
A Framework for Over the Air Provider-initiated
Software Deployment on Mobile Devices

Chuong Cong Vo
Department of Computer Science

& Computer Engineering,
La Trobe University, Bundoora, Melbourne,

Victoria 3086, Australia
Email: ccvo@students.latrobe.edu.au

Torab Torabi
Department of Computer Science

& Computer Engineering,
La Trobe University, Bundoora, Melbourne,

Victoria 3086, Australia
Email: t.torabi@latrobe.edu.au

Abstract— While mobile users want to obtain software any-
where and anytime without the knowledge of software availability
in advance, software providers want to deploy their software to
mobile devices without the users’ intervention. However, because
mobile devices expose special characteristics such as restriction
of capability, heterogeneity, mobility, wireless connectivity, and
context-orientation, deployment of software or context-aware
services on mobile devices is a problematical issue. This work
proposes a framework for over the air provider-initiated software
deployment on mobile devices (OTA-PSD). Using the OTA-PSD,
once new software or software updates are available, by the
initiation of the provider, the compatible mobile devices, which
have subscribed to the provider, will automatically receive this
software with the minimum users’ intervention. This framework
allows providers to deploy their services on mobile devices
based on users’ context and device specification. To demonstrate
the feasibility of the OTA-PSD, we developed a deployment
system based on the OTA-PSD. We successfully demonstrated
the deployment of a case study using our deployment system.

Index Terms—Software deployment, Pervasive computing, Mo-
bile devices, Software and Device specification

I. INTRODUCTION

Mobile devices such as PDAs and mobile phones have
been proliferating. The demand for software on mobile devices
is more and more increasing. Moreover, software on mobile
devices needs to be updated frequently because of frequent
changes of users’ context. Consequently, this pressing demand
is expecting an effective solution for deployment of software
and software updates on mobile devices. However, there is
no solution to deploy software or software updates on mobile
devices without users’ discovery or knowledge of software
availability in advance.

This work investigates existing approaches of over the air
(OTA) software deployment on mobile devices. Consequently,
we propose a framework for OTA provider-initiated software
deployment on mobile devices (OTA-PSD). Our framework
supports both push model and pull model for software de-
ployment. It allows software providers to push their new
software or software updates to mobile devices based on users’
interest, context and device capability. In order to demonstrate
the feasibility of the OTA-PSD, we developed a deployment
system based on the OTA-PSD. We also present a case study
to demonstrate the operation of this system.

The rest of the paper is organised as follows. Section II
presents some background of software deployment on mobile
devices. Section III investigates previous work in the field of
software deployment. Section IV and V describe the design
of the OTA-PSD and the implementation of the deployment
system based on the OTA-PSD. Section VI demonstrates
the deployment of an example application on mobile device.
Section VII presents an evaluation of the deployment system
to confirm the advantages of our solution. Finally, we conclude
this research and give some directions for future work.

II. BACKGROUND

In this section, we presents some concepts regarding soft-
ware deployment. We also outline the specific requirements
and features of software deployment on mobile devices. We
refer to these requirements as criteria to evaluate an approach
to software deployment on mobile devices.

A. Software deployment

Software deployment is referred to a collection of activities,
which are to make software available for use, until uninstalling
it from devices [2]. These activities include delivery, installa-
tion, configuration, activation, updating, reconfiguration, and
un-installation of the software [3].

B. Requirements of software deployment [3], [4]

1) Minimum resource consumption: Any approaches to
software deployment on mobile devices should take
resource restrictions of mobile devices into account.

2) Generality: A deployment mechanism can be applied for
various kinds of mobile devices with multiple platforms.

3) Adaptation: Software deployment must adapt to users’
context and device capability.

4) Automation: Software deployment can be performed
automatically without users’ intervention.

5) Supporting continuous services: Software can be up-
dated without interrupting its services.

6) State recoverability: Software deployment should have
a mechanism to backup and restore the previous states
of the software being updated.



C. Over the air software delivery

OTA delivery is a transmission of software from a provider
to a mobile device over wireless networks such as Bluetooth
or General Packet Radio Service (GPRS) [5]. In this work,
the underlying OTA technique is employed as a means for
deploying software.

D. Features of software deployment on mobile devices

1) Heterogeneity: Each device may operate under a dif-
ferent platform. As a result, the same software could not be
deployed similarly on every mobile device. Software execution
must satisfy the capability of the software with the device. For
this reason, deployment of software on mobile devices must
be adaptable to device capability.

2) Mobility and wireless connections: Because of mobility
of mobile devices, users’ context always changes. The demand
for software may change according to the change of the
context. Meanwhile, the users may not be aware of the
availability of the software for their new context. Therefore,
software deployment on mobile devices is required to support
context awareness and wireless connections. While OTA user-
initiated software deployment could not meet this requirement,
a context-aware software deployment initiated by providers is
a potential and suitable solution.

III. RELATED WORK

This section investigates previous approaches of software
deployment on mobile devices. The approaches are analysed
to identify their advantages and disadvantages.

A. Just-in-time software deployment

Just-in-time software deployment is one in which instal-
lation and activation is performed at the possibly latest time
when users access the software. The examples of this approach
are Java Web Star Technology [6] and Smart Deployment
Infrastructure [7]. This method of software deployment saves
memory of device, easily adapts to user preferences, device
capability, and users’ context. Moreover, updating software on
mobile devices may be unnecessary because the software is
not stored locally on the devices [3]. However, if the software
is requested frequently, time consumption and network traffic
would be high.

B. Component-based software deployment

A component-based architecture of software deployment on
mobile devices was developed by [5], [7]–[9]. This architec-
ture uses a functionality adaptation technique based on current
context. The technique involves changing the way software
carries out its functionality. This approach supports adaptation
to user’s context and device capability.

C. Middleware-based software deployment

Almost all approaches of software deployment have em-
ployed middleware architecture [10]. The architecture often
consists of two modules. A module at the server is to handle
users’ requests, find correct software, and deliver software to

devices. Another module at the client, the middleware is to
download, install, and update software. Our framework uses
this two-middleware architecture.

D. Context-aware software deployment

Context-aware software deployment employs context to
determine functionalities or components being deployed to
mobile devices [5], [8], [11], [12]. Our approach of software
deployment adapts to users’ interests by using users’ sub-
scription and adapts to device capability by matching device
specifications with software specifications. The matching is
to identify the compatible devices that will receive the corre-
sponding software.

E. Pull model of software deployment

Pull model of software deployment allows users to dis-
cover software by themselves [10], [13]. OTA user-initiated
provisioning [14] is an example of this model. In this model,
an agent called Application Manager System (AMS) must be
installed on mobile devices. AMS is used to discover, install,
update, execute, and remove software on mobile devices.
The pull model is suitable for software deployment on user
demand. However, the users must check compatibility of the
software with their devices. Moreover, the users may not be
aware of the availability of new software as soon as the
software is released. Similarly, when an update is released,
there is a problem of how to notify the users of the new update.

F. Push model of software deployment

Push model or provider-initiation of software deployment
allows providers to initiate a deployment process if they
want [10], [13]. That is, new software or software updates can
be pushed to mobile devices without users’ discovery of the
software or the updates. The model has been popularly applied
for software deployment on desktop computers. However, its
application for mobile devices has limitations. This paper
adopts this push model for software deployment on mobile
devices.

G. Summary and identification of problems

We has reviewed previous approaches of software de-
ployment on mobile devices. We identified some problems
remaining:

1) Because of heterogeneity of mobile devices, software
deployment must adapt to device capability. However,
the previous solutions have not significantly concerned
this issue.

2) Providers-initiated software deployment has more ad-
vantages than user-initiated deployment. However, there
is not a combination of these two models within the
existing approaches.

Our solution for these problems is a new framework for
software deployment on mobile devices that is a combination
of push and pull models. Moreover, our framework is aware
of device capability and users’ interest. The design of the
framework will be presented in the next section.



Fig. 1. Architecture of the OTA-PSD.

IV. DESIGN OF THE OTA-PSD

A. Overview

The OTA-PSD has two main modules as shown in Fig. 1.
The Provisioning System is installed on the provider server. It
handles requests for software, manages registration of soft-
ware, notifies users of new software or new updates, and
delivers software to mobile devices. This module has four main
components including the Stocking Manager, the Subscription
Manager, the Matcher, and the Delivery Manager. Another
module is the Software Manager. It is pre-installed on the
mobile device to provide the user with tools for subscribing
to providers, receiving notifications from providers, download,
installing software, and updating software. The Software Man-
ager always listens to the providers for receiving notifications.

B. Design of the Provisioning System

The Provisioning System has four components.
1) Stocking Manager: This component manages registra-

tion of software with the software repository. Each software
bundle consists of the software itself and the software spec-
ification. This specification includes the description of the
software and the requirement of its execution environment (see
an example in Appendix A).

2) Matcher Component: This component is responsible for
matching device specification with software specification to
identify the compatible mobile devices that will receive the
particular software. This component is triggered to execute
automatically once new software or software update is added
into the repository.

3) Subscription Manager: This component manages users’
subscription for receiving software from the provider. The
device specification (see an example in Appendix B) is pro-
vided to the provider in the subscription process. The device
specification is employed by the Matcher component.

Fig. 2. Operation of the OTA-PSD.

4) Delivery Manager: This component manages transac-
tions of software delivery. The Matcher component invokes
this component to execute automatically. Before delivering
new software to a mobile device, the Delivery Manager sends
notifications of the availability of this software to the devices
that the Matcher component has previously identified.

C. Design of the Software Manager

The Software Manager implicitly operates as an agent on
a mobile device. It allows the user to subscribe to the Provi-
sioning System for receiving software updates or new software
of his/her interest. It continuously listens to the Provisioning
System for receiving notifications from the provider. In normal
conditions, the Software Manager is deactivated. Whenever a
notification arrives at the device, the operating system on the
device will automatically invoke it to execute.

D. Operation of the OTA-PSD

We present the operation of the OTA-PSD by describing
the deployment of new software and a software update on
mobile devices using this framework. Fig. 2 illustrates the
operation of the OTA-PSD. Firstly, the software is registered
to the software repository. This step uploads the software
and its specification to the repository. Next, the Matcher
component automatically matches the software specification
with the device specifications to identify compatible devices
with this software. Then, a notification about the software
is send to the devices previously identified. Finally, if the
user accepts to receive the software, the software will be
downloaded and installed on the device.

1) Deployment of new software: As illustrated in Fig. 3,
the process of software deployment has the following steps:

(0) Firstly, the user must subscribe to the Provisioning
System if he/she has not previously subscribed. The
Provisioning System will gather the user profile and the
device specification by this procedure.



Fig. 3. Process of deploying software on mobile devices.

(1) When software or a software update becomes available
on the server, the Matcher component will identify
compatible devices with the software. Next, the Delivery
Manager will sends notifications to these devices.

(2) When the notification arrives at the device, the Software
Manager on the device is automatically invoked to
inform the user. If the user accepts to download this
software, a request is sent to the Provisioning System.

(3) Next, the software is delivered to the device.
(4) After receiving the software, the Software Manager

installs and configures the software. Optionally, an ac-
knowledgement is sent to the server to confirm the
success or the failure of the installation.

2) Deployment of software updates: There are two phases
for updating software based on the OTA-PSD. In the first
phase, the software update and the software specification are
uploaded to the repository. The older version of the soft-
ware will be maintained in the repository. Next, the Matcher
component will investigate the specification of the update. It
uses device specifications and previous delivery transactions
in databases to identify suitable mobile devices. These mobile
devices will be notified of the new update. The Software
Manager on the devices will handle remaining tasks such as
downloading and installing the update as presented above in
the process of deploying new software.

V. IMPLEMENTATION OF THE OTA-PSD

We implemented the OTA-PSD system called the deploy-
ment system. In this section, we describe the implementation
of this system in detail.

We choose Java as a programming language to implement
the system. The system has two modules. The first module is
called the Provisioning System, which is a web application
running on Apache Tomcat web server [15]. The second
module is called the Software Manager, which is installed
on mobile devices. We use the object-oriented architecture for
modelling the system. This architecture makes the components
of the deployment system reusable, maintainable, and testable.

Fig. 4. The Software Manager is used to subscribe to the provider in order
to receive new software of the user interest.

VI. A CASE STUDY

We developed an example application called Holiday Plan-
ner, which helps users to plan their holiday. This application
is to evaluate the feasibility of the OTA-PSD and simulate the
operation of the deployment system based on the OTA-PSD.
Firstly, we present the deployment of the example application
as a simulation of deploying a new application on a mobile
device. Secondly, we assume that the example application is
upgraded to a new version. So, we describe the deployment of
the new version on the mobile device. We employed the use
of Sun Java Wireless Toolkit 2.5.1 in our simulation.

A. Deployment of the example application

1) User subscription: As showed in Fig. 4, we utilize the
Software Manager on our mobile device to subscribe to the
Provisioning System. We use the mobile phone number as an
address for receiving notifications afterwards. Naturally, our
system allows to use other kinds of addresses such as IP
address and Bluetooth address.

2) Software registration: The example application is regis-
tered to the repository by using the Stocking Manager. After
that, our device is notified of the availability of the application.

3) Processing on mobile devices: When our device re-
ceives the notification, the Software Manager on the device
is automatically invoked. The Software Manager displays the
information about the application on the screen as in Fig. 5.
If we accept to download this application, the application will
be downloaded and installed automatically.

B. Deployment of the new version of the example application

Because the OTA-PSD is designed to support monolithic
software, the deployment of updates is similar to the de-
ployment of new software. Indeed, updating software in our



Fig. 5. The information of the new software is notified to the user. It asks
the user a confirmation of downloading and installing the software.

framework is the replacement of the previous version of the
software by the new one. For the purpose of demonstration,
firstly, we improve our example application to the new version.
Next, the new version is re-registered to the repository. Then,
the Provisioning System identifies the mobile devices, which
has previously installed this application. After that, the system
notifies the corresponding users of this new version. Finally,
if a user accept to update the example application on his/her
device, the new version will be downloaded to replace the
previous version.

VII. EVALUATION

The successful demonstration as presented in the previous
section shows the feasibility of the OTA-PSD. The OTA-
PSD has some advantages, which are different from existing
approaches. In our framework, the deployment of software
can be initiated by providers. Thus, software can be deployed
based on users’ context such as users’ location. Moreover, the
deployment process in the OTA-PSD takes device specification
into account. Therefore, the deployment process can adapt to
device capability. In this section, we discuss and evaluate the
advantages and disadvantages of our framework.

A. Advantages of the OTA-PSD

1) Provider-initiated deployment: One of the design ob-
jectives of the OTA-PSD is provider-initiated deployment. By
this model, users do not have to be concern about discovering
new software or software updates. To receive software of
the interest, users only need to subscribe to the provider.
Moreover, updating software is carried out automatically with
the minimum of users’ intervention. Therefore, users can save
on time consumption for discovering and updating software.
Consequently, this approach enables providers a possibility of
deploying software or services based on user’s context.

2) Adaptation to device capability: Adaptation to device
capability is a special requirement for software deployment
on mobile devices because of the heterogeneity of mobile
devices. The heterogeneity includes the variety of hardware
capabilities, the variety of screen sizes and API libraries that
are supported by mobile devices. To enable our framework to

be aware of device specification, we implemented a component
called the Matcher. Before deploying particular software, the
Matcher is invoked to identify the compatible mobile devices,
which satisfy the software requirements. As a result, the
compatible devices will receive this software.

B. Disadvantages of the OTA-PSD

In our solution, a user must pre-define the specification
of the device. Therefore, once the device are upgraded or
modified, the user must re-declare the modification of the
device to the deployment system. Moreover, because the OTA-
PSD only supports monolithic software, updated software
will replace entirely the pre-installed software with the new
version. Therefore, in some situations, although the software
needs to be updated in small segment, the entire new version
of the software must be completely downloaded and installed.
As a result, the update process may consume more bandwidth
than the approaches of component-enabled updates.

Although the software deployment is initiated by providers,
allowing the automatic update on mobile devices may bring
some risks to the users because our framework has no rollback
mechanism when conflicts or issues arise. Another restriction
of our approach is the use of mobile phone numbers, Bluetooth
addresses, or IP addresses of mobile devices to determine a
particular device. As a result, if the addresses are changed or
used by another device rather than the original device, which
has previously subscribed to the provider, the deployment
system will not recognise these changes unless the user re-
subscribes to the provider. If the user does not re-subscribe,
he/she may receive the software which is not compatible with
his/her device or not of his/her interest.

VIII. CONCLUSION AND FUTURE WORK

This work has investigated previous approaches in the field
of OTA software development on mobile devices. Conse-
quently, we have proposed a new framework for OTA provider-
initiated software deployment on mobile devices called OTA-
PSD. Our approach to software deployment on mobile de-
vices is a combination of push and pull models of software
deployment. Moreover, our framework can be aware of device
capability and users’ context. We have developed a deployment
system based on the OTA-PSD. Then, we have proved that
this system operates properly and meets our design objectives
of the OTA-PSD. Finally, we have implemented a case study
to simulate the operation of our deployment system. In the
case study, we have used our deployment system to push
an example application, which is called Holiday Planner
application, to a mobile device without the user discovery of
this application.

Despite achieving satisfactory results, the research has
some limitations. It has not a mechanism for evaluation of
bandwidth, time, and memory consumption for a session of
software deployment. In additional, our framework only sup-
ports deployment of monolithic software. Therefore, updating
software based on the OTA-PSD has been remaining some
restrictions in terms of bandwidth consumption.



In future work, we will improve our framework to auto-
matically identify device specification, to support component-
based software deployment. We will also develop a mechanism
for rollback when conflicts or issues occur during updating
process. In another direction, we will apply the OTA-PSD to
deploying mobile web services on mobile devices [16].

APPENDIX A
AN EXAMPLE OF SOFTWARE SPECIFICATION

1 <software name="Holiday Planner"
2 version="1.0">
3 <description>
4 Searching for cheapest flight
5 </description>
6 <vendor>ABC Company</vendor>
7 <size>184KB<size>
8 <price>50USD</price>
9 <type>education</type>

10 <requirements>
11 <require>
12 <name>screensize</name>
13 <value>any</value>
14 </require>
15 <require>
16 <name>colordepth</name>
17 <value>1</value>
18 </require>
19 <require>
20 <name>bandwidth</name>
21 <value>3M</value>
22 </require>
23 <require>
24 <name>platform</name>
25 <value>Java</value>
26 </require>
27 <require>
28 <name>CLDC</name>
29 <value>1.0</value>
30 </require>
31 <require>
32 <name>MIDP</name>
33 <value>2.0</value>
34 </require>
35 <require>
36 <name>webservicesAPI</name>
37 <value>true</value>
38 </require>
39 </requirements>
40 </software>

APPENDIX B
AN EXAMPLE OF MOBILE DEVICE SPECIFICATION

1 <device typename="Nokia 6060">
2 <supports>
3 <support>
4 <name>screensize</name>
5 <value>240x320</value>
6 </support>
7 <support>
8 <name>colordepth</name>
9 <value>3</value>

10 </support>
11 <support>
12 <name>platform</name>
13 <value>Java</value>
14 </support>
15 <support>
16 <name>CLDC</name>
17 <value>1.0</value>
18 </support>
19 <support>

20 <name>MIDP</name>
21 <value>2.0</value>
22 </support>
23 <support>
24 <name>webservicesAPI</name>
25 <value>true</value>
26 </support>
27 <support>
28 <name>locationAPI</name>
29 <value>true</value>
30 </support>
31 </supports>
32 </device>

REFERENCES

[1] S. Jamadagni and M. Umesh, “A PUSH download architecture for
software defined radios,” in IEEE International Conference on Personal
Wireless Communications, 2000, Hyderabad, Dec. 2000, pp. 404–407.

[2] A. Heydarnoori, F. Mavaddat, and F. Arbab, “Towards an automated
deployment planner for composition of web services as software com-
ponents,” Electronic Notes in Theoretical Computer Science, vol. 160,
pp. 239–253, Aug. 2006.

[3] D. Ayed, C. Taconet, G. Bernard, and Y. Berbers, “An adaptation
methodology for the deployment of mobile component-based applica-
tions,” in ACS/IEEE International Conference on Pervasive Services,
2006, Jun. 2006, pp. 193–202.

[4] S. Ajmani, B. Liskov, and L. Shrira, “Modular software upgrades
for distributed systems,” in European Conference on Object-Oriented
Programming (ECOOP), Jul. 2006.

[5] T. Fjellheim, “Over-the-air deployment of applications in multi-platform
environments,” in Proc. ASWEC’06, 2006, pp. 159–170.

[6] Sun Microsystems, Inc. (2007, April) Java web start technology.
[Online]. Available: http://java.sun.com/products/javawebstart/

[7] C. Taconet, E. Putrycz, and G. Bernard, “Context aware deployment for
mobile users,” in Proc. COMPSAC ’03, 2003, pp. 74–81.

[8] N. M. Belaramani, C.-L. Wang, and F. C. M. Lau, “Dynamic component
composition for functionality adaptation in pervasive environments,” in
Proc. FTDCS ’03, San Juan, Puerto Rico, USA, May 2003, pp. 226–232.

[9] M. Kwan, “A distributed proxy system for functionality adaptation
in pervasive computing environments,” Master’s thesis, Department of
Computer Science and Information Systems, The University of Hong
Kong, Aug. 2002.

[10] L. Sobr and P. Tuma, “SOFAnet: Middleware for software distribution
over internet,” in Proc. SAINT ’05, 2005, pp. 48–53.

[11] S. Ali, T. Torabi, and H. Ali, “A case for business process deployment for
location aware applications,” International Journal of Computer Science
and Network Security, vol. 6, no. 8, pp. 118–127, Aug. 2006.

[12] Y. Weinsberg and I. Ben-Shaul, “A programming model and system
support for disconnected-aware applications on resource-constrained
devices,” in Proc. ICSE ’02. ACM Press, 2002, pp. 374–384.

[13] M. Mehta, N. Drew, G. Vardoulias, N. Greco, and C. Niedermeier,
“Reconfigurable terminals: an overview of architectural solutions,” IEEE
Commun. Mag., vol. 39, no. 8, pp. 82–89, Aug. 2001.

[14] C. E. Ortiz. (2002, Nov.) Introduction to
OTA application provisioning. [Online]. Available:
http://developers.sun.com/techtopics/mobility/midp/articles/ota/

[15] The Apache Software Foundation. (2007, Apr.) Apache tomcat.
[Online]. Available: http://jakarta.apache.org/tomcat/

[16] P. Farley and M. Capp, “Mobile web services,” BT Technology Journal,
vol. 23, no. 3, pp. 202–213, 2005.


