
Towards a Task-Oriented Framework for
Smart Spaces

Chuong C. Vo, Torab Torabi, and Seng W. Loke

Department of Computer Science & Computer Engineering, La Trobe University
e-mail: ccvo@students.latrobe.edu.au, t.torabi@latrobe.edu.au, s.loke@latrobe.edu.au

Abstract. In smart spaces such as smart office and workplaces, users aresur-
rounded by hundreds of networked devices and services whichoften vanish into
the background. Therefore, the users are often unaware of possible tasks which
they can achieve within a given physical space. Moreover, the user does not want
to dig in a long list of individual services and devices for functionalities which are
required to accomplish a task at hand. To enable doing more with less in everyday
life, we envision a future intelligent computing where the users should not handle
directly functionalities provided by individual servicesand devices but rather high-
level tasks, e.g. ‘watch a movie’ or ‘borrow a book’. In this paper, we present our
vision of a task computing framework which is to deal with development, deploy-
ment, discovery, recommendation, and execution of high-level tasks within smart
spaces. We outline a research agenda aiming to realise the proposed framework.

Keywords. Task-Oriented Computing, Smart Spaces, Task Recommendation

1. Introduction

The vision of pervasive computing [1] is emerged from seamlessly integrating technolo-
gies into the fabric of everyday life. Smart technologies will be everywhere providing
users with functionality and simplifying user’s everyday tasks1 which are beyond the
tasks supported by a single computational device. As smart spaces are increasingly em-
bedded with hundreds of services and devices, everyday users often find themselves
spending more time and effort in understanding, configuring, and exploiting these spaces.
Task-oriented computing [2] appears to be a promising paradigm to address this problem
as it shifts focus to what users want to do (i.e., on the tasks at hand) rather than on the
specific means for doing those tasks [3]. In other words, users perceive the tasks but not
the devices and/or services that enable the accomplishmentof these tasks.

There are several approaches such as [4,5] that provide models for interacting with
smart spaces. However, the solutions they propose are rather application-centric or
service-centric while our approach is task-centric. In this paper, we present the task com-
puting framework, a framework designed to provide support for users (in executing their
everyday tasks) and developers (in developing and deploying tasks) in smart spaces. We
call a smart space fitted with a task computing framework a taskable space [6]. A task-

1A task is a goal or objective presented by a set of actions performed collaboratively by humans and/or
machines to achieve its goal.



able space can recommend possible, relevant tasks for the users based on contextual in-
formation related to the physical space (both physical and virtual) and the users. A task-
able space hides the complexity of underlying technologiesand computational processes.
The users interact with the space to accomplish their intended tasks using their personal
devices such as mobile phones.

The rest of the paper is organised as follow. Section 2 presents requirements for
the proposed framework. We elaborate the proposed framework in Section 3. We decide
to incorporate related work and research problems in every sub-sections representing
components of our framework. Section 4 describes an early implementation of a system
developed based on the framework. Finally, a conclusion is given in Section 5.

2. Requirements

This section presents requirements we consider essential for the cornerstones of the pro-
posed framework. The first three requirements are from users’ expectation while the final
requirement is from designers’ expectation.

2.1. Task Recommendation & Execution

Users in smart spaces are surrounded by hundreds of servicesand devices including sen-
sors, actuators, appliances, and computers. Currently, inorder for the users to exploit
these resources, they must not only be aware of the resources’ existence – the capabili-
ties, availability, and cardinality of these resources butalso understand configurations of
these resources to accomplish a particular task. In a smart seminar room, for example,
the user needs to be aware of existing devices (e.g., displays, projectors, printers, desk-
top and computers) and services (e.g., light control, temperature control, window blind
control, audio control, slide-show manager, and video conference). This requirement is
impossible for ordinary users, especially for those who areunfamiliar with the space. In
contrast, a taskable space assists users in being aware of what tasks they can do within
the current space by discovering and recommending possible, relevant tasks for the users.
For example, a presenter, who is unfamiliar with the smart seminar room, can quickly get
aware of tasks he can do such as ‘Register as a presenter’, ‘Publish presentation slides’,
‘Print a document’, ‘Dim the lights’, and ‘Make a slide-show’. These tasks are dynami-
cally recommended on e.g. his/her mobile phone when he/she asks for recommendation.
Upon selecting a task, the user will be guided through the task accomplishment on the
mobile phone. The phone is only the interface for the user to interact with the space while
all computational processes are hosted by the space.

To avoid the user digging in a long list of recommended tasks for a desired task, not
all of available tasks but only relevant tasks are recommended for the user. This is done
by taking into consideration the user’s current context such as location, devices nearby,
activity (e.g. presenting at a seminar), and user’s pointing gesture (i.e., the user points
the phone at a particular appliance).

The taskable space allows navigation both forward and backward during task execu-
tion if applicable, and allows task execution to be paused and resumed (perhaps at differ-
ent locations) as needed. Moreover, depending on the interaction styles (e.g. pen-based
interaction, touch-based interaction, and speech-based interaction) of devices the user is
using, the taskable space automatically generates appropriate user interfaces.



2.2. Task-Oriented User Interfaces

The traditional paradigms of user interfaces (e.g., device-oriented user interfaces and
application-oriented user interfaces) require users to know which devices and services
to use before they can achieve a certain task. This philosophy is no longer suitable in
smart spaces where services can be “invisible” from users’ awareness. For example, a
user may not be aware of that a physical table can be used as a display and keyboard to
compose and send emails. To address this issue, a taskable space provides users a view of
the entire environment from a task-oriented perspective. Specifically, given an unfamiliar
space, a user does not have to know which devices and/or services to use before he/she
can do a particular task.

2.3. Mobility of Tasks

The users’ mobility across or within taskable spaces require task executions to be mobile
(perhaps following the user). There are two types of mobility: intra-space mobility and
inter-space mobility [4]. Intra-space mobility is relatedto the migration of executions
of sub-tasks among different devices within a taskable space and is the result of ad hoc
availability of devices and services (e.g., because of the user mobility). Intra-space mo-
bility allows executions of sub-tasks to move among different devices according to e.g.
users’ locations and the interaction device at hand. Inter-space mobility concerns mov-
ing task executions across different spaces. A taskable space enables the migration of all
settings from the previous task session to a new space. Accordingly, the user interface is
adapted to current interaction devices and available services within the new space. If the
currently performed task/sub-task fails (because of such as failure of a device/service or
unavailability of a required service/device), the taskable space quickly offers an alterna-
tive.

2.4. Creation & Management of Task Models

Task models are formal descriptions which describe how high-level tasks can be achieved
by using lower-level tasks. Task models are an excellent back-bone for dynamically gen-
erating task-oriented user interfaces that cover the functionality of a whole set of de-
vices/services in a space rather than having one user interface per device/service [7].
Task models should be abstract enough to avoid being bound tospecific devices/services.
This allows task models to be flexibly executed in different spaces.

There is a need for a task model description language and an editor for creating
task models based on this language. Once task models are created, there is a need of
a mechanism for effectively advertising, searching, and retrieving task models over a
network. This requires an architecture for publishing and managing task models which
is similar to the Universal Description, Discovery and Integration registry (UDDI) for
businesses worldwide to list themselves on the Internet.

3. Components of the framework

To fulfil the requirements above, we propose a task computingframework that models
functionality of a taskable space as a collection of possible tasks. The framework exploits



Task Model Description Language Task Model Editor

Context Information Manager Task Model Broker

Task Execution Engine Task Recommender

language

models

models
context

context

models

Figure 1. The component architecture for the proposed framework and the relationships of components. De-
velopers use Task Model Editor to develop task models which are described in a standard Task Model Descrip-
tion Language. These task models are registered with Task Model Broker. Task Recommender recommends
tasks for users based on context information provided by Context Information Manager. Task Execution Engine
executes task models of selected tasks taking into consideration context information.

resources (devices, services, and task models) present in ataskable space, recommends
relevant task for users, executes selected tasks, guides users through task executions, and
provides tools for task model creation and management.

The framework consists of six components:Task Model Description Language, Task
Model Editor, Task Model Broker, Task Recommender, Task Execution Engine, andCon-
text Information Manager. Figure 1 illustrates the component architecture for the frame-
work and the mutual relationships of components.

3.1. Task Model Description Language

A task model description language consists of a set of symbols and a set of grammar
structures, rules, and schemas which are used to describe task models. Some challenges
need to be addressed when designing and choosing a task modeldescription language
for the framework:

• Standardisation to enable unify and inter-operation,
• Supporting semantic descriptions/annotations,
• Supporting runtime execution of task models, and
• Technology-independent.

There are several approaches on task modelling. The main disadvantage of these ap-
proaches is that task models are not executable (i.e., they are used only for designing user
interfaces at design time, then discarded) and rather device-dependence [8]. This limits
the scalability of task models. Our framework uses the ANSI/CEA-2018 standard [9] as
a task model description language because it well addressesthe challenges above. How-
ever, our experiences revealed that there is a need for an extension of this standard that
allows queries of context information to be integrated intotask models. This is because
some parameters required for executing a task can be automatically filled by context
information (e.g., location) which is provided by Context Information Manager.



3.2. Task Model Editor

A task model editor supports for developing and describing task models conforming to
a task model description language. It also supports visualisation, validation, and simula-
tion of task models. ConcurTaskTrees [10] is a graphical editor that is widely used for
specifying task models using diagrammatic notations. Thistool aims to only support for
designing user interfaces at design-time. The TERESA [11] tool based on ConcurTask-
Trees goes a step further by automatically generating a corresponding user interfaces of
a task models for different platforms and devices (i.e., thesame task models can have a
different presentation depending on the platform or device). The disadvantage of editors
based on ConcurTaskTrees is that task models are tightly coupled with specific appli-
cations. Being too application-specific will limit scalability of task models in different
taskable spaces.

Currently, there is no such an editor for authoring task models based on the
ANSI/CEA-2018 standard (perhaps because this standard hasjust been approved re-
cently). However, we believe that developers are developing editors for this standard and
they will be available soon in the future.

3.3. Task Model Broker

A task model broker is a repository of task models. It publishes and adversities task mod-
els which have been registered with the broker. There are a number of research chal-
lenges on management of tasks models. The broker should provide effective mechanisms
for searching and matching task models. Task model searching is to find appropriate
task models. Task matching is a process that finds similar task models (e.g., a failed
task can be substituted by a similar task). Managing a large repository of task models is
also challenged which require more research attention on indexing techniques and query
answering solutions.

3.4. Task Recommender

Imagine that a taskable space (e.g., a university campus or asmart seminar room) con-
tains hundreds of controllable devices and computational services. Individuals and dif-
ferent combinations among them can support users with hundreds of high-level tasks.
This list of possible tasks is highly ever-changing becauseof the change of the space
resulting from unforeseen adding, removing, and upgradingdevices and services. More-
over, because technologies blend well into the space, usersmay not recognise advanced
features beyond common usages of normal objects. Therefore, there is a need for a task
recommender system that suggests users for possible, relevant tasks they can do within
a particular space at a certain time.

A task recommender dynamically discovers possible tasks based on available de-
vices and services in the space. Then, in collaborating witha context information man-
ager (as discussed below), the task recommender reduces thenumber of tasks which
are relevant to users’ current situations. Towards this vision, Chuong C. Vo and his col-
leagues [12] propose a conceptual task recommendation system which takes task ontolo-
gies (e.g. place/device-specific task ontologies), environment’s capability (i.e. devices’
functionalities), users’ situations, and users’ preferences into consideration for discover-
ing relevant tasks. This system is needed to be further implemented and evaluated in the
combination with our proposed framework.



3.5. Task Execution Engine

The runtime task execution engine is to execute task models.It guides the user through
task execution and deals with how should the system inform the user of the progress of
task completion, failures, and, if necessary, involve the user in the task execution. The
engine also enables managing sessions of task executions and avoids the user having to
start the session over again from the beginning when resuming the task.

Anand Ranganathan [13] propose a task execution framework which can automat-
ically infer the best values for task parameters based on thecurrent state of the space,
context-sensitive policies, and learned user preferences. It can also recover from fail-
ures of one or more actions by using alternative resources. Similarly, the authors in [14]
propose a method for estimation of future resource requirements when executing a task,
which allows task execution to adapt to the variation in availability of resources in the
space. While these frameworks mainly focus on executing tasks, their solutions to re-
source allocation problems can be incorporated into our framework.

Recently, a reference implementation of an engine for executing task models which
are specified using the ANSI/CEA-2018 standard has been developed [8]. The current
problem of this implementation is its command-line user interface which is not conve-
nient for users when they need to provide inputs during task execution, especially on
devices with small screens such as mobile phone or PDA. We areextending this imple-
mentation based on a client/server architecture to allow the user remotely executing tasks
through their mobile devices.

3.6. Context Information Manager

Context information manager is an essential component for any intelligent systems today.
Context is any information that can be used to characterise the situation of a user [15].
The Context Toolkit [15] is a well-known toolkit supportingdevelopment of context-
aware applications. However, the management of context information using this tool is
very application-centric (e.g. the configuration for context provision/retrieval has to be
set up explicitly for each application). This is not suitable for task-oriented computing
where context information could be used by any tasks and shared among multiple com-
ponents of the framework.

4. Current Implementation

We have implemented the initial framework and an application called TASKREC based
on this framework. TASKREC is a web page running on any devices which have a web
browser. The web page consists of Java scripts and uses Ajax technology to retrieve and
render the dynamic list of recommended tasks for the user to select. The task list is fre-
quently updated by the task recommender hosted on the server. The task recommender
always listens to the change of the user’s context (in this implementation, we only con-
sider user’s location and user’s pointing gestures as user context). We use multi-model
location technologies for inferring user’s location including GPS, Bluetooth, RFID, and
Cricket2.

2http://cricket.csail.mit.edu/



Figure 2. Location-based task interfaces for smart spaces.

We observed the changes of the task list in four scenarios (see Figure 2): the user en-
ters the University campus, the user enters his personal office, the user points his phone at
the television in his office, and the user points his phone at the air-conditioner. Currently,
the tasks for controlling of lights and fan have been implemented using an X10-based
HomeAutomation Kit though any other technologies are possible to be incorporated into
our framework as long as the designers are provided URLs of services for controlling
devices.

5. Conclusion

This paper has analysed requirements and challenges towards a task-oriented computing
framework for smart spaces. We have presented the proposed framework consisting of
six components. We have discussed related work and outlinedfuture research directions
to realising this framework including:

• Languages for describing task models,
• Tools for creating task models,
• Mechanisms for effectively publishing and retrieving taskmodels,
• Context-aware task recommendation, and
• Engines for executing task models.



We wish to promote an active research community of task-oriented computing
to develop more task-oriented applications for smart spaces. Meanwhile, smart spaces
(e.g., university campuses, houses, and public places) will inevitably become common-
place. This gives us great opportunities to develop and experiment our task-oriented ap-
plications.

Acknowledgment

The research was carried out whilst the first author was supported by La Trobe University
Tuition Fee Remission & Postgraduate Research Scholarships.

References

[1] M. Weiser. The computer for the 21st century.Scientific American, 3(265):94–104, 1991.
[2] Z. Wang and D. Garlan. Task-driven computing. Technicalreport, School of Computer Science,

Carnegie Mellon University, 2000.
[3] R. Masuokaet al. Task computing–the semantic web meets pervasive computing. In ISWC 2003, 2003.
[4] Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ranganathan, Roy H. Campbell, and Klara

Nahrstedt. A middleware infrastructure for active spaces.IEEE Pervasive Computing, 1(4):74–83, 2002.
[5] D. Garlan, D.P. Siewiorek, A. Smailagic, and P. Steenkiste. Project Aura: toward distraction-free perva-

sive computing.Pervasive Computing, IEEE, 1(2):22–31, Apr-Jun 2002.
[6] S.W. Loke. Building taskable spaces over ubiquitous services. IEEE Pervasive Computing, 8(4):72–78,

2009.
[7] Gottfried Zimmermann and Benjamin Wassermann. Why we need a user interface resource server for

intelligent environments. InWorkshops Proceedings of the 5th International Conferenceon Intelligent
Environments, 2009.

[8] C. Rich. Building task-based user interfaces with ANSI/CEA-2018.Computer, 42(8):20–27, 2009.
[9] Consumer Electronics Assoc. Task model description (CETask 1.0), ANSI/CEA-2018, Mar. 2008.

[10] F. Paternò, C. Mancini, and S. Meniconi. Concurtasktrees: A diagrammatic notation for specifying task
models. InINTERACT ’97, pages 362–369, London, UK, 1997. Chapman & Hall, Ltd.

[11] G. Mori, F. Paternò, and C. Santoro. Design and development of multidevice user interfaces through
multiple logical descriptions.IEEE Trans. Softw. Eng., 30(8):507–520, 2004.

[12] C.C. Vo, T. Torabi, and S.W. Loke. Towards context-aware task recommendation. InICPCA-09, Taiwan,
2009.

[13] A Ranganathan.A Task Execution Framework for Autonomic Ubiquitous Computing. PhD thesis,
University of Illinois at Urbana-Champaign, 2005.

[14] K. Kalapriya, S. K. Nandy, Deepti Srinivasan, R. Uma Maheshwari, and V. Satish. A framework for
resource discovery in pervasive computing for mobile awaretask execution. InCF ’04: Proceedings of
the 1st conference on Computing frontiers, pages 70–77, New York, NY, USA, 2004. ACM.

[15] A. K. Dey, G. D. Abowd, and D. Salber. A conceptual framework and a toolkit for supporting the rapid
prototyping of context-aware applications.Human-Computer Interaction, 16(2):97–166, 2001.


