Towards a Task-Oriented Framework for
Smart Spaces

Chuong C. Vo, Torab Torabi, and Seng W. Loke

Department of Computer Science & Computer Engineering,rabelUniversity
e-mail: ccvo@students.latrobe.edu.au, t.torabi@latedu.au, s.loke @latrobe.edu.au

Abstract. In smart spaces such as smart office and workplaces, usesu@are
rounded by hundreds of networked devices and services vdiieh vanish into

the background. Therefore, the users are often unawaressilppe tasks which
they can achieve within a given physical space. Moreoveruer does not want
to dig in a long list of individual services and devices fondtionalities which are

required to accomplish a task at hand. To enable doing mdhelegs in everyday

life, we envision a future intelligent computing where treets should not handle
directly functionalities provided by individual servicard devices but rather high-
level tasks, e.g. ‘watch a movie’ or ‘borrow a book’. In thigper, we present our
vision of a task computing framework which is to deal with elepment, deploy-

ment, discovery, recommendation, and execution of higbHtasks within smart

spaces. We outline a research agenda aiming to realisedpegad framework.

Keywords. Task-Oriented Computing, Smart Spaces, Task Recommendati

1. Introduction

The vision of pervasive computing[1] is emerged from seastleintegrating technolo-
gies into the fabric of everyday life. Smart technologiei e everywhere providing
users with functionality and simplifying user's everydagks which are beyond the
tasks supported by a single computational device. As srmpades are increasingly em-
bedded with hundreds of services and devices, everydag odem find themselves
spending more time and effortin understanding, configyudand exploiting these spaces.
Task-oriented computing [2] appears to be a promising panatb address this problem
as it shifts focus to what users want to do (i.e., on the tasksauad) rather than on the
specific means for doing those tasks [3]. In other words,auserceive the tasks but not
the devices and/or services that enable the accomplishohtgse tasks.

There are several approaches such as [4,5] that providelsfodénteracting with
smart spaces. However, the solutions they propose arer rafipdication-centric or
service-centric while our approach is task-centric. Is thaper, we present the task com-
puting framework, a framework designed to provide suppmrusers (in executing their
everyday tasks) and developers (in developing and degdgsks) in smart spaces. We
call a smart space fitted with a task computing framework leatale space [6]. A task-

1A task is a goal or objective presented by a set of actionsopaed collaboratively by humans and/or
machines to achieve its goal.

able space can recommend possible, relevant tasks for ¢ ssed on contextual in-
formation related to the physical space (both physical aridal) and the users. A task-

able space hides the complexity of underlying technologelscomputational processes.
The users interact with the space to accomplish their irgdnasks using their personal
devices such as mobile phones.

The rest of the paper is organised as follow. Section 2 ptesequirements for
the proposed framework. We elaborate the proposed frankéw&ection 3. We decide
to incorporate related work and research problems in ewgoysections representing
components of our framework. Section 4 describes an eapileimentation of a system
developed based on the framework. Finally, a conclusioivengn Section 5.

2. Requirements

This section presents requirements we consider essenttidld cornerstones of the pro-
posed framework. The first three requirements are from Usepgctation while the final
requirement is from designers’ expectation.

2.1. Task Recommendation & Execution

Users in smart spaces are surrounded by hundreds of seavidetevices including sen-
sors, actuators, appliances, and computers. Currenttyder for the users to exploit
these resources, they must not only be aware of the resoesgsience — the capabili-
ties, availability, and cardinality of these resourcesdisib understand configurations of
these resources to accomplish a particular task. In a smianinar room, for example,
the user needs to be aware of existing devices (e.g., dspghagjectors, printers, desk-
top and computers) and services (e.g., light control, teatpes control, window blind
control, audio control, slide-show manager, and video eanfce). This requirement is
impossible for ordinary users, especially for those whousfamiliar with the space. In
contrast, a taskable space assists users in being awareabfasks they can do within
the current space by discovering and recommending poseiideant tasks for the users.
For example, a presenter, who is unfamiliar with the smamisar room, can quickly get
aware of tasks he can do such as ‘Register as a presentdilisiPpresentation slides’,
‘Print a document’, ‘Dim the lights’, and ‘Make a slide-showhese tasks are dynami-
cally recommended on e.g. his/her mobile phone when heiitssfar recommendation.
Upon selecting a task, the user will be guided through thie aasomplishment on the
mobile phone. The phone is only the interface for the userteyact with the space while
all computational processes are hosted by the space.

To avoid the user digging in a long list of recommended taskafdesired task, not
all of available tasks but only relevant tasks are recomraeéfiiar the user. This is done
by taking into consideration the user’s current contexhsag location, devices nearby,
activity (e.g. presenting at a seminar), and user’s pagngiesture (i.e., the user points
the phone at a particular appliance).

The taskable space allows navigation both forward and baakduring task execu-
tion if applicable, and allows task execution to be pausebrasumed (perhaps at differ-
ent locations) as needed. Moreover, depending on the atienastyles (e.g. pen-based
interaction, touch-based interaction, and speech-basexhttion) of devices the user is
using, the taskable space automatically generates apgi®pser interfaces.

2.2. Task-Oriented User Interfaces

The traditional paradigms of user interfaces (e.g., dewitented user interfaces and
application-oriented user interfaces) require users mwkwhich devices and services
to use before they can achieve a certain task. This philgsigpho longer suitable in
smart spaces where services can be “invisible” from usevareness. For example, a
user may not be aware of that a physical table can be used aplaydand keyboard to
compose and send emails. To address this issue, a taskabéespvides users a view of
the entire environment from a task-oriented perspectipecHically, given an unfamiliar
space, a user does not have to know which devices and/ocsena use before he/she
can do a particular task.

2.3. Mobility of Tasks

The users’ mobility across or within taskable spaces regask executions to be mobile
(perhaps following the user). There are two types of mabilittra-space mobility and

inter-space mobility [4]. Intra-space mobility is relatexithe migration of executions
of sub-tasks among different devices within a taskableepad is the result of ad hoc
availability of devices and services (e.g., because of ge mobility). Intra-space mo-
bility allows executions of sub-tasks to move among diffémevices according to e.g.
users’ locations and the interaction device at hand. Ispace mobility concerns mov-
ing task executions across different spaces. A taskabtEgraables the migration of all
settings from the previous task session to a new space. diogy, the user interface is

adapted to current interaction devices and available seswithin the new space. If the
currently performed task/sub-task fails (because of ssdhilre of a device/service or
unavailability of a required service/device), the taskagace quickly offers an alterna-
tive.

2.4. Creation & Management of Task Models

Task models are formal descriptions which describe how-téghl tasks can be achieved
by using lower-level tasks. Task models are an excellerit-baoe for dynamically gen-
erating task-oriented user interfaces that cover the fomality of a whole set of de-
vices/services in a space rather than having one userdoteger device/service [7].
Task models should be abstract enough to avoid being boispettific devices/services.
This allows task models to be flexibly executed in differqraces.

There is a need for a task model description language and itor & creating
task models based on this language. Once task models ated;réd#ere is a need of
a mechanism for effectively advertising, searching, arnidesgng task models over a
network. This requires an architecture for publishing arahaging task models which
is similar to the Universal Description, Discovery and tregtion registry (UDDI) for
businesses worldwide to list themselves on the Internet.

3. Components of the framewor k

To fulfil the requirements above, we propose a task computargework that models
functionality of a taskable space as a collection of posgdmks. The framework exploits

. language
Task Model Description Language Task Model Editor

models

[Task Model Broker]

context

[Context Information Manager

context models

L models
Task Execution Engine Task Recommender

Figure 1. The component architecture for the proposed framework la@ddlationships of components. De-

velopers use Task Model Editor to develop task models whieldascribed in a standard Task Model Descrip-
tion Language. These task models are registered with TasleMgroker. Task Recommender recommends
tasks for users based on context information provided by&biformation Manager. Task Execution Engine
executes task models of selected tasks taking into comgidercontext information.

resources (devices, services, and task models) presetaskable space, recommends
relevant task for users, executes selected tasks, guidesthsough task executions, and
provides tools for task model creation and management.

The framework consists of six componerfigsk Model Description Languaggask
Model Editor, Task Model BrokefTask Recommendéiask Execution EnginandCon-
text Information ManagefFigure 1 illustrates the component architecture for taenfe-
work and the mutual relationships of components.

3.1. Task Model Description Language

A task model description language consists of a set of sysndwadtl a set of grammar
structures, rules, and schemas which are used to descslbmtadels. Some challenges
need to be addressed when designing and choosing a task desteiption language

for the framework:

e Standardisation to enable unify and inter-operation,
e Supporting semantic descriptions/annotations,

e Supporting runtime execution of task models, and
e Technology-independent.

There are several approaches on task modelling. The madwdiatage of these ap-
proaches is that task models are not executable (i.e., teeysad only for designing user
interfaces at design time, then discarded) and rather elelépendence [8]. This limits
the scalability of task models. Our framework uses the ANEK-2018 standard [9] as
a task model description language because it well addrédssesallenges above. How-
ever, our experiences revealed that there is a need for ansan of this standard that
allows queries of context information to be integrated iatek models. This is because
some parameters required for executing a task can be aiutathafilled by context
information (e.g., location) which is provided by Contextdrmation Manager.

3.2. Task Model Editor

A task model editor supports for developing and describ@sy inodels conforming to
a task model description language. It also supports visatédin, validation, and simula-
tion of task models. ConcurTaskTrees [10] is a graphicabedhat is widely used for
specifying task models using diagrammatic notations. Tdasaims to only support for
designing user interfaces at design-time. The TERESA [ddl|bhased on ConcurTask-
Trees goes a step further by automatically generating @sponding user interfaces of
a task models for different platforms and devices (i.e. sdmme task models can have a
different presentation depending on the platform or dgvitke disadvantage of editors
based on ConcurTaskTrees is that task models are tightlgledwith specific appli-
cations. Being too application-specific will limit scallityi of task models in different
taskable spaces.

Currently, there is no such an editor for authoring task nedmsed on the
ANSI/CEA-2018 standard (perhaps because this standargubbeen approved re-
cently). However, we believe that developers are devetpgditors for this standard and
they will be available soon in the future.

3.3. Task Model Broker

Atask model broker is a repository of task models. It puldsshnd adversities task mod-
els which have been registered with the broker. There arem@auof research chal-
lenges on management of tasks models. The broker shouldipreffective mechanisms
for searching and matching task models. Task model seaydhito find appropriate
task models. Task matching is a process that finds simil&rrtesdels (e.g., a failed
task can be substituted by a similar task). Managing a laggesitory of task models is
also challenged which require more research attentionadgxing techniques and query
answering solutions.

3.4. Task Recommender

Imagine that a taskable space (e.g., a university campusimaat seminar room) con-
tains hundreds of controllable devices and computaticer@ices. Individuals and dif-
ferent combinations among them can support users with ledisdsf high-level tasks.
This list of possible tasks is highly ever-changing becafséhe change of the space
resulting from unforeseen adding, removing, and upgradewces and services. More-
over, because technologies blend well into the space, osysiot recognise advanced
features beyond common usages of normal objects. Ther¢@re is a need for a task
recommender system that suggests users for possibleantétasks they can do within
a particular space at a certain time.

A task recommender dynamically discovers possible taskedan available de-
vices and services in the space. Then, in collaborating avithntext information man-
ager (as discussed below), the task recommender reducesitiieger of tasks which
are relevant to users’ current situations. Towards thi®mjsChuong C. Vo and his col-
leagues [12] propose a conceptual task recommendaticensyshich takes task ontolo-
gies (e.g. place/device-specific task ontologies), envirent’'s capability (i.e. devices’
functionalities), users’ situations, and users’ prefeesrinto consideration for discover-
ing relevant tasks. This system is needed to be further imgited and evaluated in the
combination with our proposed framework.

3.5. Task Execution Engine

The runtime task execution engine is to execute task moldejsides the user through
task execution and deals with how should the system infoemutter of the progress of
task completion, failures, and, if necessary, involve teerun the task execution. The
engine also enables managing sessions of task executidravaius the user having to
start the session over again from the beginning when reguthntask.

Anand Ranganathan [13] propose a task execution framewbithvecan automat-
ically infer the best values for task parameters based owruhent state of the space,
context-sensitive policies, and learned user prefereritean also recover from fail-
ures of one or more actions by using alternative resourdeslagly, the authors in [14]
propose a method for estimation of future resource requrgsnwhen executing a task,
which allows task execution to adapt to the variation in lality of resources in the
space. While these frameworks mainly focus on executirkstabeir solutions to re-
source allocation problems can be incorporated into ounéraork.

Recently, a reference implementation of an engine for eiagtask models which
are specified using the ANSI/CEA-2018 standard has beerlapmae[8]. The current
problem of this implementation is its command-line useeiifstce which is not conve-
nient for users when they need to provide inputs during taskcion, especially on
devices with small screens such as mobile phone or PDA. Wexaeading this imple-
mentation based on a client/server architecture to alleutier remotely executing tasks
through their mobile devices.

3.6. Context Information Manager

Contextinformation manager is an essential componentipirdelligent systems today.
Context is any information that can be used to charactenseituation of a user [15].
The Context Toolkit [15] is a well-known toolkit supportirdevelopment of context-
aware applications. However, the management of conteatrimdtion using this tool is
very application-centric (e.g. the configuration for comtgrovision/retrieval has to be
set up explicitly for each application). This is not suielibr task-oriented computing
where context information could be used by any tasks anddreanong multiple com-
ponents of the framework.

4. Current Implementation

We have implemented the initial framework and an applicatialled TASKREC based

on this framework. ASKREC is a web page running on any devices which have a web
browser. The web page consists of Java scripts and useseégardlogy to retrieve and
render the dynamic list of recommended tasks for the userlézts The task list is fre-
quently updated by the task recommender hosted on the s&hetask recommender
always listens to the change of the user’s context (in thjgementation, we only con-
sider user’s location and user’s pointing gestures as us#ext). We use multi-model
location technologies for inferring user’s location indilng GPS, Bluetooth, RFID, and
Crickef.

2http://cricket.csail.mit.edu/

[s 5:21 PM © 9% b

University Campus.

Personal office. You may want to:
Find a path within cam.

Turn on lights
See the campus map

Turn off lights
Find a parking spot

Dim the light
Know where vou are

Television. You may want to:

Watch a TV channel .
Air-conditioner. You may want fo:

View photos on TV
Set temperature

Play a recorded TV prc
Set fan speed

Record a TV program
Define personal temperature profile

Lipsdated 18:7 1:4F

Updated 181135

Figure 2. Location-based task interfaces for smart spaces.

We observed the changes of the task list in four scenariesHigeire 2): the user en-
ters the University campus, the user enters his personedoffie user points his phone at
the television in his office, and the user points his phonkeatr-conditioner. Currently,
the tasks for controlling of lights and fan have been impleted using an X10-based
HomeAutomation Kit though any other technologies are fiss$o be incorporated into
our framework as long as the designers are provided URLsrufces for controlling
devices.

5. Conclusion

This paper has analysed requirements and challenges waséadk-oriented computing
framework for smart spaces. We have presented the propmeéwork consisting of
six components. We have discussed related work and oufitede research directions
to realising this framework including:

e Languages for describing task models,

e Tools for creating task models,

e Mechanisms for effectively publishing and retrieving tasdels,
e Context-aware task recommendation, and

e Engines for executing task models.

We wish to promote an active research community of taskategk computing
to develop more task-oriented applications for smart spadeanwhile, smart spaces
(e.g., university campuses, houses, and public placek)ilitably become common-
place. This gives us great opportunities to develop andraxrpat our task-oriented ap-
plications.

Acknowledgment

The research was carried out whilst the first author was stgnhby La Trobe University
Tuition Fee Remission & Postgraduate Research Scholarship

References

[1] M. Weiser. The computer for the 24.century. Scientific Americay3(265):94-104, 1991.

[2] Z. Wang and D. Garlan. Task-driven computing. Techniegort, School of Computer Science,
Carnegie Mellon University, 2000.

[3] R.Masuokaet al. Task computing-the semantic web meets pervasive congputinSWC 20032003.

[4] Manuel Roman, Christopher Hess, Renato Cerqueira, df@mganathan, Roy H. Campbell, and Klara
Nahrstedt. A middleware infrastructure for active spatieEE Pervasive Computing.(4):74-83, 2002.

[5] D. Garlan, D.P. Siewiorek, A. Smailagic, and P. Steeteki®roject Aura: toward distraction-free perva-
sive computing.Pervasive Computing, IEEH(2):22-31, Apr-Jun 2002.

[6] S.W. Loke. Building taskable spaces over ubiquitousises. IEEE Pervasive Computing(4):72—78,
2009.

[7] Gottfried Zimmermann and Benjamin Wassermann. Why wedree user interface resource server for
intelligent environments. IkVorkshops Proceedings of the 5th International Conferemcéntelligent
Environments2009.

[8] C. Rich. Building task-based user interfaces with ANCHA-2018.Computer 42(8):20-27, 2009.

[9] Consumer Electronics Assoc. Task model description {@gk 1.0), ANSI/CEA-2018, Mar. 2008.

[10] F. Paterno, C. Mancini, and S. Meniconi. Concurtagigréd diagrammatic notation for specifying task
models. INNTERACT '97 pages 362—369, London, UK, 1997. Chapman & Hall, Ltd.

[11] G. Mori, F. Paterno, and C. Santoro. Design and devedoypimf multidevice user interfaces through
multiple logical descriptionslEEE Trans. Softw. Eng30(8):507-520, 2004.

[12] C.C.Vo, T. Torabi, and S.W. Loke. Towards context-avask recommendation. IEPCA-09 Taiwan,
2009.

[13] A Ranganathan.A Task Execution Framework for Autonomic Ubiquitous Cofngut PhD thesis,
University of lllinois at Urbana-Champaign, 2005.

[14] K. Kalapriya, S. K. Nandy, Deepti Srinivasan, R. Uma Mahwari, and V. Satish. A framework for
resource discovery in pervasive computing for mobile avask execution. '€F '04: Proceedings of
the 1st conference on Computing frontiggages 70-77, New York, NY, USA, 2004. ACM.

[15] A.K. Dey, G. D. Abowd, and D. Salber. A conceptual franoekvand a toolkit for supporting the rapid
prototyping of context-aware applicationduman-Computer Interactiori6(2):97-166, 2001.

