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policies, we haveJ™(z) > M — z if = > z*. This establishes scheme is to always sample from the same combination of choices,
the lemma, because this lower bound can be achieved by the poliey, the combination that produces the highest index (note that the

No(z) = 0. O choices may not all be the same).
Let J: R — R be a real-valued function. L&t be the dynamic
programming operator, defined as REFERENCES
T(J)(#) = min{M — z, migl{E[h(z i)+ J(f(z,0)]}} [1] D. Bertsekas and S. Shrev@tochastic Optimal Control: Discrete Time
€ Case Mathematics In Science and Engineering Series, vol. 139. New
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plications,” in Proc. 4th Berkeley Symp. Mathematical Statistics and
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tion. Then,T'(J) is also monotone nonincreasing. Probability, 1961, vol. 1, pp. 93-104.
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max(Y;, zo) for eachi € I. Thus, Wiley, 1989. . . .
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In light of the above equation fdf, we have IEEE Trans. Automat. Conirvol. 39, pp. 2235-2244, Nov. 1994.
[7] S. Streltsov and P. Vakili, “A nonmyopic utility function for statistical
T(J)(z1) <T(J)(z2) global optimization,” to be published.
[8] M. L. Weitzman, “Optimal search for the best alternativEtonomet-
establishing thaf’(J) is monotone nonincreasing. rica, vol. 47, no. 3, pp. 641-654, 1979.
Lemma 5: Under BCC assumptions is monotone nonincreasing
on R.

Proof: Compactness of implies compactness of the control
spacell = I U {¢}. This compactness and the continuity as-
sumptions of BCC imply that the dynamic programming problem
under consideration satisfies the assumptions of the semicontinuous
model of [1, Ch. 9], and hence it follows that the iteratiéh™ =
T(J™), initialized with the initial gonditionJ”(z) = 0, converges Dianhui Wang and C. B. Soh
monotonically to the optimal cosl (see [1, Proposition 9.17 and
Corollary 9.17.2]). From Lemma 4, since the initial condition is
monotone nonincreasing,” is also monotone nonincreasing for all Abstract—This paper considers linear time-invariant decentralized

n, establishing that the limif will also be monotone nonincreasing.singular systems which are either nonregular or, if they are regular,
they have impulsive modes. It derives algebraic necessary and sufficient

. conditions for making a singular system both regular and impulse-
We can now show the main result of the paper. ~ free by decentralized output feedback control laws and decentralized
Theorem 1: Under BCC assumptions the sampling policy iS  proportional-plus-derivative output feedback control laws.

the optimal policy and the functios IS the OE)tIma| cost fuTctlon. Index Terms—Decentralized control, regularization, singular systems,
Proof: From Lemma 3 we havd(z) = J*(z) for z > z*. output feedback.

Let z < z*. Then, by Lemma 5, the optimal cost is monotone
nonincreasing, so

J(z)>J(=) =M - =J(2).

On Regularizing Singular Systems
by Decentralized Output Feedback

I. INTRODUCTION
Consider the following decentralized singular systems:

On the other hand, sincé is the minimum cost N
j(:) < J*(:) Fiz=Ax + EBZ'UL'
HenceJ(z) = J*(z) for = < z* and we have shown that = J*. yi =Cix, i=1,2,---,N 1)

According to Lemma 2J" is the cost function corresponding to . . .
d J P 9 whereE and A aren x n real matrices with®' singular,z andy; are

policy =*, therefore,=* is the optimal policy. at ; d outout " ivBlyand (' M
Remark 1—Vector SamplingThe above result extends to the casg ate veclor and oulputs veclors, respectivelyandt; arémn xm;
r é"ﬂ matrices and; x n real matrices, respectively.

of vector sampling (or parallel sampling). Assume that at each sta& . . . . .

. . .~ System (1) is said to be regular if the pencil paf — A is
nstead of one sampl d>1) samples are taken (possibly in . . . . ;

! plef (d>1) P (possibly | regular, i.e.det(sE — A) is not identically zero. It is well known

arallel). For eachi = (iy,---,i I?, let C; represent the cost X _ )
P ) 1= (is,:--50a) € i 1ep that regularity of singular systems guarantees the existence and

of takingd samples from choices, - --,is and letW; represent the " . .
maximum of the samples taken. The distributionVef is given by uniqueness of the solutions [1], [2]. Almost all of the given results
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The sequentalsamping problem discussed in s paper s equy: Weng = wih the st f elgert Contal, el vartme
alent.to .thls.problem, posed in tgrms qf Cpllef:tlng samplgsgiven C. B. éoh is V\;ith the Sé:hool of Electrical and Electronic Engineering,
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for singular systems assume regularity; see, for example, [3]-[5] aNtbreover, P(N) is a power set of\", which is the set of all the
the bibliographies in these references. However, this assumptiorsisets of\V', A" — ¢ = {2: « € N andz ¢ ¢}. Let
unnecessarily strong so that it limits the analysis of a number of . .

practical physical systems [5], [6]. Then, researchers paid attention Se ={K: K = block diagl Ky, Kz, -+, K],
to regularizing singular systems using various feedbacks (see, e.g., K, € R™™*ie N}

[7]-{10]). Itis important, of course, to establish conditions that ensure| emma 2.1: The singular systemEs = Az is regular and
the regularity of singular systems under feedback and, furthermog@pyise-free if and only if

to develop numerical algorithms for constructing regular closed-loop

systems with desired system characteristics [9], [11], [12]. rank {2, E} = n + rank[E]. 3)
From the viewpoint of practical applications, regular systems that :
have no impulsive modes are especially significant. So it is desirable Proof: The proof can be found in [13]. O

to derive conditions that ensure the existence of one feedback gaiffhe following concepts on robust set and supporting algebraic
matrix such that many resulting closed-loop systems are both regutesults are important and will be used in the next section.
and impulse-free. Early results on regularization of singular systemsDefinition 2.1 [14]: A subset ofR™*? (respectivelyC™*?) is a
using proportional (P) state feedback and proportional-plus-derivatif@ust subsefi.e., Zariski open set) oR™*? (respectively,C™**)
(P-D) state feedback are reported in [6], [8], and [11]. They havkit is nonempty and its complement is the set of solutiongii*”
shown that many nonregular systems can be regularized by P andfespectively,C"**?) to a finite set of polynomial equations. Such
P-D state feedbacks. In [7] and [9], algebraic necessary and sufficieats are open and dense ii**? (respectively,C"**), and each
conditions are given that ensure that an output feedback can rbeust subset o€™>? contains a largest subset which is a robust
selected for making the closed-loop system both regular and impulsgbset of R”™*”. The intersection of two robust subsets Bf**?
free. In [10], based on a reduced form of the singular systerfiespectively,C"™*?) is also robust inR™*” (respectively,C™"*?).
algebraic sufficient conditions are derived for making a nonregul&ny union of robust subsets dt"™** (respectively,C"***) is also
system both regular and strongly controllable and strongly observabigbust in R™*” (respectively,C™*?).
These results mentioned above are only for centralized systems. Lemma2.2:Let Ao € R™*", B € R™*", andC' € R'"*" be

The objective of this paper is to derive algebraic necessary afixed real matrices, and’ € R"*! be a variable matrix. Then
sufficient conditions for the existence of decentralized output feed-
back control lawsy; = K,y; + v;,i = 1,2,---, N, that will make
the singular system (1) both regular and impulse-free. Algebraic

necessary and sufficient conditions are also presented for the existeanncde furthermore, the set

g.r.[Ag + BKC] = min {rank[AU, B], rank |:‘?) :| } 4
k )

of P-D decentralized output feedback control laws,= —L;§y; + Sr = {K:rank[4o + BKC]= gr. [40+ BKC]}
K,y; + vyt = 1,2,---, N, that will make the closed-loop system Kenrhxt
satisfy (5)
v is a robust set, or equivalentlyank[4, + BEKC] reaches its
. = X maximum value for almost alk € R"*'.
L deg{det sk - <A+ EB'A’CJ } Proof: The first part of the result can be found in [15]. We
Ky, Kpn 1=

now proceed with the rest of the proof. Without loss of generality,
= max rank[E] (2) we assume thatl, is anm x m matrix andg.r.[4, + BKC] =

rank[Ao, B]. Obviously, from Definition 2.1 the statement is true for
the case ofA4o, B] being of full rank. Let nowank[Aq, B] = r < m.
Then we can choose nonsingular matri€esand V' such that

where deg{-} and det[-] denote degree of a polynomigt} and
determinant of a matrif], respectively, and> = E+X, B;L;C;.

The remainder of this paper is organized as follows. Some notatiorts,AOV _ {Al 0} UB = [Bl
used throughout the paper and the supporting results are given in 0 of B,

Segtlon ”I. The main results and remarks are reported in Section (ljhere 4, is a square nonsingular matrix. By compressing the rows of
and conclusions are given in Section IV. B, and columns o€, to full row rank and full column rank matrices,
respectively, we can choose nonsingular matrifesnd ) such that

Il. NOTATION AND PRELIMINARIES ; 4 0 B

:|, CV =[C1,Cs]  (6)

. ! 0
In this section, we introduce the notation and some supporting PU [AmB]{O Ih:| =10 0 Bxn (7)
results used in the paper. L&">™ (C"*™) denote the set of 0 0 0
n x m real (complex) matrices. 8/ = [mj]nxm € R"*™, then U074 A1 0 0
M7 denotes the transpose 8f, rank[M] denotes the rank a¥f, {0 I } {CD}IQ =0 0 0]. (8)
andI,, € R™*™ denotes the identity matrix. IfM € R"*™ is ! g Ci Cxn 0
a parameterized matrix dk, then we usez.r.[M] to stand for the Note that PUAVQ = UAoV and rank[do,B] = r <
K AoV = y R = <
generic rank of the matri®/, i.e., the maximum rank of the matrix rank[A{, C*1*, we get
M asK varies in a specific set. Let” denote the sefl,2,.--, N} . - - R
andy is a nonempty subset of with elements, is, - - -, i, ordered I‘“‘k[AU’ + BEC] =rank[PUAWVQ + PUBKCV Q] 9)
such thati; <i» < --- <is. Then we defineB, andC,, such that rank “}l gl } =7, rank {gl CO* } = (10)
21 1 21
?il where Bz, has row full rank and”5;, which is a submatrix o5,
Yz has column full rank. Let
CL/,: . and Bv:[BipBiza"'ﬂBis]- X 40 . B, .
: A= , B= . C =101 Chlixe (11
ORI PR GRS R
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Then

rank[A + BKC) = gr. [A+ BEKC] (12)
KeRtxt
holds for almost allll’ € R"*' which completes the proof. O
Lemma 2.3:Let Ap € R™*", P, € R™*" and@Q; € R*"
be fixed real matrices, and; € R":*'i be variable matrices,

¢ =1,2---,N. Then
J\?
g.r. Ao + ZP@IQ‘QZ'
Ky, Ky o
N—1
= min T A + P K;Q;, Py

r N—1

er. Mo+ 2oBEQL gy

Ky, Ky_1 =1
Qn

Proof: Suppose that

N
Ao + ZPJQQZ' = rank
=1

g.I.

Ky, Ky

N
Ao + ZPJ&T@} )

=1

' (14)
By Lemma 2.2, we have
N

40+ S PEIQ,

=1

rank

< g.r.
Kn

N-1
Ao + Z PK Qi+ PNIX’NQN:|
=1
N-1
Ao + Z PK!Q;, Py

=1

= min < rank

N—1

rank Ao + ;R[{Zi Qi
Qn

N—1

Ao+ Y PKQi, Px

=1

< min g.r.
Ky, Kny—1

3

N—1

0. Ay + ZPiIXiQi i (15)

Ki, K1 ':Ql
N

Note that for any fixed<s,---, Ky _1, by Lemma 2.2 we have

N
gr. |Ag+ Z Pl-KiCJz}

Ky, Ky oy

> g.r.

Ky

No1

Ao + Z P,K:Q; + Px I{NQN:|
i=1
N-1

Ao + Z P K;Q;, Py

=1

= min < rank

N

N—1

Ay + ZP,I;',Q,
=1
Qn

rank

(16)

Therefore

g.I.

Ky, Kxn

N
Ao + ZP,-A;QL}

=1

N—-1
> min g.T. Ao + Z P K;Q;, Pn |,
Ky, Kn_1 i—1
N—-1
g.1. Ao + ;Piﬁi@" . 17)
Ky, Kn_1 ’@N
This completes the proof. O
. MAIN RESULT

In this section, we are interested in the effects of applying various
local feedback control laws to system (1). First, we apply the feedback
control law of the formu; = K;y; + v;,i = 1,2,---, N, to system
(1). The closed-loop system is given by

Ei =

N N
A+ BiK:Ci|w+ ) Bivi. (18)
=1 =1

The main result is now stated as follows.

Theorem 3.1: Given the singular system (1), there exist decentral-
ized control laws of the form; = K,y;, +v;,1 = 1,2,.--, N, that
yield a regular and impulse-free system (18) if and only if for all
¢ € PWV)

0 E 0
rank ( F A B, | > n+ rank[E]. (29)
0 Cn—p O

Proof: According to Lemma 2.1, it is only needed to show that
the following equality holds:

0
N
g.T. E A4 ZBiKiCz = n + rank[E]. (20)

K, Kn
i=1
By Lemma 2.3 the necessary and sufficient condition for (20) to be
true is that the following two inequalities are true:
0 E 0
N—1

S v |E A+ D) BKCi By

Ky, Ky_1

> n + rank[E]

=1

(1)

and
0 F

N-—1

g.r. E A+ )Y BiKiCi| >n+rank[E].  (22)
Ky, Ky_1 i=1
0 Cn
Using Lemma 2.3 again, the necessary and sufficient conditions for
(21) and (22) to be true are that the following four inequalities are
true:
[0 E 0 0

N2
1\"1,-5,1\3\;72 E A+ BikiCi Bn-1 By
i=1

> n + rank[F] (23)
[0 E 0
N-—-2
g.r. E A+ ZB,‘,K,;O,; Bn
K, K vz =
L0 Cn—i 0
> n + rank[E] (24)

0 FE 0
N—=-2
g.r. FE A+ E B;K;,C; Bn_i
1

Ky, Ky_2

0 e 0
> n + rank[E] (25)
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an or all ¢ € P(N'). Conditions an are the necessary an
d for all ¢ € P(N). Condit (30) and (31) th y and
0 E sufficient conditions for the existence of a static output feedback
=2 R u = Ky, such that the closed-loop systebw = (4, + BKC)x
o.r. E A+ ;B'J"?Ci > n + rank|[E]. (26) s structural impulse-free, i.e_., there is a realizatién A+ BKC)
KiKy_2 | Crn_i of the system(E, A, + BKC) to be regular and impulse-free.
0 Cr From Theorem 3.1, these conditions are equivalent to the conditions

of the existence of decentralized control laws of the foum =

Proceeding with this way, we can easily conclude that the NECessgn | ..i=0,1,---, N, that make the following system:

and sufficient condition for (20) to be true is for alle P(\)
N

0 E 0 R T
rank | E A B, | > n 4+ rank[E]. (27) Ei =dr+ e Mius
0 Cn—p O yi =Nz,  i=01.N (32)
This completes the proof. O

Remark 3.1: The result given in [9] is only for centralized systemdoth regular and impulse-free, wheké, = B and No = C.
which is just a special case of Theorem 3.1 (i¥.,= 1). For a Now, we apply the following local P-D output feedback control
decentralized singular system, which is regular with impulsive moddaws to the singular system (1). That is
it is said to have decentralized impulse fixed modes (IFM’s) if for
any local output feedbacks™ € Sc, the following inequality holds:

deg { det

Algebraic characterization of IFM’'s has been presented in [16].
The conditions given in Theorem 3.1 are the same in form as
the conditions on nonexistence of the IFM's for regular system$he singular system (1) may be a normal systemgasE +
However, they will never be regarded as the same thing. The reasoll, B;L;C;] = n. As g.r.[E + S, B;L;C;] < n, then system
is that the conditions for IFM's are derived from the preassumptiqa4) is still a singular system. Applying the results above, we now
of regularity in the considered system. derive the algebraic conditions for the existence of decentralized P-
Remark 3.2: The result in Theorem 3.1 is related to the structurad output feedback control laws (33) that will make the closed-loop
controllability and structural observability of singular systems (sesingular system (34) satisfy condition (2). In fact, the closed-loop
e.g., [17]-{19]). Consider a class of structural singular systerggstem (34) will be regular and impulse-free as long as condition

U; = —Lig)l' —+ K;yi + v, i =1,2,:-, N. (33)

N
sE— A+ B, K;C;

=1

The closed-loop system will be of the following form:

} < rank[E]. (28)

i’:

N
@+ Z B;v;. (34)

=1

J\?
A+ Z B, K,C;

=1

N
E + Z B, L;C;
=1

described by (2) holds.
P ) Theorem 3.2: Given the singular system (1), there exists decen-
Fi=A,z+ Bu . . . .
tralized P-D control laws of the form; = —L;y; + K.y; 4+ vi,i =
y=Cx (29) 1,2,.... N, that make the closed-loop system (34) satisfy condition

where E € R"*" is singular,A, is a parameterized matrix of the (2) if and only if
form

N 0 E 0 B, 0
, ~ E A B, 0 B,
Ap = Qo + Z MK N rank 0 Cnv—p, O 0 0 | >n+R,
=t 0 Cop, 0O 0 0
Qo, M;, and N; are constant matrices with appropriate sizes, CNmg)—pn 0 0 0 0
respectively ’; is a variable matrix with compatible dimension, and : (35)

7 € ./\/”.
Recall that matrix4, is said to be a realization off, if it forall o € P(N), o1 € P(p), andpa € P(N — ¢), with

is obtained from some fixed parameters matridés i € N.

System (29) is said to be structurally regular if there is a realization R.A in mnk{

(E,A,, B, C) of system (29) to be regular. Suppose that system I eern)

(29) is structurally regular, then it is said to be structurally impulse

controllable (observable), if there is a realizatioh, A, B, C) of

system (29) to be impulse controllable (observable) [19]. Thu

E Bv’}. (36)

C,V_¢ 0

Proof: By Lemmas 2.2 and 2.3, we know that the following
golds for almost allL € S¢ :

algebraic necessary and sufficient conditions on the structurally N B N
impulsive controllability and the structurally impulsive observability rank |E + ZB;L,:C,: = gr |E+ ZB;L,:C,: =R,
of system (29) can be obtained by using the same approach used in i=1 Lronln i=1
the proof of Theorem 3.1. The results are, respectively (37)
0 £ 0 0 In light of Theorem 3.1, condition (2) holds if and only if
rank |[E Qo M, B | >n+rank[E] (30)
0 Ny_p 0 0 N
0 E+ ZBzLiCi 0
and i=1
o E 0 g.r. &
N Ly, Ly E—‘,—ZBiLiCi A B
rank E o M > n + rank[E] (31) i=1 .
0 Ny—, 0|~ 0 Cny 0
0 C 0

>n+ R, (38)
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holds for all € P(N). Observe that

N
0 E+) BiLCi 0
=1
g.T. N
Ly, Ly E—i—ZB,L,C, A ng
i=1 [1]
0 Cyn—p 0
0 E+% BiLCi 0 2l
1€y
1EN —¢
0 Cho s 0 [4]

(39)

Sincey N A — ¢ = 0 (empty set), then by using Lemma 2.3 on (5]
the right-hand side of (39) and repeating the procedure as shown 'g]
Theorem 3.1, we can finally obtain the algebraic conditions (85).
Corollary 3.1: The derived algebraic conditions given in Theo- [7]
rem 3.2 for centralized systems become 8]

E 0 B . i |E
rank E A B 0 > n 4+ min {rank[E, B], rank C } (40)
z - [9]
0 F 0 B
rank|{E A B | >n+ min {rank[E,B],rank , } (41) [10]
, C
0 C 0] e
and ) [11]
0 F
rank 0 C > n 4+ min {rank[E, B], rank ] } (42) [12]
c 0| 13

Remark 3.3: A similar comment as in Remark 3.2 on the result
stated in Theorem 3.2 can be made, which is related to the foIIowi?ﬂq
structural singular system described by

E,i =A,x+ Bu

[15]
y=Cuzx (43)
where E,, and 4,, are parameterized matrices of the form [16]
71 no
B, =P+ M/KIN!.  A4,=Qo+> MKIN} [17]
i=1 =1

Py, Qo, M}, M?, N, andN? are constant matrices with appropriatey; g
sizes, respectivelyly! andK’? are variable matrices with compatible
dimension, and € A. For the limitation of space, the details are
omitted here. (19

It should be pointed out that the results in this paper are based on
the original system parameter matrices and no matrix manipulation
and partitioning are required.

IV. CONCLUSION

This paper considers the problem of regularization of singular
systems using decentralized output feedback. Algebraic necessary
and sufficient conditions are derived which ensures the existence
of decentralized output feedback control laws that will make the
singular system both regular and impulse-free. Necessary and suffi-
cient conditions are also given for the existence of P-D decentralized
output feedback control laws, for which the closed-loop system wiill
be regular and impulse-free with a maximal dynamical order.
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