the dynamic constraints. W.r.t. this
matter, one of the advantages is that it defines the constraints on top
of the existing XSD, i.e. independent of any structural issues.

However, it is worth mentioning that our transformation rules
are currently limited to Schematron for expressing dynamic constraints
due to a very limited work on dynamic constraint expression for XML.
Also, from the set of XSDyM components listed in Table 2, not all
are able to be represented using Schematron (at the time of writing)
as some are currently still being investigated.

7. Conclusion

This paper presented a graphical modelling notation for XML. We
believe that a fit and precise approach is needed to model XML and
its constraints. While XML-Schema is widely known as a text-based
grammatical medium for expressing XML constraints i.e. structural
constraints, we have to agree that graphical notations are more widely
used to visualise the modelling w.r.t. designing, reporting, etc., as it
provides a more effective way to visualise the data requirements for a
human audience. The motivation of our work comes from the problem
that the current modelling tool is facing, i.e. to visualise the constraints
of XML particularly dynamic constraints.

In developing our own approach,we discovered that themost prom-
ising modelling available for dynamic constraints as the time of writing
is ORM modelling. ORM offers a range of useful components or nota-
tions to convey many kinds of constraints. Unfortunately, we believe
that ORM is not the best tool for XML as the connectivity of elements
is based on the roles present and it becomes more complex to visualise
as the XML becomes bigger.

Ourmodelling notations provide the simplestway of XMLmodelling
using the tree-structure with the addition of state transition notation
inspired from the well-known ‘state diagram’. This is specially to sup-
port the dynamic constraints of XML where it requires a dynamic
transition of two or more points of time. In addition, we retain the use
of some ORM components as it offers great usefulness to our model.
We show that our model is much more minimal in the context of XML
as it does not require the utilization of roles as in the original ORM.
We also show in the discussions the compatibility of our model with
ORM.

References

[1] N. Bidoit, S. Cerrito, V. Thion, A first step towards modeling semistructured data in
hybrid multimodal logic, J. Appl. Non Class. Logics 14 (4) (2004) 447–475.

[2] L.C. Briand, S. Morasca, V.R. Basilli, Property based software engineering measure-
ment, IEEE Trans. Softw. Eng. 2 (1) (1996).

[3] L. Bird, A. Goodchild, T. Halpin, Object Role Modelling and XML-Schema, Springer,
Berlin Heidelberg, 2000. 309–322.

[4] D. Braga, A. Campi, D. Martinenghi, Efficient Integrity Checking Over XML Docu-
ments, Springer, Berlin Heidelberg, 2006. 206–219.

[5] H. Chen, H. Liao, A survey to conceptual modeling for XML, 3rd IEEE International
Conference on Computer Science and Information Technology, 2010, pp. 473–477.

[6] M. Curland, T. Halpin, Enhanced Verbalization of ORM Models, Springer, Berlin
Heidelberg, 2012. 399–408.

[7] E.O. De Brock, A general treatment of dynamic integrity constraints, J. Data Knowl.
Eng. 32 (2) (2000) 223–246.

[8] T. Halpin, ORM 2, Springer, Berlin Heidelberg, 2005. 676–687.
[9] T. Halpin, Business rule modality, Proc. CAiSEâĂŹ06Workshops, 2006, pp. 383–394.

[10] T. Halpin, ORM 2 graphical notation, Technical report, Newmont University, 2011,
(http://www.orm.net/pdf/ORM2GraphicalNotation.pdf).

[11] H. Balsters, T. Halpin, Formal Semantics of Dynamic Rules in ORM, Springer, Berlin
Heidelberg, 2008. 699–708.

[12] H. Balsters, A. Carver, T. Halpin, T.Morgan,ModelingDynamic Rules inORM, Springer,
Berlin Heidelberg, 2006. 1201–1210.

[13] T.A. Henzinger, Model Checking Game Properties of Multi-agent Systems, 1443,
Springer, Berlin Heidelberg, 1998. 543.

[14] T. Hussain, S. Shamail, M. Awais, Schema transformations — a quality perspective,
Proceedings of 8th IEEE International Multi-topic Conference, Lahore, Pakistan,
2004.

[15] P. Kar, M. Bailey, Characteristics of good requirements, Proceedings of the Sixth
Annual International Council on Systems Engineering, 2, 1996, pp. 284–291.

[16] T.W. Ling, L.L. Yan, NF-NR: a practical normal form for nested relations, J. Syst. Integr.
4 (4) (1994) 309–340.

[17] L. Linsky, Reference and Modality, Oxford University Press, London, 1971.
[18] Y. Liu, D. Yang, S. Tang, T.Wang, J. Gao, Extracting Key Value and Checking Structural

Constraints for Validating XML Key Constraints, Springer, Berlin Heidelberg, 2004.
399–408.

[19] M. Mani, EReX: A Conceptual Model for XML, 3186, Springer, Berlin Heidelberg,
2004. 128–142.

[20] A. Narayanan, G. Karsai, Specifying the correctness properties of model transforma-
tions, Proceedings of the Third International Workshop on Graph and Model Trans-
formations, 2008, pp. 45–52.

[21] M. Necasky, XSEM: a conceptual model for XML, Proceedings of the Fourth Asia-
Pacific Conference on Conceptual Modelling, 2007, pp. 37–48.

[22] F. Neven, Automata, Logic, and XML, 2471, Springer, Berlin Heidelberg, 2002. 2–26.
[23] A. Olivé, Integrity constraints specification, Technical Report, LSI, Universitat

Politècnica de Catalunya, Barcelona, Spain, 1995.
[24] G. Psaila, ERX: a conceptual model for XML documents, Proceedings of the 2000

ACM Symposium on Applied Computing, vol. 2, 2000, pp. 898–903.
[25] R. Rajugan, E. Chang, L. Feng, T.S. Dillon, Modeling dynamic properties in the layered

view model for XML using XSemantic nets, Proceedings of the 2006 International
Conference on Advanced Web and Network Technologies, and Applications, 2006,
pp. 42–147.

http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0050
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0050
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0055
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0055
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0060
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0060
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0065
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0065
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0070
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0070
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0075
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0075
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0080
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0080
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0085
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0090
http://www.orm.net/pdf/ORM2GraphicalNotation.pdf
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0100
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0100
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0105
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0105
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0110
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0110
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0115
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0115
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0115
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0120
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0120
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0015
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0015
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0020
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0125
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0125
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0125
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0130
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0130
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0135
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0135
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0135
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0140
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0140
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0145
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0150
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0150
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0155
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0155
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0160
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0160
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0160
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0160

72 N. Wahid, E. Pardede / Computer Standards & Interfaces 37 (2015) 60–72
[26] A. Sarkar, Conceptual level design of semi-structured database system: graph-
semantic based approach, Int. J. Adv. Comput. Sci. Appl. 2 (10) (2011) 112–121.

[27] T. Schwentick, Automata for XML — a survey, J. Comput. Syst. Sci. 73 (3) (2007)
289–315.

[28] A. Sengupta, S. Mohan, R. Doshi, XER — Extensible Entity Relationship Modeling,
Proceedings of the XML 2003 Conference, 2003, pp. 140–154.

[29] C.E. Shannon, A mathematical theory of communication, J. ACM Sigmobile (Mob.
Comput. Commun. Rev.) 5 (1) (2001) 3–55 (ACM, New York, USA).

[30] N. Wahid, E. Pardede, Single Transition Constraint for XML Update Validation,
Proc. 15th International Conference on Network-based Information Systems, 2012,
pp. 24–31.
[31] N. Wahid, E. Pardede, Protecting cumulative node constraint during XML update,
Proc. TrustCom, 2013, pp. 1795–1802.

[32] V. Vianu, Dynamic functional dependencies and database aging, J. ACM (JACM) 34
(1) (1987) 28–59.

[33] F. Wenfei, XML constraints: specification, analysis, and applications, Proc. Sixteenth
International Workshop on Database and Expert Systems Applications, 2005,
pp. 805–809.

http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0165
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0165
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0045
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0045
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0170
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0170
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0175
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0175
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0180
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0180
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0180
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0185
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0185
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0190
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0190
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0195
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0195
http://refhub.elsevier.com/S0920-5489(14)00074-9/rf0195

	XSDyM: An XML graphical conceptual model for static and dynamic constraints
	1. Introduction
	1.1. Outline

	2. Background
	2.1. Object Role Modelling (ORM)
	2.1.1. ORM and dynamic constraints

	2.2. The state diagram

	3. Proposed modelling approach
	3.1. The modelling
	3.1.1. An example conference paper data model
	3.1.2. Entity type and relationships

	3.2. Expressing the dynamic constraint
	3.3. Dynamic constraint special features
	3.3.1. Dynamic direction
	3.3.2. The time frame
	3.3.3. Constraint locality
	3.3.3.1. Local constraints
	3.3.3.2. Non-local constraints

	4. Transformation between XSDyM and XML grammar languages
	4.1. Initialization
	4.2. Dynamic constraints handling

	5. Correctness of XSDyM to XML grammar language and completeness of the modelling
	5.1. Correctness of model transformation
	5.1.1. Proof of correctness

	5.2. Completeness of the modelling

	6. Discussion
	7. Conclusion
	References

