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Flame Image-Based Burning State Recognition
for Sintering Process of Rotary Kiln Using
Heterogeneous Features and Fuzzy Integral

Weitao Li, Dianhui Wang, Senior Member, IEEE, and Tianyou Chai, Fellow, IEEE

Abstract—Accurate and robust recognition of burning state
for sintering process of rotary kiln plays an important role in
the design of image-based intelligent control systems. Existing
approaches such as consensus-based methods, temperature-based
methods and image segmentation-based methods could not
achieve satisfactory performance. This paper presents a flame
image-based burning state recognition system using a set of het-
erogeneous features and fusion techniques. These features, i.e.,
the color feature, the global and local configuration features, are
able to characterize different aspects of flame images, and they
can be extracted from pixel values directly without segmentation
efforts. In this study, ensemble learner models with four types
of base classifiers and five fusion operators are examined with
comprehensive comparisons. A total of 482 typical flame images,
including 86 over-burning state images, 193 under-burning state
images, and 203 normal-burning state images, were used in our
experiments. These images were collected from the No. 3 rotary
kiln at the Shanxi Aluminum Corporation in China, and labeled
by the rotary kiln operational experts. Results demonstrate that
our proposed image-based burning state recognition systems
outperform other methods in terms of both recognition accuracy
and robustness against the disturbance from smoke and dust
inside the kiln.

Index Terms—Burning state recognition, heterogeneous fea-
tures, neural networks (NNs) classifiers, ensemble models, fuzzy
integral.

I. INTRODUCTION

C
OMPUTATIONAL intelligence techniques have received

considerable attention from the engineering community

due to its cognitive modeling power and learning capability [1].

Over the past years, many successful applications related to

complex pattern recognition problems have been reported [2],
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Fig. 1. Burning zone flame image.

[3]. Although these intelligent systems have their own charac-

teristics due to the nature of domain applications, they share

some common components and properties such as feature ex-

traction, classifier design and decision making. It is desired to

extract a set of visual features that canmodel image contents and

distinguish the class from each other accordingly. For classifier

design, many learner models, such as neural networks (NNs)

[4], support vector machines (SVMs) [5] and extreme learning

machines (ELMs) [6], can be employed. Decision making unit

helps in assigning class label through fusion operations, such as

fuzzy integral [7].

It is believed that the burning zone temperature directly

reflects the characteristics of the product quality, i.e., clinker.

Therefore, an accurate measurement of temperature becomes

one of the most critical issues for modeling and controlling

the rotary kiln sintering process. Due to the harsh environment

inside the kiln, the accurate measurement for such temperature

through thermocouple is very challenging. In [8], a single

point burning state temperature measurement by a noncontact

colorimetric device was employed in developing a rule-based

intelligent control system. However, the reporting performance

is not favorable and the readings often exhibit big fluctuations

due to disturbances from the dust and the smoke inside the kiln.

By observing burning zone flame image (see Fig. 1), in-

cluding a kiln wall, a coal zone, a material zone, and a flame

zone, operators are able to identify the current burning state.

This comes from some understandings on the flame images

such as: the coal zone is formed by coal powders from the

coal burner; the flame zone is formed by instant explosion and

combustion of mixed coal powders and air; the material zone is

formed by the sintering of raw material slurry. Such a human

operating mode is limited by the operator’s experience, mental

state and working attitude. To overcome these difficulties,

flame image analysis-based techniques have been studied over

the past years, where a flame image is first segmented into

1551-3203/$31.00 © 2012 IEEE
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Fig. 2. Performance of image segmentation methods (a) flame image; (b) Ostu [12]; (c) fuzzy c mean and Gabor wavelet (FCMG) [9]; (d) fuzzy c mean (FCM)
[13]; (e) normalized cuts [14]; (f) multistage adaptive threshold (MAT) [15]; (g) B-snake [16]; (h) minimax [17].

regions of interest (ROIs), the features of the ROIs are then

extracted to recognize the burning states [9] or to identify the

concentrations of unburned carbon [11].

From operator’s point of view, color, and configurations of

the ROIs are two significant features for recognizing the burning

states [9]. Previous studies on these feature-based burning state

recognition had to apply image segmentation techniques be-

fore extracting these features. However, since turbulent flame

bounces around, brightness of material zone results from flame

zone, and the dust and the smoke couple the ROIs. Hence, al-

locating the accurate boundary of the ROIs is very challenging.

Fig. 2 shows the experimental studies based on several image

segmentation methods [9], [12]–[17]. As can be seen that the

segmentation will in turn lead to inaccurate feature extraction

followed by a poor burning state recognition performance.

To achieve better burning state recognition performance,

further efforts on modeling the content of flame images by

various features and developing advanced learning classifier

systems should be addressed. This paper aims to develop

flame image-based burning state recognition systems using

heterogeneous features and fuzzy integral. Specifically, we

propose a segmentation-free approach for extracting features,

where a Gabor filter is employed to distinguish the ROIs from

background [18]. Then, the color features are computed by

multivariate image analysis (MIA) techniques [19], and the

global and local configurations of the ROIs are presented [20],

[21]. Also, multiple classifier systems with four types of learner

models and five fusion operators are examined. Numerous

experimental studies with comprehensive comparisons are

carried out. Results indicate that our coalescent feature-based

burning state recognition system outperforms the single fea-

ture-based methods, image segmentation-based methods and

temperature-based methods.

The remainder of the paper is organized as follows. Section II

details our approaches for extracting features. Section III de-

scribes four types of learner models used in this study, and

addresses a fuzzy integral-based fusion method for flame

image-based burning state recognition systems. Section IV

reports our experimental results with comparisons and dis-

cussions. Section V concludes this work and directs further

research.

Fig. 3. Fixed windows of flame image.

II. FEATURE EXTRACTION

A. Preprocessing of Flame Images

It has been reported in [23] that only a subset of a filter bank

may be useful, while others are redundant and offer little im-

provement to (or even reduce) the discriminative power due to

the peaking phenomenon [22]. Thus, we propose to incorporate

Mahalanobis separability measure and forward selection tech-

nique to automatically generate a compact Gabor filter bank,

which not only saves computational cost but also aims to en-

hance the separability of the ROIs.

Because the camera placement provides a rough estimate

for the location of the ROIs, two windows with fixed size

of 25 25 pixels are used to sample the flame and ma-

terial zones to avoid the segmentation issue as shown in

Fig. 3. Assume a total of flame and material texture im-

ages sampled from gray-scale transformed images of the

training RGB flame images : .

Let denote feature groups extracted by using

initial Gabor filters from filtered texture images, where

, and parameters

of initial Gabor filter bank is set as

, and [36]. For each

texture image, the mean and the standard deviation features

are extracted, i.e., . Mahalanobis separa-

bility measure is employed as the metric function to

evaluate and sort the discriminative power of and associated

filters, i.e.,

(1)

where , and denote mean vector and covariance

matrix of flame class and material class in feature space along

feature group , respectively.
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In this study, a metric is combined with a forward selection

technique to automatically select uncorrelated feature groups

and associated Gabor filters to best distinguish flame zones and

material zones [30].

Once the compact filter bankwith Gabor filters for training

gray-scale image dataset is selected, they will be applied to the

R, G, and B channel subimages of each original flame image

respectively. Then, for each training RGB flame image , the

mean image of filtered images is used as the filtered flame

image for further processing.

B. Color Feature

In this work, the MIA techniques proposed in [19] are em-

ployed to extract the color feature. The filtered flame images

are represented by the RGB color model with 8 bits resolution

for each channel. MIA technique is based on multiway PCA,

which is equivalent to unfold the 3-D image data array into

an 2-D matrix without considering the spatial coordinates of

pixels, and then performs PCA on it

(2)

where has the size , whilst with the size ,

and are score vectors, and the corresponding

are loading vectors.

After scaling and rounding off from 0 to 255, is denoted as

and can be refolded into the original image size and displayed

as an image. For RGB image, the first two score vectors usually

explain 99% of the total variance. Inspection of the score

plot is a common tool in PCA analysis to detect clusters or out-

liers. However, due to the numerous number of pixels, many of

the pixels may have nearly identical values. An analysis

from a compressed 256 256 score plot histogram is used

to describe the score plot space [24]. can be obtained from

scaled and rounded and , where each element is computed

as

(3)

In such score plot, pixels with similar color in the image

space are clustered together in the score space, i.e., each lo-

cation represents a certain color, and brighter colors indicate

histogram bins with higher pixel intensities. Moreover, as the

burning states change, the locations of pixels in the score plots

change significantly. This enables one to use masking to obtain

the ROIs of flame image whose pixels have similar color in the

image space to distinguish various burning states.

According to [24], we construct a 256 256 binary masking

matrix , where an element is 1 if its corresponding location

of the histogram lies under the masking and 0 if not as shown in

Fig. 4. Then, we calculate the area feature to characterize the

color of the training flame image defined as follows:

(4)

Fig. 4. (a) Original flame image. (b) Score plot of flame image with masking
(yellow). (c) Flame image with overlay of highlighted pixels.

C. Global Configuration Feature

Global configuration of the ROIs of flame images, character-

izing the heat source, disturbance from the smoke and the dust,

and the clinker sintering status, are useful to detect the burning

state. Flame zone with good circularity and appropriate material

zone height mean proper heat supply, fine ventilation, and sat-

isfied clinker quality which correspond to the normal burning

state [9].

Eigen-flame image decomposition based on PCA can be ap-

plied to extract global features that represent the global config-

uration of the flame images. Suppose represent

filtered training flame images. are denoted

as these eigen-flame images after applying PCA to the training

dataset. Notice that the correlation coefficients between a flame

image and the eigen-flame images can be considered as a global

feature to represent the flame image, hence the selection for the

eigen-flame images is important. Fisher ratio [25] is employed

as the metric function to select the eigen-flame images to maxi-

mize class separability. The average class separability of

the -th eigen-flame image can be defined as

(5)

where and denote mean and standard

deviation of flame image class , and class correlated with

and the image class number, respectively.

Once the of all are evaluated, the eigen-flame im-

ages selection, i.e., extraction of optimal global features, can be

carried out.

D. Local Configuration Feature

Scale invariant feature transform (SIFT) operator is shown

to be superior to others in local feature detection and descrip-

tion. Hence, it is employed to extract the local configuration

features of the ROIs. Based on image pyramid and gradient his-

togram, local features extracted by SIFT operator includes key-

point and descriptor. Each SIFT keypoint is denoted as

, where , and

are the coordinates, scale, gradient orientation, and number

of the keypoints, respectively. Each 128-dimensional descriptor

for each keypoint is created by accumulating the orientation

histogram around the keypoint, denoted as

. Finally, the local configu-

ration will be featured by the combination of SIFT descriptors

as shown in Fig. 5, where the direction and length of the arrow

denote and .

To reduce the dimensionality of the local features, a visual

vocabulary is constructed via the k-means clustering on the
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Fig. 5. Detected SIFT keypoints of a flame image.

SIFT descriptor vectors from training flame images. Such

clustered feature vectors will be considered

as “visual words”, and then each descriptor of every image is

assigned to the nearest cluster to form a co-occurrence table

. The co-occurrence table actually lists the frequency

of each visual words in each flame images. Practically, high-di-

mensional SIFT descriptor is difficult to handle. Exploring

research in image and text retrieval, “bag of visual words”

(BoVW) [27] and term frequency-inverse document frequency

weight [28] are applied to vector quantize the SIFT descriptors

into clusters and form the visual word-image table to reduce the

dimensionality of local feature representation. For such table,

zero-frequency problem [29] might bring sequel, e.g., the clas-

sification performance will be affected by synonymy. Latent

semantic analysis (LSA) [30] is hence employed to map the

original visual word-image space to a latent semantic space by

taking advantage of some of the implicit higher-order structure

in associations of visual words with images to mitigate such

problem and reduce the local feature dimensionality further.

LSA requires the singular value decomposition to generate

a semantic space that represents conceptual visual word-image

associations, which can be written as

(6)

where , and are the matrices of the visual word vectors,

image vectors, and singular values. The best approximation of

the visual word-image table with rank- is given by selecting

the first values of and associated vectors from and ,

which can be written as

(7)

Now, the local configuration can be considered to be conceptu-

ally featured by semantic vectors.

It is believed that various semantics offer distinct contribu-

tions to burning state recognition. Semantic selection should be

carried out by taking their saliency into consideration. For each

column of , Mahalanobis measure is used to evaluate and sort

the discriminative power of semantic vector ,

which is defined as

(8)

where , and denote mean vector and covariance

matrix of flame image class and in semantic space along

, respectively.

As the classification performance of possible visual word

clusters of training flame images tends to be steady, an op-

timal visual words-images table with visual words (corre-

sponding an optimal semantic number ), the associated

and can be generated from the training dataset. In

the same way, the local feature vector of a flame image can be

extracted and computed by

(9)

III. RECOGNITION SYSTEM DESIGN

With the three kinds of features, burning state recognition sys-

tems can be designed using different learner models. To simplify

our design, we employ the same type of learner model to build

feature classifiers. Then, the fuzzy integral is applied to fuse

the base classifiers. Fig. 6 depicts the flowchart of our proposed

recognition systems, which are composed of the following com-

ponents.

• ROIs of input training flame images are distinguished from

background based on Gabor filter preprocessing procedure

to facilitate the following feature extraction and pattern

classification procedure.

• For filtered training flame images, color, global configura-

tion and local configuration features of flame image ROIs

are extracted simultaneously.

• Feed each individual feature to the pattern classifier to ob-

tain its burning state recognition result.

• Fuzzy integral fuses the burning state recognition results of

three features and gives the final training recognition result.

• Based on the well trained model parameters in the prepro-

cessing, feature extraction, pattern classification, and deci-

sion procedure, testing flame images can obtain their final

recognition result in the same way.

This section briefly describes the learner models used in our

study, and also provides some fundamentals of fuzzy integral.

1) Probabilistic NNs: PNN is constructed based on the well-

known Bayesian classification techniques [31]. The extracted

feature vectors of testing images are feed into the PNN, and

the output of the hidden layer can be computed by

(10)

where , and are the th neuron feature vector of class

from the training images, the dimension of and the smoothing

parameter, respectively.

The summation layer neurons compute the maximum likeli-

hood of pattern being classified into class by summarizing

and averaging the output of all neurons that belong to the same

class, i.e.,

(11)
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Fig. 6. Flowchart of the burning state recognition systems.

where denotes the total number of training examples from

class .

The feature vector is finally classified in accordance with

the Bayesian rule based on the outputs of all the summation

layer neurons, i.e.,

(12)

where denotes the predicted class label of the feature

vector .

In PNN, the smoothing parameter has a great impact on the

recognition performance. According to [37], the is computed

as

(13)

where represents the nearest neighbor of .

A. Feature Classifiers

1) NNs: Since pattern classification can be considered as a

mapping from a feature space to a class label space, we can for-

malize a NN as a classifier. Assume a single hidden layered NN

classifier with , and neurons in the input, hidden,

and output layer, respectively. Let be input weights,

be bias of hidden neurons and be

output weights. The output of the NN is

given by

(14)

where is the output of the th hidden neuron and is de-

fined as

(15)

where is the activation function, and .

In our case, and the sigmoid

function is used as the activation function

of the neurons at the hidden layer and the output layer. Given the

training dataset, NN classifiers can be trained by the well-known

error back-propagation algorithm.

2) Support Vector Machines: SVM is constructed based on

the structural risk minimization principle and mathematical pro-

gramming techniques. The basic idea of SVM is to map the

feature vector from the input space to a transformed space

, and then to find a hyper-plane to separate

the training data with a minimal misclassification rate, i.e.,

(16)

where , representing class labels. The hyper-plane

maximizes the margin of separation

between two classes. The support vectors can be obtained To

maximize the margin and simultaneously minimize the training

error, we need to solve an equivalent quadratic programming

problem below

(17)

A kernel function is usually employed in the implemen-

tation of SVM to compute the inner products between the sup-

port vectors and the testing feature vectors in the transformed

space. The support vectors and parameters used in the decision

function can be obtained by solving an equivalent optimization

problem as follows:

(18)

where each Lagrange multiplier corresponds to a training

example . In our study, the Gaussian kernel function
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is applied. Moreover, cost

parameter and kernel parameter are selected as

and .

3) Extreme Learning Machines: ELM is a class of random

base function approximators which are represented as single

layer feed-forward NNs (readers can find more details in [6]). In

ELM, the input weights and hidden biases are randomly

generated. The hidden layer maps the inputs into a feature

space via a nonlinear transformation ,

whilst the output layer performs like a linear combiner. Given a

hidden node number , the output weights can be computed

as

(19)

where is the expected output matrix,

is a Moore–Penrose generalized inverse

of the hidden layer output matrix .

Compared against traditional gradient-based learning algo-

rithms, ELM is extremely fast whilst better generalization per-

formance can be obtained if an appropriate number of hidden

neurons is chosen. In this study, the sigmoid function

is used as the activation function and the number

of hidden neurons is set as seventy.

B. Fusion of Feature-Based Burning State Classifiers

The fuzzy integral is a nonlinear function that is defined based

on a fuzzy measure, especially -fuzzy measure, which pro-

vides an effective way to fuse information. For classification

problem, the fuzzy integral combines the outputs of base clas-

sifiers with importance of each classifier, which is subjectively

assigned as the nature of fuzzy logic. The following gives some

basics of the fuzzy integral used in this study.

Definition 1: Let be a finite set of elements. Let

with satisfying the following conditions:

1) ;

2) ;

3) if ;

4) if

.

Then, is called a -fuzzy measure.

Definition 2: Let be a finite set, and be a

fuzzy subset of . The fuzzy integral over of the function ,

with respect to a fuzzy measure is defined as

(20)

where is the level set of

(21)

The fuzzy integral has the following properties.

1) If , for all , then

2) If for all , then

3) If is a partition of the set , then

where is the fuzzy integral of with respect to over .

The calculation of the fuzzy integral is as follows: let

and be a set of classi-

fiers and classes of the flame images for one time burning state

recognition respectively, and let be the eval-

uation of how certain a flame image belongs to the class

using the classifier , where 1 indicates absolute certainty and

0 implies absolute uncertainty. The fuzzy integral over with

respect to a fuzzy measure can be defined by

(22)

where is a -fuzzy measure, and

can be computed recursively as follows:

(23)

(24)

where is solution of the following equation:

(25)

where and .

To compute the fuzzy integral, we need to know the density

function for each , which illustrates the importance of

various classifiers for the final burning state recognition. These

densities can be assigned by experts via trial-and-error or

produced from training dataset. In our study, the soundness

of each classifier is defined by the classification accuracy

over the training dataset, and is used to describe the . The

classification rates of the same classifier over the test dataset

are used to describe the .

IV. EXPERIMENTAL RESULTS

In order to validate the presented method, flame images of the

burning zone under various conditions are collected from No.

3 rotary kiln at Shanxi Aluminum Corporation. A color CCD

camera (Panasonic WV-CP450) and a noncontact colorimetric

temperature measure device are installed outside the peephole

of the kiln head. The output signal of CCD is digitized using an

image grabber card (Matrox Meteor II). Each digital image has

a size of 512 384 pixels, and each pixel is composed of red

(R), green (G), and blue (B) components. The sampling period

for flame image and burning zone temperature is set to 10 s.

According to three rotary kiln operators’ judgement, the

collected flame images were labelled by voting method as

over-burning, under-burning, and normal-burning classes re-

spectively. Some minor adjustment on the labels class were

done by operational experts from Shanxi Aluminum Corpora-

tion to justify our results reported in this paper. A total of 482

typical flame images, including 86 over-burning state images,

193 under-burning state images, and 203 normal-burning state

images are selected from 4150 flame images to form the sample

dataset. Based on bootstrapping [32] with 2000 replica, training

and testing dataset are performed to estimate the accuracy of
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Fig. 7. (a) Over-burning. (b) Under-burning. (c) Normal-burning.

Fig. 8. Classification result versus candidate Gabor filter bank.

the flame image burning state recognition. Some flame image

examples are shown in Fig. 7.

A. Experiments for Gabor Filter Preprocessing

Fig. 8 shows the classification result of the training flame

and material texture images with respect to the candidate Gabor

filter bank used during one sampling experiment. As shown in

Fig. 8, the optimal recognition result is achieved when the eight

most discriminative Gabor filters are used. Thus, such a com-

pact filter bank is selected to filter the training and testing flame

images throughout this sampling experiment.

It is worth noting that a peaking phenomenon occurs in the

Gabor filter bank design procedure, i.e., the high-dimensional

feature representation leads to a gradual degradation classifica-

tion performance. Hence, in design of Gabor filter bank, from

our understandings, it should not be a simple procedure of sub-

jectively seeking filter parameters and creating filter bank, se-

lection of filter candidates is an indispensable part for such a

procedure to avoid the possible peaking phenomenon.

The effectiveness of our Gabor filter bank designing method

for discriminating ROIs is tested compared with other designing

methods with 2000 repeats listed in Table I. From Table I, as

we can see, our filter bank design approach not only selects the

uncorrelated filters and leads to a more compact filter bank, but

also distinguishes the flame and material zones much more to

facilitate the sequel.

TABLE I
COMPARISON RESULTS FOR VARIOUS GABOR FILTER DESIGNINGMETHODS

TABLE II
COMPARISON RESULTS FOR THE FLAME COLOR-BASED METHODS

B. Experiments Based on Flame Color

Following the steps presented in Section II, MIA is firstly

performed on each training flame image, and then in the

compressed score space, the area feature is computed to

characterize the flame color through masking procedure. In the

present study, four classifiers, i.e., PNN, NN, SVM, and ELM,

are applied to perform pattern classification for the burning

state recognition subresult respectively as listed in Table II

with mean values standard deviations of 2000 repeats. To

avoid the difficult segmentation of ROIs, we have also tested

the performance of the global color-based method.

In Table II, as we can see, the disturbance of smoke and dust

has great effect on the performance of the flame color-based

method. However, as a primary recognition for burning state, the

result can be accepted. Moreover, MIA can eliminate much of

the unstructured noise and extract more meaningful ROIs from

the original flame image. In contrast, the global color-based

method contains some disturbances and redundant information.

The result is hence inferior to the presented flame color-based

method. Further, various classifiers offer discriminative power

for pattern classification. At such feature, SVM outperforms the

other three classifiers.

C. Experiments Based on Global Feature of Flame Image

Fig. 9 shows the burning state recognition accuracy corre-

sponding to the candidate eigen-flame image combinations

used, i.e., the number of global features. In Fig. 9, peaking

phenomenon also occurs and 100% accuracy is achieved on the

training dataset when the six most discriminative eigen-flame

images are used. Thus, such six eigen-flame images are se-

lected for the testing flame images throughout this sampling

experiment.

The significant degree of our eigen-flame image selection al-

gorithm for global feature extraction is tested compared with

traditional eigen-flame image selection method with 2000 re-

peats listed in Table III, respectively. Moreover, the impact of

various classifiers for the global feature of flame image are also

studied as shown in Table IV.

From Tables III–IV, we have the following observations.

1) Independently of eigen-flame image selection method,

our Gabor filter preprocessing approach discriminates the
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Fig. 9. Classification result versus Number of eigen-flame images.

TABLE III
COMPARISON RESULTS FOR THE GLOBAL FEATURE-BASED METHODS

TABLE IV
COMPARISON RESULTS FOR VARIOUS CLASSIFIERS (GLOBAL FEATURE)

ROIs much more to facilitate the sequel. Moreover, the

global feature is not only more robust than the flame color,

but also avoids the difficult segmentation of the ROIs.

2) By selecting the eigen-flame images, the global feature

obtained substantially outperform those without selection.

This is because PCA is optimal from a low-dimensional re-

construction viewpoint and is nonoptimal from the pattern

classification point of view.

3) PNN is essentially based on the well-known Bayesian clas-

sification technique, and considers the probability charac-

teristic of sample space. Therefore, although the number

of principal components is not minimum, the classification

performance has the best result.

D. Experiments Based on Local Feature of Flame Image

For our flame images, the number of SIFT keypoints is typ-

ically 16. Thus, in our study, the maximum dictionary size

is set as fifteen and the number of semantics in the sense

of visual words is defined as

(26)

Fig. 10. Classification result versus candidate semantic vector subsets.

Fig. 11. Classification result versus number of visual words.

Based on the procedure proposed in Section II, Fig. 10 gives the

classification result of the training image dataset with respect to

the candidate semantic subsets with fifteen visual words during

one sampling experiment. In Fig. 10, optimal result is obtained

when the four most discriminative semantics are used. Such a

semantic subset is selected in the sense of fifteen visual words

for the testing image burning state recognition. Please note, in

LSA, peaking phenomenon also appears, i.e., excessive insignif-

icant semantics leading to the over-fitting problem. Therefore,

LSA should not be a simple procedure of creating the semantic

vectors and semantic selection should be an indispensible part

in order to take into account their saliency for the burning state

recognition.

Fig. 11 shows the burning state recognition accuracy corre-

sponding to the number of visual words, where each point is ob-

tained based on the classification result of the optimal semantic

subset under corresponding visual word number. In Fig. 11, the

highest recognition rate is achieved on the training dataset with

seven visual words. Such seven visual words are selected to con-

struct the dictionary for testing images throughout this sampling

experiment.
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TABLE V
COMPARISON RESULTS FOR THE LOCAL FEATURE-BASED METHODS

TABLE VI
COMPARISON RESULTS FOR VARIOUS CLASSIFIERS (LOCAL FEATURE)

Taking PNN classifier for instance, the classification accu-

racy of 2000 repeats is listed in Table V. In order to validate the

effectiveness of our semantic selection method for the burning

state recognition, we have tested the performance of standard

LSA with the same number of visual words and semantic

vectors. Further, based on the stop list analogy [27], we select

the frequent visual words that occur in all flame images for

the burning state recognition. Finally, the performance of the

standard tf-idf indexing table-based method is also included in

Table V.

From Table V, we have the following observations.

1) Our Gabor filter bank preprocessing approach also facil-

itates the local feature extraction. Moreover, our method

is feasible to extract local feature directly from the flame

image for the burning state recognition to avoid the seg-

mentation issue, and can select more salient and discrim-

inative semantics than the standard LSA-based method to

form the more meaningful local feature, and hence outper-

forms it with the same visual word number and semantic

vector number.

2) LSA can extract more meaningful semantics than the vi-

sual words, which not only generates low-dimensional fea-

ture representation to mitigate the problem of synonymy,

but also improves the classification performance.

3) During the stop list analogy, frequency is used to represent

the significance for the visual words in a certain degree.

The removal of the most frequent and infrequent visual

words can remove the common and rare words to improve

the classification performance. However, evaluation of the

discriminative power of the visual words is not involved in

such method, and the performance is hence interior.

Further, the discriminative power offered by various classi-

fiers for the burning state recognition is also studied. The per-

formance of our burning state recognition algorithm combined

with various classifiers are shown in Table VI. Also, in this local

feature-based method, PNN not only outperforms the best re-

sult, but also generates the minimum number of visual words

and semantic vectors than the NN, SVM, and ELM classifiers.

TABLE VII
FUZZY DENSITIES AND CORRESPONDING

TABLE VIII
EXAMPLE OF CLASSIFIER OUTPUTS

E. Recognition Performance Based on Integrated Results

After acquiring the above-mentioned results based on in-

dividual features, the final recognition result can be achieved

by using the fuzzy integral fusion operation. Firstly, for the

training dataset, a set of fuzzy densities are given by recog-

nition accuracy of each subrecognition method for each flame

image class. Then, the unique root greater than 1 for (25)

can be computed. Table VII shows the computation results in

one sampling experiment with PNN classifier. Suppose that

the probabilities of the PNN classifiers’ output classes for a

testing normal-burning flame image are shown as following,

, and , for

over-burning class; , and

, for under-burning class;

, and , for normal-burning

class, where , and are the PNN classifiers with the

flame color feature, the global configuration feature, and the

local configuration feature, respectively. Table VIII shows

how the procedure of the fuzzy integral is formed, where

, . Finally, the normal-burning class

is assigned as the output of the testing image.

With the same procedure, the average classification accuracy

over 2000 runs using various fusion operators and classifiers is

shown in Table IX, where same classifier is assigned to three

recognition methods during integration, and the recognition

probability of various classifiers for flame image classes

and recognition methods is set as the output value for the NN

classifiers, one or zero for the SVM classifiers, and output value

for the ELM classifiers, respectively. Moreover, we concatenate

the above-mentioned individual features extracted, and then

recognize the burning state with various pattern classifiers. Our

obtained results are reported in Table IX. As can be seen that

the recognition performance with the fuzzy integral consensus

method outperforms base classifiers, other multiple classifiers

with other fusion operators, and the concatenate feature-based

classifiers. The results show that good classification perfor-

mance comes from the objective evidence provided by various

classifiers and the subjective expectation of the importance of

that evidence. Also, it has been noticed that the PNN, NN, and

SVM classifiers with the concatenate feature does not improve
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TABLE IX
COMPARISON RESULTS FOR VARIOUS FUSION OPERATORS AND CLASSIFIERS

TABLE X
BURNING STATE RECOGNITION RESULTS FOR DIFFERENT IMAGE

SEGMENTATION-BASED METHODS

the final result, and the obtained results are even inferior to the

results obtained by individual feature-based classifiers.

F. Contrasted Experiments

This section compares our flame image-based method with

other existing burning state recognition methods. Firstly, we

compared our method with the temperature-based burning state

recognition method. Taking the labeling by kiln operational

experts as ground truth, the recognition accuracy of the two

methods is 95.37% and 81.34% at the same time. Again, our

flame image-based method outperforms the temperature-based

method and is more reliable even with the disturbance of dust

and smoke inside the kiln.

Then, we compared such flame image-based method with

four feasible image segmentation-based methods, including

Ostu [12], fuzzy c-mean and Gabor wavelet (FCMG) [9], dual

fast marching (DFM) [10], and multistage adaptive threshold

(MAT) [36]. Also, all experimental studies are in HSV color

space. Based on the experience of kiln operational experts,

the following sixteen features are extracted to characterize the

flame color and the configuration of ROIs, namely average

brightness of V subimage, average brightness and its variance

of the flame and material zones of V subimage, area, length,

width, circularity, and barycentric coordinates of the flame

zone, and height, width, area, and barycentric coordinates of

the material zone. All these features are then sent to the PNN

pattern classifier to obtain the recognition result. The average

classification accuracy of 2000 repeats with different classi-

fiers is shown in Table X. In our study, ELM gives the best

recognition result except Ostu-based method. This is probably

because Ostu is a general-purpose image segmentation method

whilst the other methods are special methods for flame image

or better image segmentation method. Moreover, obviously,

although image segmentation based feature extraction has been

successfully applied to many image recognition applications,

in our application, the flame images are of poor quality due to

the smoke and dust inside the kiln, and this in turn results in in-

accurate ROIs segmentation and feature extraction. The above

image segmentation-based methods are substantially inferior

to any individual of the presented methods and the integrated

method that are without the image segmentation procedure, and

could work well only when the flame image is of high quality.

V. CONCLUSION

In this study, we have explored the feasibility of applying

multifeature integration method to recognize the flame image

burning state for the rotary kiln without the difficult segmen-

tation procedures. Firstly, an improved compact Gabor filter

bank as the preprocessing step is used to discriminate the ROIs

with distinct texture characteristics to facilitate the subsequent

feature extraction and burning state recognition. Then, MIA

is employed to extract feature to characterize the flame image

color. Again, an improved eigen-flame image decomposition

technique is used to extract the global configuration features

of flame images. Finally, SIFT operator combined with the

BoVW image descriptor and an improved LSA is applied to

extract the local configuration features. The final recognition

result is based on the integration of the classification results

of above heterogeneous features by fuzzy integral. Compre-

hensive experiments were carried out, where the concatenate

feature-based method, temperature-based method, and image

segmentation-based methods were compared against our pro-

posed systems with various fusion operations. Experimental

results have demonstrated the feasibility and effectiveness of

our proposed approach.

Our further work is to incorporate the proposed flame image-

based burning state recognition system into our previously de-

veloped hybrid control system for rotary kiln. It is being ex-

pected that an improved product quality index could be achieved

by using this image-based sensor.
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