
Manuscript accepted for a publication in BMC Systems Biology

Volume 00, Number 0, September 2012 pp. 1–22

MISCORE: A NEW SCORING FUNCTION FOR CHARACTERIZING
DNA REGULATORY MOTIFS IN PROMOTER SEQUENCES

Dianhui Wang and Sarwar Tapan

Department of Computer Science and Computer Engineering
La Trobe University, Melbourne, VIC 3086, Australia

Emai: dh.wang@latrobe.edu.au

Abstract. Background: Computational approaches for finding DNA regulatory mo-
tifs in promoter sequences are useful to biologists in terms of reducing the experimental
costs and speeding up the discovery process of de novo binding sites. It is important
for rule-based or clustering-based motif searching schemes to effectively and efficiently
evaluate the similarity between a k-mer (a k-length subsequence) and a motif model,
without assuming the independence of nucleotides in motif models or without employing
computationally expensive Markov chain models to estimate the background probabilities
of k-mers. Also, it is interesting and beneficial to use a priori knowledge in developing
advanced searching tools.
Results: This paper presents a new scoring function, termed as MISCORE, for func-
tional motif characterization and evaluation. Our MISCORE is free from: (i) any as-
sumption on model dependency; and (ii) the use of Markov chain model for background
modeling. It integrates the compositional complexity of motif instances into the func-
tion. Performance evaluations with comparison to the well-known Maximum a Posteriori
(MAP) score and Information Content (IC) have shown that MISCORE has promising
capabilities to separate and recognize functional DNA motifs and its instances from non-
functional ones.
Conclusions: MISCORE is a fast computational tool for candidate motif characteriza-
tion, evaluation and selection. It enables to embed priori known motif models for com-
puting motif-to-motif similarity, which is more advantageous than IC and MAP score. In
addition to these merits mentioned above, MISCORE can automatically filter out some
repetitive k-mers from a motif model due to the introduction of the compositional com-
plexity in the function. Consequently, the merits of our proposed MISCORE in terms of
both motif signal modeling power and computational efficiency will make it more appli-
cable in the development of computational motif discovery tools.

Keywords: Motif signal characterization, Metrics evaluation, Scoring function, Con-
servation and rareness, Over-representation.

Background. Gene transcription is controlled by the essential interactions between Tran-
scription Factor Binding Sites (TFBSs, or simply Binding Sites) and Transcription Pro-
teins known as Transcription Factors (TFs) [1]. Understanding these interactions requires
a knowledge on all binding sites associated with their TFs and cis-regulatory modules.
Hence, discovering unknown motifs (i.e., a collection of binding sites) in co-expressed
genes or finding de novo binding sites associated with a known TF is crucial to under-
stand the gene regulatory mechanisms [2, 3, 4]. Experimental approaches for finding DNA
motifs are laborious and expensive [5, 6]. Additionally, experimental techniques such as
ChIP-chip [7], ChIP-seq [8] and micro-array technology are mostly incapable of predicting
specific locations of the binding sites.
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It was the biological significance of the cost-effective identification of the DNA mo-
tifs that computational motif discovery has received considerable attention in the last two
decades. In addition to being cost-effective and time-efficient, the nature of computational
techniques offers the fastest and usually the easiest means of adopting rapidly emerging
new and revised understandings on the biological process to produce more sensible mo-
tif discovery results. Despite being enormously attempted, an effective motif discovery
performance by the computational approaches still remains challenging [9, 10, 11]. This
is partly due to the lack of effective characterization on regulatory motifs which helps in
distinguishing the functional motifs from the non-functional ones.

Due to the functional significance in gene regulation, motifs are evolutionarily con-
served. Hence, motif instances appear to be rather similar to each other despite having
variability in their nucleotide compositions [12]. Motif instances are rarely found in the
background sequences, which is often termed as the background rareness. Also, functional
motifs are often over-represented in the regulatory regions (foreground) compared to the
backgrounds [13, 14, 15, 16]. Thus, a motif’s background-to-foreground appearance ratio
should be smaller than the random ones. Over-representation can be similarly interpreted
with the rareness characteristic. However, they are typically expressed with different sta-
tistical representations. Another useful characteristic of functional motifs is related to the
compositional complexity of the nucleotides, which is termed as motif complexity [17].

Information Content (IC) [18] and Maximum a Posteriori (MAP) [19] score are two
conventional motif scoring schemes that are widely adopted in evaluating and ranking
candidate motifs. They are capable of characterizing the model conservation and the
background rareness properties of the functional motifs. However, they suffer from the
following shortcomings:

1. IC evaluates a motif by quantifying the relative entropy of the motif PFM (Positional
Frequency Matrix) under assumption of model independence. This assumption on
model independence is fundamentally weak as shown in [20, 21, 22, 23].

2. MAP, on the other hand, requires a higher order Markov chain model to estimate
the background probabilities [24] prior to motif evaluation. Its computational time
and cost increases along with the increment of the order of the used Markov chain
model. Also, MAP score can not be used to evaluate the similarity between a k-mer
and a motif model, which is essential in computational motif discovery exercises.

3. Both IC and MAP score ignore the motif-complexity feature in the evaluation of
the candidate motifs. Hence, a complexity score-based filtering [17] has to be used
in candidate motif evaluation. The complexity threshold is empirically set in the
filtering process that needs human intervention and careful attempts.

4. Computational motif discovery can be guided by some known motif models as useful
a priori knowledge (pk). Motif evaluation in terms of ranking then becomes a motif-
to-motif similarity task. Unfortunately, IC and MAP score are not able to embed
the pk models in scoring.

Motivated by the above issues, this paper introduces a new motif scoring function,
termed as MISCORE (mismatch-based matrix similarity scores), to quantify similarity
between a k-mer and a motif PFM using a mismatch computation on the nucleotides. By
evaluating each instance k-mer (a candidate binding site) of a motif, MISCORE can quan-
tify the likeliness of the candidate motif to be functional by a combined characterization
on the model conservation, the background rareness and the compositional complexity.
Our proposed MISCORE share the following three remarkable features: (i) computa-
tional efficiency due to its simplicity; (ii) free from any assumption on model dependency;
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and (iii) an embedability of a priori knowledge in motif scoring. An extension of MIS-
CORE, that adopts a biologically inclined pattern localization approach for an improved
recognition of the functional motifs, is also reported in this paper.

Experiments on 33 benchmark DNA datasets have been carried out for evaluating the
performance of MISCORE with comparison to IC and MAP score. Firstly, we examine
how well these metrics can separate the functional motifs from the random ones. Secondly,
we are interested in learning how well they can recognize the functional motifs from a set of
putative motif models in terms of candidate ranking. Lastly, we evaluate the effectiveness
of MISCORE in recognizing the functional motifs using pk models. The experimental
results are found promisingly supportive to MISCORE.

Over-representation is a widely recognized numerical feature for characterizing func-
tional motifs [13, 14, 15], that typically differs from the statistical quantification of the
background rareness property. Due to their common objective of motif characterization,
correlating them through a single framework is fundamentally meaningful and it has not
been addressed sufficiently in the literature. MISCORE can be utilized as a similarity
metric to perform this correlation as detailed in the latter portion of this paper.

Methods. This section describes MISCORE and its localized version in details. For the
sake of completeness, some preliminaries are given, including the notations and the k-mer
encoding scheme used throughout this paper, followed by a preliminary introduction on
the motif complexity score [17], Information Content [18] and the Maximum a Posteriori
score [19].

Preliminaries.

Model representation. In this paper, Positional Frequency Matrix (PFM) is employed as
the motif model [18]. The PFM-based motif model, denoted by M , is a matrix, i.e.,
M = [f(bi, i)]4×k, where bi ∈ χ = {A,C,G, T} and i = 1, . . . , k, and each entry f(bi, i)
represents the probability of nucleotide bi at position i. Similarly, a k-mer Ks = q1q2 . . . qk
is encoded as a binary matrix K = [k(bi, i)]4×k with k(qi, i) = 1 and k(bi, i) = 0 for bi 6= qi.
For example, a k-mer Ks=AGCGTGT can be encoded as,

K = encode(Ks) =

A
C
G
T


1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 1 0 1 0
0 0 0 0 1 0 1


4×k

.

For a given binary encoded set of k-mers, S = {K1, K2, ..., KP}, the motif PFM model

MS can be computed by MS = 1
P

∑P
i=1Ki.

Model complexity. Motif discovery tools often return models with low complexity, that
show a repetitive occurrence of nucleotides. Hence, a motif-complexity score was proposed
in [17] to filter out models with lower complexities, that is,

c(M) =

(
1

4

)k ∏
∀bi∈χ

(
k∑k

i=1 f(bi, i)

)∑k
i=1 f(bi,i)

, (1)

where k is the length of k-mers and f(bi, i) is the observed frequency of the base bi at

position i in the model M . Here, the complexity score lies in [(1/4)k , 1], where 1 refers
to a fully complex motif PFM.
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Maximum a posteriori (MAP) score. MAP score [19] is a powerful quantifier that eval-
uates the merit of a candidate motif (a set of k-mers, S) by considering its model con-
servation and the background rareness. The background rareness of S is computed using
a higher order Markov chain model [24]. For each K ∈ S, this model can produce an
estimation of background probability, namely p(K|B), for a given background model B:

p(K|B) = p(b1, b2, . . . , bm)
k∏

i=m+1

p(bi|bi−m, bi−m+1, . . . , bi−1), (2)

where m is the Markov chain order; k is the length of k-mers; p(b1, b2, . . . , bm) is the
estimated probability of subsequence b1, b2, . . . , bm and p(bi|bi−m, bi−m+1, . . . , bi−1) is the
conditional probability of the subsequence bi under bi−m, bi−m+1, . . . , bi−1 occurrence con-
straint. Then, for the candidate motif S, MAP score can be expressed as,

MAP (S) = − ln(|S|)
k

(
E(S) +

1

|S|
∑
∀K∈S

ln p(K|B)

)
, (3)

where |S| is the cardinality of the set S and E(S) is the entropy [25] of the PFM (M),
expressed as,

E(S) = −
k∑
i=1

∑
∀bi∈χ

f(bi, i) log2 f(bi, i). (4)

A higher MAP score indicates a better likeliness of the motif S to be functional.

Information content (IC). IC [18], measuring the average binding energy of the k-mers
set S, can be given by,

IC(M) =
k∑
i=1

∑
∀bi∈χ

f(bi, i) ln

(
f(bi, i)

p(bi)

)
, (5)

where f(bi, i) is frequency of the base bi at position i in the model M , and p(bi) is the
pre-computed background frequency of the nucleotide base bi. A higher IC score of a
candidate motif indicates a better potential of being a functional one.

MISCORE for motif characterization. MISCORE is a new scoring function for mod-
eling motif signals that uses a combined characterization on the model conservation, the
background rareness and the compositional complexity of functional motifs. It quantifies
a similarity between a k-mer K and a putative model M with respect to the background
reference model Mref , that is,

r(K,M) =
d(K,M)

d(K,Mref ) + c(K)
, (6)

where d(K,M) is defined as a generalized Hamming distance, expressed as,

d(K,M) = 1− 1

k

k∑
i=1

∑
∀bi∈χ

f(bi, i)k(bi, i), (7)

where f(bi, i) and k(bi, i) are the observed frequencies of base bi at position i in M and
K, respectively.
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Motivated by the well-known Gini index to quantify impurity of data clusters, we define
c(K) in Eq (6) to compute the compositional complexity of K as follows:

c(K) =
4

3

1− 1

k2

∑
∀bi∈χ

(
k∑
i=1

k(bi, i)

)2
 , (8)

where the complexity is scored according to the distribution of bases (A,C,G, T ) in the
K. An equal distribution gives the maximum score of 1 and a dominant distribution, i.e.,
a nucleotide appears at all positions of the K, gives the minimum complexity of 0. In Eq
(6), the score range for both d (K,Mref ) and c(K) is [0, 1]. The complexity measure given
in Eq (6) helps in automatically eliminating the low-complex motifs from the top rank.
In this way, an empirical threshold-based filtering [17, 26] for filtering the low-complex
candidate motifs can be avoided.

While no pk model associated with the target motifs is available, then we need to employ
some searching tools to generate a model that is qualified to be an approximation M of
the target motifs. Then, this putative model is essentially derived from the information
embedded in the input sequences by the employed search algorithms. For instance, in
the clustering type of motif finding algorithms [26, 17, 27], the putative models can be
obtained by grouping k-mers based on a similarity metric.

Binding sites are evolutionarily constrained with limited mutations, hence a K can be a
putative motif instance if d(K,M) < d(K,Mref ) holds, which implies a smaller mismatch
to the putative model M than the background reference model Mref . Note that the
Mref is a PFM that can be constructed by all k-mers from the background sequences.
For a large sized background, each column of the Mref approximates the nucleotides
background frequency. Thus, the Mref can be conveniently composed of the nucleotides
pre-computable background frequency in each column. Large sequence-portions that have
a minimal chance of having the true binding sites can be taken as the backgrounds, e.g.,
random chunks of large genomic portions or a large collection of upstream regions from
the relevant species. Note that a smaller r(K,M) score characterizes a higher similarity of
that K to M in respect to its dissimilarity to Mref and a better nucleotide complexity in
K, which implies a combined characterization on the model conservation, the background
rareness and the compositional complexity.

A mathematical expectation of the MISCORE values of a set of k-mers can be viewed
as a metric to characterize the candidate motifs. Given a set of k-mers S and its PFM
model MS, a MISCORE-based Motif Score (MMS), denoted as R(S), can be evaluated
by,

R(S) =
1

|S|
∑
∀K∈S

r(K,MS), (9)

where | ∗ | is the set cardinality and r(∗, ∗) is the MISCORE given in Eq (6). A smaller
MMS score indicates a better potential for a candidate motif to be functional.

Remark: Initially, MISCORE was introduced in [28] to quantify a mismatch-based

similarity between a K and a model MS, i.e., d(K,MS) = k−
∑k

i=1

∑
∀bi∈χ f(bi, i)k(bi, i).

A corresponding MMS was defined by MMS(S) =
1

|S|
∑
∀K∈S d(K,MS), and utilized as

a motif scoring function to quantify the conservation property of a motif S. In [29], an
improved version of MISCORE, termed as relative-MISCORE, was introduced to char-
acterize a motif’s conservation and the rareness properties by introducing a background
reference model Mref in the MISCORE computation. Let r(K,MS) denote a relative
similarity between a K and a model MS. Then, it can be computed by r(K,MS) =
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d(K,MS)/d(K,Mref ) that results in a relative-MMS: RMMS(S) =
1

|S|
∑
∀K∈S r(K,MS).

As a new scoring function, it was employed as a fitness function in our GAPK framework
for motif discovery. In this paper, we introduce a compositional complexity term in the
relative-MISCORE as shown in Eq (6), which improves our previous work by preventing
k-mers with repetitive nucleotides from motif models. This new characterization simul-
taneously addresses the model conservation, background-rareness and the compositional
complexity properties of the regulatory motifs, which makes the present MISCORE func-
tionally advantageous than IC, MAP score and the previous MISCORE versions. It should
be pointed out that other forms of characterization on regulatory motifs exist, provided
that they can model the motif signals effectively and efficiently.

Observation: Experiments on real DNA datasets demonstrated that R scores of the
functional motifs are with statistically significant p-values and z-scores, that can be com-
puted using large collections of (i) random and (ii) conserved models, generated from the
respective promoter sequences. Results obtained on 12 real DNA datasets are presented
in Table 1, showing that R scores of the true models Mt (functional motif) are mostly rare
with comparison to the conserved-models Mc, indicated by close to zero p-values. Each
Mc is generated by a random selection of a seed K from a random sequence and by col-
lecting the most similar Ks to the seed, only one was picked from each sequence. It shows
that, despite being conserved, Mc models are rarely putative to be functional in MMS
scoring as anticipated. In regard to this, R(Mt) scores are found to be the rarest with
comparison to the random models Mr, which is indicated clearly by the 0.000 p-values
and reasonably high z-scores. Each random model Mr was composed of one randomly
selected K from each sequence.

Localized-MISCORE. Transcription proteins rarely contact a single nucleotide without
interacting with the adjacent bases in the binding process. Hence, the positions with a
higher binding energy given by IC (and also a lower binding energy) are usually clustered
as local information blocks in the PFM model of functional motifs [30]. Position-specific
similarity metrics assign an equal weight to every position in the model and ignore the
variability among the local blocks appearing in the motif PFMs. Since, a motif PFM can
be regarded as a descriptor of its binding preferences, the underlaying nucleotide blocks
are believed to carry useful information that constitutes the overall characterization of the
motif. Based on this understanding, we aim to decompose a motif PFM into a set of local
blocks and assign a weight to each block according to its potential of being functional.

MISCORE is then extended to a localized-MISCORE, denoted by rl(K,MS), that can
be written as,

rl(K,MS) =
k−w+1∑
j=1

gj

(
d (βj(K), βj(MS))

d (βj(K), βj(Mref ))

)
, (10)

where βj(K), βj(MS) and βj(Mref ) are the jth local block in the K, the MS and the
background model Mref , respectively. A w-length local block βj(.) can be produced by
shifting a small matrix window β[4×w] such that (2 ≤ w < k) in the K, the MS and the
Mref so that, k − w + 1 number of blocks can be produced.

The weight gj for the jth block in MS (i.e., βj(MS)) can be assigned as,

gj =
G(βj(MS))∑k−w+1

q=1 G(βq(MS))
, (11)
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Table 1. Conservation and rareness characterization of functional motifs
using MISCORE

Conserved (Mc) models Random (Mr) models

5000 models 5000 models

TF R(Mt) E{R(Mc)} p-value z-score E{R(Mr)} p-value z-score

±std ±std
CREB 0.188 0.257 ±0.025 0.009 02.75 0.458 ±0.016 0.000 16.60

SRF 0.193 0.286 ±0.025 0.000 03.76 0.458 ±0.012 0.000 22.01

TBP 0.134 0.243 ±0.027 0.000 04.04 0.493 ±0.008 0.000 43.79

MYOD 0.104 0.195 ±0.036 0.004 02.54 0.467 ±0.016 0.000 22.22

ERE 0.214 0.331 ±0.012 0.000 10.15 0.439 ±0.007 0.000 31.87

E2F 0.203 0.309 ±0.019 0.000 05.65 0.444 ±0.009 0.000 27.54

CRP 0.307 0.380 ±0.006 0.000 11.48 0.422 ±0.005 0.000 21.45

GAL4 0.246 0.261 ±0.016 0.181 00.88 0.418 ±0.008 0.000 20.95

CREB* 0.188 0.224 ±0.024 0.058 01.47 0.460 ±0.017 0.000 15.76

SRF* 0.193 0.261 ±0.023 0.000 03.01 0.461 ±0.010 0.000 26.46

TBP* 0.134 0.186 ±0.026 0.010 02.03 0.491 ±0.007 0.000 48.37

MYOD* 0.104 0.158 ±0.033 0.057 01.62 0.472 ±0.015 0.000 24.05

Remark: the following relation R(Mt) < E{R(Mc)} < E{R(Mr)} indicates the charac-
terization of the conservation property by MISCORE, while the rareness is indicated by
a smaller p-value and a larger z-score obtained by the R(Mt) models (true models) com-
pared to the R(Mc) (conserved) and R(Mr) (random) models. Here, z-score(Mt,Mr) =
[E{R(Mr)} −R(Mt)] /std{R(Mr)}, and p-value(Mt,Mr) = n/5000, where n is the number
of the random models that can hold R(Mr) ≤ R(Mt). It reads similarly for the conserved
models Mc. E{∗} is the mathematical expectation. Note: Datasets with asterisk are composed
of promoters with 500bp, while the others have 200bp in length.

where G(βj(MS)) is a modified Gini purity index (a complement of the Gini impurity
index) that can be evaluated by,

G(βj(MS)) =
1

w

j+w−1∑
i=j

∑
∀bi∈χ

(
f(bi, i)

p(bi)

)2

, (12)

where p(bi) is a background frequency of the base bi. Inspired by IC, G(βj(MS)) can
characterize the conservation and the rareness properties of a block. Then, a localized-
MMS with notation Rl(S), for evaluating the merit of a set of k-mers S as a potential
motif, can be given by,

Rl(S) =
1

|S|
∑
∀K∈S

rl(K,MS), (13)

where rl(K,MS) is the localized-MISCORE given by Eq (10).
Note that the localized-MMS aims to improve the discrimination power for weak motifs,

while it performs closely to the MMS for the strong motifs.

Results and Discussion. In this section, we evaluate the separability and the recog-
nizability performances of MISCORE with comparison to IC and MAP score. The latter
portion of the recognizability analysis describes how our MISCORE can perform motif-to-
motif similarity computation and incorporate pk models in recognizing functional motifs.
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Separability. It is interesting to observe the performance of MISCORE, IC and MAP
score in terms of separating functional motifs from the random ones. Hence, a separability
performance evaluation on these modeling metrics are conducted, where the separability
is considered as a metric to measure the discriminative score-gaps (normalized) between
a functional motif model and a large collection of random non-functional ones.

Separability metric. Sep(∗, ∗) score compares two metrics to learn which one has stronger
discriminative power to distinguish a true motif from the random models. Given two
metrics A and B, a true motif St and a large collection of random models (Srq , for q =
1, 2, 3, . . . , N), Sep(A,B) can be defined by

Sep(A,B) = E

{
1−

γA
[
A(St)− A(Srq)

]
γB
[
B(St)−B(Srq)

]} , (14)

where E{∗} represents the mathematical expectation, γA = [Amax − Amin]−1, γB =
[Bmax −Bmin]−1, and [A(St) − A(Srq)] is the score-gap produced by metric A for St
and Srq , [B(St)− B(Srq)] reads similarly for the metric B. Amax(Amin) and Bmax(Bmin)
are the metric-specific maximum (minimum), i.e., the best (worst) possible scores, that
perform a normalization. Sep(A,B) > 0 score interprets that the metric B outperforms
the metric A, and Sep(A,B) < 0 score indicates the opposite case, while Sep(A,B) = 0
score indicates an equal separability performance by the two metrics.

For each dataset, firstly a true motif St is generated by carefully aligning all known
binding sites using CLUSTAL W [31]. Then, N = 5000 random models are generated
by collecting random k-mers from the dataset and by carefully avoiding overlap with
the true binding sites subject to |Srq | = |St|. The metric bounds, i.e., the best and the
worst possible scores, for score normalization is required in Eq (14). The best-possible
score (upper bound) of a metric can be obtained by ensuring the maximum quantifica-
tion of the motif characteristics. To find the upper bound of a metric, we assume that
there exist a hypothetical set of k-mers S∗ that can ensure the best-possible score of a
metric. With an assumption of a perfect conservation between the motif instances, i.e.,
δ(K∗a , K

∗
b ) = 0, ∀K∗a,b ∈ S∗, where δ(∗, ∗) is a similarity quantification, the upper bound

for the metrics can be deduced using their respective equation. However, the lower bound
(i.e., the worst-possible score) of the metrics are difficult to be computed since the conser-
vation characteristic of a given motif can not be completely eliminated in any situation.
Having no viable solution to compute this, the lower-bound of these metrics are practi-
cally approximated by the worst score produced by the metrics over a large collection of
random models.

Separability results. The datasets used in this paper are split into three groups based on
their origins. The first data group (denoted as dg1) contains 8 datasets that are composed
of 200bp promoters that contain the known binding sites (functional motifs) associated
with the following TFs: ERE, MEF2, SRF, CREB, E2F, MYOD, TBP and CRP. The
whole datasets were collected from [32], and each dataset contains a varying number of
sequences and a verified motif with known location of the binding sites. The second group
(dg2) contains 20 mixed datasets (real and artificial) with 500bp ∼ 2000bp sequences that
were collected from [10]. The third group (dg3) contains 5 datasets that are composed
of 500bp promoters with known binding sites associated with the following TFs: CREB,
SRF, TBP, MEF2 and MYOD. The 500bp promoters were collected from the Annotated
regulatory Binding Sites (ABS, v1.0) database [33]. Details on these 33 datasets are
presented in Table 2.
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Table 2. Description of the used 33 datasets

TF Lseq Res Lbs Nseq Nbs

(bp) (min,max, round(avg))

data group 1 (dg1): 8 real datasets [32]
CREB 200 H (05, 30, 12) 17 19
SRF 200 H (09, 22, 12) 20 35
TBP 200 H (05, 24, 07) 95 95
MEF2 200 H (07, 15, 10) 17 17
MYOD 200 H (06, 06, 06) 17 21
ERE 200 M (13, 13, 13) 25 25
E2F 200 M (11, 11, 11) 25 27
CRP 105 E (22, 22, 22) 18 24

data group 2 (dg2): 20 artificial datasets [10]
dm01g 1500 D (13, 28, 20) 04 07
dm04m 2000 D (10, 26, 15) 04 09
hm02r 1000 H (10, 36, 23) 09 11
hm03r 1500 H (14, 46, 27) 10 15
hm06g 500 H (06, 14, 08) 09 09
hm08m 500 H (05, 34, 15) 15 13
hm09g 1500 H (07, 26, 16) 10 10
hm10m 500 H (07, 09, 08) 06 11
hm11g 1000 H (06, 42, 14) 08 19
hm16g 3000 H (09, 54, 23) 07 07
hm17g 500 H (10, 18, 15) 11 10
hm20r 2000 H (06, 71, 17) 35 76
hm21g 1000 H (10, 23, 13) 05 07
hm24m 500 H (08, 18, 12) 08 08
hm26m 1000 H (11, 36, 25) 09 10
mus02r 1000 M (10, 33, 19) 09 12
mus10g 1000 M (05, 28, 15) 13 15
mus11m 500 M (06, 27, 15) 12 15
yst08r 1000 M (12, 49, 21) 11 14
yst09g 1000 Y (09, 19, 17) 16 13

data group 3 (dg3): 5 real datasets [33]
CREB 500 H (05, 30, 12) 17 19
SRF 500 H (09, 22, 12) 20 36
TBP 500 H (05, 24, 07) 95 95
MEF2 500 H (07, 15, 10) 17 17
MYOD 500 H (06, 06, 06) 17 21
Notations: Lseq denotes the average length of the sequences in base
pair count (bp), Res is the resource: (D, H, M, Y, E) refer to
(drosophila melanogaster, (human, mouse, rat), saccharomyces cere-
visiae, e.coli) respectively, Lbs denotes the length of the binding sites
in bp, Nseq is the number of the sequences in the dataset and Nbs is
the number of the binding sites in the dataset.

First of all, Sep(R,Rl) scores are computed to evaluate the improvement of the localized
version. Several criteria for the local block-length (w) selection have been examined; and
the Sep(R,Rl) scores are presented in Table 3, showing that the localized version is likely
to perform favorably with a smaller w, e.g., w = round(k/3), since Sep(R,Rl) > 0 holds
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for most of the datasets. As w becomes larger and gets closer to k, the Sep(R,Rl) scores
tend to be zero, which makes sense in logic.

A separability comparison among R, Rl, IC and MAP score is then conducted on the
33 datasets. The results are presented in Table 4, showing that MISCORE can achieve a
comparable separability performance to IC and a remarkably improved performance than
MAP score, which is indicated by the average Sep(∗, ∗) scores on the three data groups,
that is, [Sep(IC,R), Sep(IC,Rl), Sep(MAP,R), Sep(MAP,Rl)]= [−0.144, 0.016, 0.273,
0.374]. In our experiments, MAP score is computed using a 3rd-order Markov chain
model. A higher order Markov chain model may improve the separability performance
for MAP score, however, the computational cost would be much higher in such a case.

Recognizability. It is often observed that after evaluating a set of candidate motifs
returned by a discovery tool, the top ranked candidates are not necessarily functional.
The ineffectiveness of the motif evaluation metric used can be one of the reasons behind
this. Therefore, we have conducted a recognizability performance comparison among
these metrics.

Recognizability refers to how well a metric can recognize the best candidate motif
from a set of putative candidates in terms of ranking, where the best candidate motif is
expected to be top ranked. To conduct this evaluation, we need to have a set of putative
candidate motifs generated by some motif discovery tools on each dataset. In this study,
we employed MEME [34] to generate a set of putative motifs for each dataset. Then,
the best candidate motif is identified by the F -measure [35]: F = 2PR/(P + R), where
P = TP/(TP + FP ), R = TP/(TP + FN), where TP, FP and FN are the number
of true positive, false positive and the false negative predictions, respectively. TP refers
to the number of the true binding sites overlapped by at least one predicted site. In
this study, we considered a true positive count if a true binding site is overlapped by a
predicted site with at least 25% of the length of the true site. FP is the number of the
predicted sites that do not have more than 25% overlap with any true binding sites; and
FN is the number of the true binding sites that are not overlapped by any predicted sites
with at least 25% of the length of the binding site.

These candidate motifs for each dataset are then scored by IC, MAP score, R, and Rl

respectively, and ranked according to their scores. The assigned rank of the best motif is
recorded for each dataset in order to find that which metric can assign a comparatively
higher rank to the best motif. In order to evaluate the ranking order, the following
criterion is adopted to compute a mean rank (µ) score [36]:

µ =
Q(Q+ 1)

2
∑Q

i=1 rank(Mi)
, (15)

where Q is the number of the relevant items whose rank orders are to be considered. In
our case, only the best motif’s rank is considered, hence Q = 1 and Eq (15) becomes
µ = 1/rank(best motif).

An average µ score over 10 runs with each metric on each dataset is recorded using a
set of candidate motifs produced by MEME during each run. The results are presented
in Table 5, which also includes a data group-wise E{µ} score as result summary showing
that both R and Rl offer a considerably better recognizability than MAP score, while IC
is likely to perform the best recognizability performance. However, we observed that a
10-run average µ score computed using dg1 and dg2 (i.e., 28/33 datasets) indicates that
both R and Rl can outperform IC and MAP score.

Recognizability on degenerated motifs. Weak motif characterization and recognition is
challenging to all evaluation metrics. Therefore, in order to observe how the considered
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Table 3. Sep(R,Rl) score comparison for different local block length w in Rl

Sep(R,Rl)± E{std} using 5000 random models
w = w = w = w =

TF O(k/3) max{O(k/3), 3} min{O(k/2), 5} O(k/2)

data group 1 (dg1)
CREB 0.022 ± 0.047 0.022 ± 0.047 -0.016 ± 0.049 -0.016 ± 0.049

SRF -0.022 ± 0.034 -0.022 ± 0.034 -0.030 ± 0.035 -0.030 ± 0.035

TBP 0.125 ± 0.020 0.128 ± 0.020 0.128 ± 0.020 0.128 ± 0.020

MEF2 0.358 ± 0.041 0.358 ± 0.041 0.367 ± 0.041 0.367 ± 0.041

MYOD 0.066 ± 0.037 -0.089 ± 0.045 -0.089 ± 0.045 -0.089 ± 0.045

ERE -0.008 ± 0.028 -0.008 ± 0.028 -0.081 ± 0.031 -0.210 ± 0.038

E2F 0.110 ± 0.027 0.110 ± 0.027 0.127 ± 0.026 0.136 ± 0.026

CRP 0.052 ± 0.028 0.052 ± 0.028 0.110 ± 0.024 -0.110 ± 0.039

avg 0.088 ± 0.033 0.069 ± 0.034 0.065 ± 0.034 0.022 ± 0.037

data group 2 (dg2)
dm01g 0.101 ± 0.035 0.101 ± 0.035 0.105 ± 0.036 0.100 ± 0.037

dm04m 0.053 ± 0.033 0.053 ± 0.033 0.051 ± 0.035 0.051 ± 0.035

hm02r 0.219 ± 0.043 0.219 ± 0.043 0.146 ± 0.050 0.146 ± 0.050

hm03r 0.135 ± 0.037 0.135 ± 0.037 0.146 ± 0.037 0.146 ± 0.037

hm06g 0.139 ± 0.051 0.062 ± 0.058 0.062 ± 0.058 0.062 ± 0.058

hm08m 0.084 ± 0.041 0.091 ± 0.041 0.088 ± 0.042 0.088 ± 0.042

hm09g 0.114 ± 0.075 0.114 ± 0.075 0.141 ± 0.074 0.141 ± 0.074

hm10m 0.134 ± 0.038 0.134 ± 0.038 0.129 ± 0.040 0.129 ± 0.040

hm11g 0.168 ± 0.045 0.168 ± 0.045 0.191 ± 0.044 0.191 ± 0.044

hm16g 0.140 ± 0.077 0.140 ± 0.077 0.007 ± 0.098 0.007 ± 0.098

hm17g 0.065 ± 0.045 0.065 ± 0.045 0.026 ± 0.049 0.026 ± 0.049

hm20r 0.322 ± 0.023 0.322 ± 0.023 0.299 ± 0.024 0.299 ± 0.024

hm21g 0.064 ± 0.051 0.064 ± 0.051 0.060 ± 0.054 0.060 ± 0.054

hm24m 0.107 ± 0.042 0.107 ± 0.042 0.081 ± 0.045 0.081 ± 0.045

hm26m 0.265 ± 0.044 0.265 ± 0.044 0.216 ± 0.049 0.216 ± 0.049

mus02r 0.004 ± 0.119 0.004 ± 0.119 -0.273 ± 0.198 -0.273 ± 0.198

mus10g 0.350 ± 0.056 0.354 ± 0.056 0.354 ± 0.056 0.354 ± 0.056

mus11m 0.340 ± 0.042 0.340 ± 0.042 0.329 ± 0.043 0.329 ± 0.043

yst08r 0.131 ± 0.045 0.131 ± 0.045 0.118 ± 0.047 0.107 ± 0.047

yst09g 0.353 ± 0.056 0.353 ± 0.056 0.337 ± 0.058 0.333 ± 0.059

avg 0.164 ± 0.050 0.161 ± 0.050 0.131 ± 0.057 0.130 ± 0.057

data group 3 (dg3)
CREB 0.072 ± 0.042 0.072 ± 0.042 0.049 ± 0.043 0.049 ± 0.043

SRF -0.026 ± 0.028 -0.026 ± 0.028 -0.032 ± 0.029 -0.032 ± 0.029

TBP 0.129 ± 0.019 0.133 ± 0.019 0.133 ± 0.019 0.133 ± 0.019

MEF2 0.372 ± 0.042 0.372 ± 0.042 0.380 ± 0.042 0.380 ± 0.042

MYOD 0.088 ± 0.034 -0.076 ± 0.042 -0.076 ± 0.042 -0.076 ± 0.042

avg 0.127 ± 0.033 0.095 ± 0.035 0.091 ± 0.035 0.091 ± 0.035

Result summary: E{Sep(R,Rl)} ± E{std} on each data group
dg1 0.088 ± 0.033 0.069 ± 0.034 0.065 ± 0.034 0.022 ± 0.037

dg2 0.164 ± 0.050 0.161 ± 0.050 0.131 ± 0.057 0.130 ± 0.057

dg3 0.127 ± 0.033 0.095 ± 0.035 0.091 ± 0.035 0.091 ± 0.035

avg 0.126 ± 0.039 0.108 ± 0.040 0.095 ± 0.042 0.081 ± 0.043

Remark: O(∗) is a rounding operator and k is the length of k-mers. Sep(R,Rl) is computed on each
dataset using 5000 random set of k-mers generated from each dataset. The result summary shows that
w = O(k/3) criterion is likely to produce a better separability performance; hence it can be generally
applied in the localization approach.
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Table 4. Sep(∗, ∗) score comparison among R, Rl, IC and MAP score

Result details: Sep(∗, ∗)± E{std} on each dataset using 5000 random models
dg TF Sep(IC,R) Sep(IC,Rl) Sep(MAP,R) Sep(MAP,Rl) Sep(R,Rl)

CREB -0.099 ± 0.051 -0.080 ± 0.013 0.255 ± 0.030 0.268 ± 0.014 0.022 ± 0.047

SRF -0.104 ± 0.036 -0.133 ± 0.008 0.313 ± 0.020 0.294 ± 0.009 -0.022 ± 0.034

TBP -0.088 ± 0.025 0.056 ± 0.002 0.302 ± 0.014 0.395 ± 0.005 0.125 ± 0.020

MEF2 -0.405 ± 0.088 0.092 ± 0.020 0.144 ± 0.049 0.446 ± 0.017 0.358 ± 0.041

dg1 MYOD -0.113 ± 0.043 -0.022 ± 0.010 0.299 ± 0.025 0.356 ± 0.011 0.066 ± 0.037

ERE 0.060 ± 0.027 0.057 ± 0.011 0.416 ± 0.017 0.414 ± 0.012 -0.008 ± 0.028

E2F -0.048 ± 0.032 0.064 ± 0.012 0.350 ± 0.018 0.419 ± 0.012 0.110 ± 0.027

CRP 0.013 ± 0.032 0.070 ± 0.018 0.486 ± 0.018 0.516 ± 0.013 0.052 ± 0.028

avg -0.098 ± 0.042 0.013 ± 0.012 0.321 ± 0.024 0.388 ± 0.012 0.088 ± 0.033

dm01g -0.080 ± 0.042 0.024 ± 0.027 0.294 ± 0.024 0.361 ± 0.023 0.101 ± 0.035

dm04m -0.029 ± 0.038 0.026 ± 0.025 0.350 ± 0.022 0.384 ± 0.022 0.053 ± 0.033

hm02r -0.187 ± 0.067 0.089 ± 0.029 0.320 ± 0.037 0.478 ± 0.024 0.219 ± 0.043

hm03r -0.096 ± 0.045 0.076 ± 0.017 0.276 ± 0.026 0.389 ± 0.015 0.135 ± 0.037

hm06g -0.145 ± 0.068 0.001 ± 0.031 0.227 ± 0.040 0.325 ± 0.025 0.139 ± 0.051

hm08m -0.006 ± 0.048 0.082 ± 0.024 0.277 ± 0.030 0.340 ± 0.021 0.084 ± 0.041

hm09g -0.120 ± 0.087 -0.009 ± 0.041 0.211 ± 0.053 0.288 ± 0.035 0.114 ± 0.075

hm10m -0.070 ± 0.050 0.071 ± 0.027 0.290 ± 0.030 0.383 ± 0.022 0.134 ± 0.038

dg2 hm11g -0.172 ± 0.062 0.077 ± 0.016 0.224 ± 0.036 0.388 ± 0.016 0.168 ± 0.045

hm16g -0.218 ± 0.100 0.000 ± 0.049 0.227 ± 0.056 0.364 ± 0.038 0.140 ± 0.077

hm17g -0.076 ± 0.052 -0.022 ± 0.026 0.379 ± 0.029 0.409 ± 0.021 0.065 ± 0.045

hm20r -0.344 ± 0.044 0.098 ± 0.002 0.234 ± 0.022 0.486 ± 0.006 0.322 ± 0.023

hm21g -0.183 ± 0.062 -0.075 ± 0.036 0.293 ± 0.035 0.357 ± 0.027 0.064 ± 0.051

hm24m -0.082 ± 0.052 0.024 ± 0.032 0.324 ± 0.031 0.390 ± 0.026 0.107 ± 0.042

hm26m -0.114 ± 0.067 0.177 ± 0.034 0.377 ± 0.039 0.540 ± 0.028 0.265 ± 0.044

mus02r -0.034 ± 0.110 -0.061 ± 0.058 0.409 ± 0.062 0.393 ± 0.046 0.004 ± 0.119

mus10g -0.630 ± 0.134 -0.052 ± 0.020 0.001 ± 0.076 0.355 ± 0.019 0.350 ± 0.056

mus11m -0.623 ± 0.098 -0.049 ± 0.021 0.050 ± 0.054 0.386 ± 0.019 0.340 ± 0.042

yst08r -0.019 ± 0.050 0.149 ± 0.024 0.037 ± 0.040 0.196 ± 0.019 0.131 ± 0.045

yst09g -0.253 ± 0.102 0.179 ± 0.036 -0.053 ± 0.073 0.310 ± 0.029 0.353 ± 0.056

avg -0.174 ± 0.069 0.040 ± 0.029 0.237 ± 0.041 0.376 ± 0.024 0.164 ± 0.050

CREB -0.102 ± 0.047 -0.056 ± 0.012 0.248 ± 0.028 0.280 ± 0.013 0.072 ± 0.042

SRF -0.085 ± 0.029 -0.131 ± 0.007 0.324 ± 0.016 0.296 ± 0.008 -0.026 ± 0.028

dg3 TBP -0.080 ± 0.023 0.052 ± 0.002 0.307 ± 0.013 0.392 ± 0.005 0.129 ± 0.019

MEF2 -0.420 ± 0.092 0.122 ± 0.020 0.132 ± 0.051 0.463 ± 0.017 0.372 ± 0.042

MYOD -0.115 ± 0.040 -0.017 ± 0.009 0.297 ± 0.023 0.358 ± 0.010 0.088 ± 0.034

avg -0.160 ± 0.046 -0.006 ± 0.010 0.262 ± 0.026 0.358 ± 0.011 0.127 ± 0.033

Result summary: E{Sep(∗, ∗)} ± E{std} on each data group
data group dg Sep(IC,R) Sep(IC,Rl) Sep(MAP,R) Sep(MAP,Rl) Sep(R,Rl)

dg1 -0.098 ±0.042 0.013 ± 0.012 0.321 ±0.024 0.388 ±0.012 0.088 ± 0.033

dg2 -0.174 ±0.069 0.040 ± 0.029 0.237 ±0.041 0.376 ±0.024 0.164 ± 0.050

dg3 -0.160 ±0.046 -0.006 ±0.010 0.262 ±0.026 0.358 ±0.011 0.127 ± 0.033

avg -0.144 ±0.052 0.016 ±0.017 0.273 ±0.030 0.374 ±0.015 0.126 ±0.039

Remark: Sep(∗, ∗) score is computed on a dataset using 5000 random set of k-mers generated from
the dataset. It can be seen that the localized version improves MISCORE in terms of separability
performance, i.e., Sep(R,Rl) > 0 holds for most of the cases. Sep(∗, ∗) score comparison among other
metrics show that MISCORE is likely to produce favorable separability performance than IC and MAP
score.
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Table 5. Recognizability scores for the best candidate motifs

Result details: a 10-run average µ score on each dataset
data group (dg) TF MAP IC R Rl

CREB 0.339 0.433 0.383 0.384
SRF 0.582 0.757 0.725 0.721
TBP 0.529 0.717 0.750 0.800

MEF2 0.362 0.763 0.742 0.757
dg1 MYOD 0.517 0.265 0.243 0.209

ERE 0.512 0.750 0.875 1.000
E2F 0.383 0.800 0.800 0.700
CRP 1.000 1.000 1.000 1.000

avg 0.528 0.686 0.690 0.696

dm01g 0.107 0.195 0.151 0.127
dm04m 0.180 0.134 0.219 0.188
hm02r 0.159 0.305 0.700 0.617
hm03r 0.257 0.179 0.225 0.255
hm06g 0.264 0.176 0.255 0.297
hm08m 0.341 0.304 0.224 0.320
hm09g 0.156 0.299 0.304 0.307
hm10m 0.364 0.416 0.489 0.474

dg2 hm11g 0.275 0.390 0.194 0.192
hm16g 0.419 0.540 0.550 0.507
hm17g 1.000 1.000 1.000 1.000
hm20r 0.456 0.304 0.306 0.390
hm21g 0.407 0.450 0.180 0.190
hm24m 0.198 0.172 0.263 0.266
hm26m 0.297 0.313 0.317 0.169
mus02r 0.400 0.393 0.233 0.332
mus10g 1.000 0.867 0.900 0.800
mus11m 0.254 0.392 0.532 0.558
yst08r 0.247 0.239 0.151 0.231
yst09g 0.389 0.460 0.344 0.314

avg 0.359 0.376 0.377 0.377

CREB 0.512 0.422 0.375 0.540
SRF 0.369 0.407 0.373 0.398

dg3 TBP 0.542 0.875 0.583 0.750
MEF2 0.533 1.000 0.467 0.433
MYOD 0.488 0.425 0.453 0.400

avg 0.489 0.626 0.450 0.504

Result summary: a 10-run average µ on each data group
dg1 0.528 0.686 0.690 0.696
dg2 0.358 0.376 0.377 0.377
dg3 0.489 0.626 0.450 0.504

avg{dg1, dg2, dg3} 0.458 0.563 0.506 0.526
avg{dg1, dg2} 0.443 0.531 0.533 0.536

Remark: a higher µ score indicates a better ability of a metric in recog-
nizing the best candidate motif in terms of rank order from a set of pu-
tative motifs returned by a tool. MISCORE is found to have convincing
recognizability performances that are comparable to IC and remarkably
better than MAP score as indicated in the result summary.
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metrics perform in recognizing degenerated motifs, we first split the 33 datasets into two
categories, i.e., strong and weak motif classes, based on the average positional conservation
of the motif PFMs, which is defined as apc(St) = 1

k

∑k
i=1 max

bi
{f(bi, i)}, bi ∈ {A,C,G, T}.

Table 6 reports the average recognizability scores of these metrics on the datasets.
The results show that MISCORE can noticeably outperform MAP score and perform
comparably to IC in recognizing weak motifs. However, IC outperforms our MISCORE
and MAP score in recognizing strong motifs.

Table 6. Strong/weak motif class-wise average recognizability scores

Strong/weak motif class-wise E{µ} over 10 runs
Motif class apc(St) range MAP IC R Rl

Weak (17/33 datasets) apc ≤0.75 0.373 0.412 0.409 0.436
Strong (16/33 datasets) apc >0.75 0.463 0.562 0.516 0.507
Remark: recognizability scores obtained by the metrics are compared between strong
and weak motifs. Results show that MISCORE noticeably outperforms MAP score and
performs comparably to IC in recognizing weak motifs. However, the localized-MISCORE
is likely to be more effective in recognizing weak motifs than IC and MAP score.

Motif recognition using priori-known models. If there exists priori known (pk) estimation
of the target motif profile during the search in the query sequences, then the motif discov-
ery algorithms can greatly benefit by utilizing such a priori knowledge in finding motifs
that have similar characteristics to the pk model. Often a priori estimation of a target
motif model can be obtained from the public databases e.g., [37, 38, 39], or by collecting a
set of binding sites from the sequences that are known to be co-regulated by the target TF
[29]. These pk models can only be the estimation of the target motifs in the search, since:
(i) the known binding sites in the public databases are usually incomplete, which may
cause the pk profiles to have an incomplete representation that may not be able to reliably
discriminate a true motif from a false one [40], and (ii) due to the sequence dissimilarity
between the query sequences and the sequences that are known to be co-regulated by the
target TF.

One plausible use of the pk models is their involvement in the process of motif evalu-
ation, where the putative motifs will be recognized by referring to the pk models. The
ranking of the candidate motifs then becomes a motif-to-motif similarity quantification
between the putative and the pk models.

MAP score is unable to evaluate the motif-to-motif similarity. IC, on the other hand, is
not originally meant for motif-to-motif similarity computation. However, it has been ex-
tended as the average log likelihood ratio (ALLR) [41] for this task. Several other metrics
can perform motif-to-motif similarity quantification, e.g., Pearson correlation coefficient
(PCC) [42], Kullback-Leibler divergence (KLD) [43, 44, 45], Euclidean distance (ED)
[46] and Sandelin-Wasserman (SW) metric [47]. But, these metrics can only compute a
motif-to-motif similarity without considering motif characteristics.

Motivated by the above facts, MISCORE framework is examined to perform the motif-
to-motif similarity while taking account of the motif characterization. Let a candidate
motif S be ranked by using a pk model Mpk. Then, MISCORE becomes

rpk(K,Mpk) =
d (K,Mpk)

d (K,Mref ) + c(K)
. (16)
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The MMS score (R) given in Eq (9) then can be written as,

Rpk(S) =
1

|S|
∑
∀K∈S

rpk(K,Mpk). (17)

Note that Rpk and rpk, characterizing motif signals with assistance of pk models, can be
regarded as the supervised counterparts of R and r, respectively. localized-MISOCRE
can be expressed to accommodate the pk models in a similar manner. Similarly, MIS-
CORE can be employed to compute the motif-to-motif similarity in order to group similar
candidate motifs in the relevant applications.

For simplicity, we demonstrate that MISCORE with the use of pk models can help in
recognizing putative motifs, and performs favorably against other metrics. To do this,
we first generated a pk model for each dataset by extracting the non-redundant known
binding sites associated with CREB, E2F, MEF2 and SRF transcription factors from
JASPAR [37]; ERE, MYOD and TBP from TRANSFAC (public v7.0) [38]; and CRP
from RegulonDB [39] databases. After alignment, the pk models are generated for the
datasets in dg1 and dg3 since they share common transcription factors. For the 20 datasets
in dg2, we applied a multiple sequence alignment tool GLAM [48] to align the binding
sites of each dataset. Then, the longest conserved block from the alignment is extracted
to form a pk model for each dataset.

The data group-wise average recognizability scores obtained by the metrics over 10 runs
are presented in Table 7, showing that MISCORE offers a promising performance with
comparison to other metrics in terms of recognizing the best candidate motifs using the
pk models.

Background rareness and over-representation. Another key concept in computa-
tional motif discovery is over-representation [13, 14, 15, 49]. It looks for motifs that have
significant occurrences in the query sequences (input promoters) than the background
sequences through some statistical quantification [13, 16]. The functionality of this site
multiplicity, i.e., ‘the shadow appearances of the binding sites’, in the regulatory regions
could constitute a mechanism for lateral diffusion of the transcription factors along the
sequences, and/or the shadow sites might be the fossils from the process of binding site
turnover [50, 16]. Even though the biological reasons behind this site multiplicity are yet
to be fully understood [16], it is often considered as a useful motif characteristic and well
recognized in the working field.

It is interesting to analyze the correlation between a functional motif’s background
rareness and over-representation, although both can partially characterize the functional
motifs. This section tries to make a sensible link between these two key concepts.

Correlation between background rareness and over-representation using MIS-
CORE. Our aim is to show how MISCORE can be used to characterize a motif’s back-
ground rareness through its over-representation feature using foreground (i.e., promoters)
and background information. We first define a constrained frequency (cf) measure in
order to compute an occurrence score of a given motif using MISCORE. Given a set Sall
to contain all possible k-mers from a set of sequences (either foreground or background)
and a motif S with a PFM model MS, cf is defined as:

cf(MS, Sall) =
|T |
|Sall|

, where T = {∀K ∈ Sall : r(K,MS) ≤ θ}, (18)

where | ∗ | represents the set cardinality, r(K,MS) is the MISCORE given in Eq (6) and
θ is a cut-off threshold that can be defined as θ = R(S) + std(S)λ, where std represents
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Table 7. Recognizability scores for the best candidate motifs using pk models

Result details: a 10-run average µ score on each dataset
data group (dg) TF Rpk Rlpk PCC ALLR KLD ED SW

CREB 0.339 0.333 0.096 0.295 0.275 0.370 0.080
SRF 0.667 0.717 0.500 0.553 0.553 0.657 0.564
TBP 1.000 1.000 1.000 1.000 1.000 1.000 1.000

MEF2 1.000 1.000 1.000 1.000 1.000 1.000 1.000
dg1 MYOD 0.645 0.651 0.665 0.656 0.656 0.656 0.640

ERE 1.000 1.000 1.000 1.000 0.917 0.875 1.000
E2F 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CRP 1.000 1.000 1.000 1.000 1.000 1.000 0.792

avg 0.831 0.837 0.783 0.813 0.800 0.820 0.760

dm01g 0.667 0.667 0.342 0.528 0.694 0.722 0.371
dm04m 0.377 0.485 0.662 0.498 0.487 0.484 0.647
hm02r 0.800 0.700 1.000 0.547 0.447 0.447 1.000
hm03r 0.255 0.425 0.690 0.514 0.514 0.300 0.556
hm06g 0.444 0.429 0.611 0.407 0.353 0.546 0.427
hm08m 0.861 0.861 0.852 0.854 0.771 0.857 0.857
hm09g 0.539 0.565 0.205 0.389 0.512 0.556 0.285
hm10m 0.412 0.495 0.558 0.490 0.490 0.500 0.820

dg2 hm11g 0.302 0.329 0.829 0.335 0.285 0.333 0.829
hm16g 0.690 0.767 0.105 0.617 0.767 0.900 0.100
hm17g 1.000 1.000 1.000 1.000 1.000 1.000 1.000
hm20r 0.537 0.537 0.708 0.542 0.542 0.548 0.708
hm21g 0.148 0.148 0.483 0.204 0.214 0.214 0.324
hm24m 0.573 0.650 1.000 0.592 0.592 0.725 0.867
hm26m 0.450 0.650 0.369 0.650 0.567 0.617 0.700
mus02r 0.182 0.209 0.329 0.184 0.184 0.199 0.345
mus10g 1.000 1.000 1.000 1.000 1.000 1.000 1.000
mus11m 1.000 1.000 1.000 1.000 1.000 1.000 1.000
yst08r 0.567 0.633 0.524 0.567 0.583 0.580 0.767
yst09g 0.201 0.232 0.292 0.179 0.186 0.217 0.321

avg 0.550 0.589 0.628 0.555 0.559 0.587 0.646

CREB 0.642 0.642 0.556 0.657 0.657 0.667 0.476
SRF 0.667 0.667 0.523 0.707 0.650 0.667 0.822

dg3 TBP 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MEF2 0.653 0.656 0.656 0.750 0.850 0.662 0.482
MYOD 0.486 0.653 0.500 0.563 0.563 0.577 0.661

avg 0.690 0.723 0.647 0.735 0.744 0.715 0.688

Result summary: a 10-run average µ score on each data group
dg1 0.831 0.837 0.783 0.813 0.800 0.820 0.760
dg2 0.550 0.589 0.628 0.555 0.559 0.587 0.646
dg3 0.690 0.723 0.647 0.735 0.744 0.715 0.688
avg 0.690 0.717 0.686 0.701 0.701 0.707 0.698

Remark: MISCORE metrics Rpk and Rlpk compute motif-to-pk similarity through the char-
acterization of the motif signals, while the other metrics can not perform motif character-
ization. The result summary shows that MISCORE is capable of effectively utilizing the
pk models in recognizing the functional motifs. Note: PCC: Pearson correlation coefficient
[42]; ALLR: average log likelihood ratio [41]; KLD: Kullback-Leibler divergence [43, 44, 45];
ED: Euclidean distance [46]; and SW: Sandeline-Wasserman metric [47].
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the standard deviation operator, λ is a threshold regulator and R(∗) is the MMS given in
Eq (9).

Regulatory regions often contain more frequent occurrences of a functional motif com-
pare to the sequence-backgrounds, due to the mutational constraints in the foreground
compared to the backgrounds. Hence, a true motif is expected to produce a larger cf in
the promoter regions (foreground) than the backgrounds for a given similarity threshold.
Therefore, the MISCORE-based over-representation score ORSr for a motif S can be
given using Eq (18) as,

ORSr(MS) =
cf(MS, Sbg)

cf(MS, Sfg)
, (19)

where Sbg and Sfg are the sets of all k-mers produced by window shifting in the background
and in the foreground regions, respectively.

The condition ORSr(MS) < 1 indicates that MS has a higher frequency in the fore-
ground than the background for a given threshold, which implies that there are compar-
atively less occurrences of that motif in the background (i.e., background rareness) than
the foreground. Hence, the background rareness of a motif can be characterized through
its over-representation feature, that can be statistically quantified.

Demonstration: We collected the background sequences for CREB, SRF, TBP, MEF2
and MYOD datasets from public databases (e.g., http://www.ncbi.nlm.nih.gov and http://
www.ebi.ac.uk) as the respective sequence backgrounds. The respective 200bp and 500bp
promoter regions are then taken as the sequence-foregrounds for each TF. The ORSr(Mt)
scores for different thresholds are computed for each TF and presented in Table 8, showing
that the background rareness can be characterized through the over-representation of the
functional motifs since ORSr(Mt) < 1 holds for all cases. It also shows that, as the
promoter region grows in length from 200bp to 500bp, the ORSr scores tend to increase
for the functional motifs, as anticipated.

Table 8. ORSr(Mt) scores with several threshold regulators

ORSr(Mt), θ = R(St) + std(St)λ
TF Lfg(bp) λ = −0.25, λ = 0.0, λ = 0.25, λ = 0.5
CREB 200 0.391 0.357 0.429 0.537

500 0.762 0.576 0.884 0.806
SRF 200 0.040 0.048 0.055 0.059

500 0.107 0.108 0.126 0.144
TBP 200 0.334 0.385 0.441 0.548

500 0.671 0.778 0.793 0.803
MEF2 200 0.041 0.050 0.065 0.100

500 0.129 0.177 0.392 0.655
MYOD 200 0.292 0.289 0.289 0.289

500 0.303 0.620 0.710 0.746
Remark: MISCORE-based over-representation scores ORSr(.) are com-
puted for each dataset with different thresholds. ORSr(Mt) < 1 holds
for all cases, indicating that the background rareness and the over-
representation of functional motifs are correlated by MISCORE. As the
promoter region grows in length from 200bp to 500bp, the ORSr(Mt)
scores tend to increase as anticipated. Note: Lfg denotes the length of
the promoter sequences.

In order to conduct a statistical evaluation, the ORSr(Mt) score of the true motif
of each dataset is evaluated using two large sets of (i) conserved (Mc) and (ii) random
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Remark: ORSr scores for the functional models Mt, the random models Mrq , and the
conserved models Mcq for q = 1, 2, 3, . . . , 1000 are plotted for each dataset with 200bp
and 500bp promoters in the left and in the right column, respectively. Threshold θ =
R(Mt)+std(Mt)λ, λ = 0.0 is used. The figure depicts a rareness interpretable visualization
through the statistical over-representation property of the functional motifs by showing that,
the ORSr(Mr) scores are found distant from the ORSr(Mt) scores for all cases which implies
that the random models have close to zero chance of being over-represented with comparison
to the true models. In addition to this, the ORSr(Mt) scores are found to be mostly rare
with comparison to the ORSr(Mc) scores, i.e., these non-functional conserved models have
a rare chance of having better over-representation scores than the true models, for most of
the datasets.

Figure 1. Correlation between the over-representation and the back-
ground rareness
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models (Mr). Each random model Mr and conserved model Mc is generated according
to the criteria that have been described earlier. It has been observed that the following
holds for all cases with a given similarity threshold, that is,

ORSr(Mt) < E{ORSr(Mc)} < E{ORSr(Mr)}. (20)

This implies that ORSr(Mt) scores are relatively rare in respect to E{ORSr(Mc)} with a
given similarity threshold. Since the Mc models, despite being conserved, have less chance
of being over-represented than a true model Mt. In addition to this, ORSr(Mt) scores
are found to be the rarest with comparison to the random models Mr. In other words,
E{ORSr(Mr)} > ORSr(Mt) implies that, the random models have a comparatively larger
background-to-foreground occurrence ratio (see Eq (19)) than the functional motifs. This
characterizes the background rareness property of a functional motif through its over-
representation property. Figure 1 demonstrates the correlation between the background
rareness and the over-representation for 10 datasets.

Conclusions. This paper contributes a mismatch-based fast computational tool for mod-
eling DNA regulatory motifs. It is free from any assumption on the model dependency,
and it escapes from the use of background modeling using Markov chain models. Simul-
taneously, it embeds the compositional complexity in modeling the motif signals. Our
proposed MISCORE can be used as a metric to measure the similarity between k-mers
and a motif model, also it can be employed to compute the motif-to-motif similarity.

The experimental results on 33 datasets indicate that MISCORE performs favorably
with comparison to the well-known IC and MAP score in terms of the separability and
the recognizability. These results also show that MISOCRE is functionally effective in
recognizing degenerated motifs, and it can embed the pk models to perform candidate
motif ranking.

MISCORE has good potential to be employed as a similarity metric in rule-based
or clustering-based motif discovery algorithms, it can also be employed as a numerical
feature in machine learning approaches for finding motifs. Furthermore, MISCORE-based
Motif Score (MMS) can be employed as a fitness function in evolutionary computation
approaches for motif discovery, and for candidate motif ranking in computational motif
discovery tools.

Competing interests. Authors have no competing interests.

Authors’ contributions. DW proposed and developed the MISCORE framework with
original ideas and the mathematical formulas. He also directed the experimental design
and performance analysis. ST mainly contributed to the development of the localized
version of MISCORE and the implementation of experiments. Both authors contributed
to the writing of the paper, and read and approved the final manuscript.

Acknowledgments. The authors are grateful to Dr Nung Kion Lee (UNIMAS, Malaysia)
and Dr Xi Li (CSIRO, Australia) for their contributions to the development of MISCORE
during their PhD studies at La Trobe University.



20 DIANHUI WANG AND SARWAR TAPAN

REFERENCES

[1] Yeung K, Medvedovic M, Bumgarner R: From co-expression to co-regulation: how many
microarray experiments do we need? Genome Biology 2004, 5(7):R48.

[2] Chin F, Leung HC: DNA motif representation with nucleotide dependency. IEEE/ACM
Transactions On Computational Biology and Bioinformatics 2008, 5:110–119.

[3] Pavesi G, Mauri G, Pesole G: In silico representation and discovery of transcription factor
binding sites. Briefings in Bioinformatics 2004, 5(3):217–236.

[4] Das M, Dai HK: A survey of DNA motif finding algorithms. BMC Bioinformatics 2007,
8(Suppl 7):S21.

[5] Elnitski L, Jin VX, Farnham PJ, Jones SJM: Locating mammalian transcription factor bind-
ing sites: A survey of computational and experimental techniques. Genome Research 2006,
16(12):1455–1464.

[6] Jones SJM: Prediction of genomic functional elements. Annual Review of Genomics and Hu-
man Genetics 2006, 7:315–338.

[7] Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE,
Cole MF, ichi Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW,
Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA,
Gifford DK, Jaenisch R, Young RA: Control of developmental regulators by Polycomb in
human embryonic stem cells. Cell 2006, 125(2):301–313.

[8] Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett
N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA: Genome-wide location and function
of DNA binding proteins. Science 2000, 290(5500):2306–2309.

[9] Hu J, Li B, Kihara D: Limitations and potentials of current motif discovery algorithms.
Nucleic Acids Research 2005, 33(15):4899–4913.

[10] Tompa M, Li N, Bailey T, Church G, De Moor B, Eskin E, Favorov A, Frith M, Fu Y, Kent J,
Makeev V, Mironov A, Noble W, Pavesi G, Pesole G, R M, Simonis N, Sinha S, Thijs G, van Helden
J, Vandenbogaert M, Weng Z, Workman C, Ye C, Zhu Z: Assessing computational tools for
the discovery of transcription factor binding sites. Nature Biotechnology 2005, 23:137–144.

[11] Marschall T, Rahmann S: Efficient exact motif discovery. Bioinformatics 2009, 25(12):i356–364.
[12] Moses A, Chiang D, Kellis M, Lander E, Eisen M: Position specific variation in the rate of

evolution in transcription factor binding sites. BMC Evolutionary Biology 2003, 3:19.
[13] Defrance M, Touzet H: Predicting transcription factor binding sites using local over-

representation and comparative genomics. BMC Bioinformatics 2006, 7:396+.
[14] Sinha S, Tompa M: Discovery of novel transcription factor binding sites by statistical

overrepresentation. Nucleic Acids Research 2002, 30(24):5549–5560.
[15] Mariño Ramı́rez L, Spouge JL, Kanga GC, Landsman D: Statistical analysis of over-represented

words in human promoter sequences. Nucleic Acids Research 2004, 32(3):949–958.
[16] Frith MC, Fu Y, Yu L, Chen JF, Hansen U, Weng Z: Detection of functional DNA motifs via

statistical over-representation. Nucleic Acids Research 2004, 32(4):1372–1381.
[17] Mahony S, Hendrix D, Golden A, Smith TJ, Rokhsar DS: Transcription factor binding site

identification using the self-organizing map. Bioinformatics 2005, 21(9):1807–1814.
[18] Stormo GD, Fields DS: Specificity, free energy and information content in protein-DNA

interactions. Trends in Biochemical Sciences 1998, 23(3):109–113.
[19] Liu XS, Brutlag DL, Liu JS: An algorithm for finding protein-DNA binding sites with appli-

cations to chromatin-immunoprecipitation microarray experiments. Nature Biotechnology
2002, 20(8):835–839.

[20] Zhou Q, Liu JS: Modeling within-motif dependence for transcription factor binding site
predictions. Bioinformatics 2004, 20(6):909–916.

[21] Bulyk ML, Johnson PLF, Church GM: Nucleotides of transcription factor binding sites exert
interdependent effects on the binding affinities of transcription factors. Nucleic Acids
Research 2002, 30(5):1255–1261.

[22] Roulet E, Busso S, Camargo AA, Simpson AJ, Mermod N, Bucher P: High-throughput SELEX
SAGE method for quantitative modeling of transcription-factor binding sites. Nature
Biotechnology 2002, 20(8):831–835.

[23] Wang C, Xie J, Craig B: Context dependent models for discovery of transcription factor
binding sites. Statistical Methodology 2006, 3:55 – 68.



MISCORE:A NEW SCORING FUNCTION 21

[24] Thijs G, Lescot M, Marchal K, Rombauts S, De Moor B, Rouze P, Moreau Y: A higher-order
background model improves the detection of promoter regulatory elements by Gibbs
sampling. Bioinformatics 2001, 17(12):1113–1122.

[25] Shannon CE: A mathematical theory of communication. Bell Systems Technical Journal 1948,
27:379–423, 623–658.

[26] Wang DH, Lee NK: Computational discovery of motifs using hierarchical clustering tech-
niques. Proceedings of the 8th IEEE Int’l. Conference on Data Mining, Pisa, Italy. Dec. 15-19,
2008:1073 –1078.

[27] Lee NK, Wang DH: SOMEA: self-organizing map based extraction algorithm for DNA
motif identification with heterogeneous model. BMC Bioinformatics 2011, 12(Suppl 1):S16.

[28] Wang DH, Lee NK: MISCORE: mismatch-based matrix similarity scores for DNA motifs
detection. Proceedings of the 15th Int’l Conference on Neural Information Processing, Auckland,
New Zealand. Nov. 25-28, 2008:478–485.

[29] Wang DH, Li X: iGAPK: improved GAPK algorithm for regulatory DNA motif discovery.
Proceedings of the 17th Int’l Conference on Neural Information Processing, Sydney, Australia. Nov.
22-25, 2010:217–225.

[30] Eisen MB: All motifs are not created equal: structural properties of transcription factor -
dna interactions and the inference of sequence specificity. Genome Biology 2005, 6(P7):277–
284.

[31] Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of pro-
gressive multiple sequence alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Research 1994, 22(22):4673–4680.

[32] Wei Z, Jensen ST: GAME: detecting cis-regulatory elements using a genetic algorithm.
Bioinformatics 2006, 22(13):1577–1584.

[33] Blanco E, Farre D, Alba MM, Messeguer X, Guigo R: ABS: a database of Annotated regulatory
Binding Sites from orthologous promoters. Nucleic Acids Research 2006, 34(suppl1):D63–67.

[34] Bailey TL, Elkan C: Unsupervised learning of multiple motifs in biopolymers using ex-
pectation maximization. Machine Learning 1995, 21:51–80.

[35] Fawcett T: An introduction to ROC analysis. Pattern Recognition Letters 2006, 27(8):861–874.
[36] Wang DH, Ma XH: A hybird image retrieval system with user’s relevance feedback using

neurocomputing. Informatica 2005, 29(3):271–280.
[37] Sandelin A, Alkema W, Engström P, Wasserman WW, Lenhard B: JASPAR: an open-access

database for eukaryotic transcription factor binding profiles. Nucleic Acids Research 2004,
32(Database issue):D91–94.

[38] Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev
D, Krull M, Hornischer K, Voss N, Stegmaier P, Lewicki-Potapov B, Saxel H, Kel AE, Wingender
E: TRANSFACr and its module TRANSCompelr: transcriptional gene regulation in
eukaryotes. Nucleic Acids Research 2006, 34(suppl 1):D108–D110.

[39] Salgado H, Gama-Castro S, Martinez-Antonio A, Diaz-Peredo E, Sanchez-Solano F, Peralta-Gil M,
Garcia-Alonso D, Jimenez-Jacinto V, Santos-Zavaleta A, Bonavides-Martinez C, Collado-Vides J:
RegulonDB (version 4.0): transcriptional regulation, operon organization and growth
conditions in Escherichia coli K-12. Nucleic Acids Research 2004, 32(suppl.):D303–306.

[40] Li L, Liang Y, Bass RL: GAPWM: a genetic algorithm method for optimizing a position
weight matrix. Bioinformatics 2007, 23(10):1188–1194.

[41] Wang T, Stormo GD: Combining phylogenetic data with co-regulated genes to identify
regulatory motifs. Bioinformatics 2003, 19(18):2369–2380.

[42] Pietrokovski S: Searching databases of conserved sequence regions by aligning protein
multiple-alignments. Nucleic Acids Research 1996, 24(19):3836–3845.

[43] Roepcke S, Grossmann S, Rahmann S, Vingron M: T-Reg Comparator: an analysis tool for
the comparison of position weight matrices. Nucleic Acids Research 2005, 33(Web Server
issue):W438–441.

[44] Thijs G, Marchal K, Lescot M, Rombauts S, De Moor B, Rouzé P, Moreau Y: A Gibbs sampling
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