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Abstract

1 Introduction

Recommender systems have become an important approach to help users deal with
information overload and provide personalised suggestions and have been successfully
applied in both industry and academia. Recommender systems support users by iden-
tifying interesting products and services, when the number and diversity of choices
outstrips the user’s capability of making good decisions. One of the most promising
recommending technologies is collaborative filtering Hill et al. (1995); Shardanand and
Maes (1995). Essentially a nearest-neighbour method is applied to a user’s ratings,
and provides the user with recommendations based on how her likes and dislikes relate
to a large user community.

Little research has been conducted to help users learn and explore a complicated perva-
sive interactive system using a recommender system. Typical approaches to proactively
introducing functionality to a user include “Tip of the day”, and “Did you know” Owen
(1986), but these are often irrelevant to the user and are presented in a decontextualised
way Fischer (2001).

Personalised recommendation service aims to provide products, content, and services
tailored to individuals, satisfying their needs in a given context based on knowledge of
their preferences and behaviour Adomavicius and Tuzhilin (2005). The personalised
services are usually realised by the form of recommender systems. Recommender sys-
tems appeared as an independent research field in the mid-1990s Adomavicius and
Tuzhilin (2005). They help users deal with information overload by providing per-
sonalised recommendations related to products, content, and services, usually accom-
plished by the use of personal profile information and item attributes. In the past
decade, most works focused on modifying algorithms for greater effectiveness and cor-
rect recommendations Adomavicius et al. (2005). They used methods from disciplines
such as human-computer interaction, statistics, data mining, machine learning, and
information retrieval Adomavicius and Tuzhilin (2005). Recommender systems can be
classified into three types according to how recommendations are made Adomavicius
and Tuzhilin (2005):

Content-based Recommendation It recommends items to users that are similar to
those they preferred previously. The analysis of similarity is based on the items
attributes.

1



Collaborative Recommendation It recommends items to users according to the
item ratings of other people who have characteristics similar to their own. The
analysis of similarity is based on the users tastes and preferences.

Hybrid Recommendation It is a combination of content-based and collaborative
recommendations.

Traditionally, recommender systems usually compute the similarity using two-dimensional
user-item information. They failed to take into consideration contextual information
which might affect users’ decision making behaviour, such as time, location, compan-
ions, weather, and so on. Including human-in-context information as one system design
factor is necessary for producing more accurate recommendations.

Adomavicius and Tuzhilin proposed a multidimensional approach to incorporate con-
textual information into the design of recommender systems Adomavicius et al. (2005).
They also proposed a multidimensional rating estimation method based on the reduction-
based approach, and tested their methods on a movie recommendation application that
took time, place, and companion contextual information into consideration. Here, rec-
ommendations are generated using only the ratings made in the same context of the
target prediction. However, in fact, it is rarely the same context occurs in the future
but instead the similar context. The disadvantage of that method is the increase of
data sparsity.

Alternatively, Yap et al. (2007) exploit a different way of incorporating contextual
information and tries to improve prediction accuracy using a Content Based (CB)
approach. The authors model the context as additional descriptive features of the user
and build a Bayesian Network to make a prediction. They increase the accuracy even
with noisy and incomplete contextual information.

Hong and Eom (2009) conclude that the most intuitive method that can replace the
inputting key code step is “pointing” remote to the device that the user intends to
operate. They name this pointing based multi-device controlling method as Point and
Control (PAC). PAC uses IR LEDs and IR image sensor to determine the target device.
Each target device has unique IR LED information, and the universal remote control
is equipped with an IR LED image sensor to read the target device’s IR information.
When a user points the remote to the target device, the remote retrieves the image
of IR LED data, decides what device to control, and finally transmits the proper key
code. Since key code inputting has changed to the pointing behaviour, a user can
control several devices with ease, feeling much more comfortable.

2 Task Prediction and Recommendation

What is task prediction? What are the main methods for predicting tasks?

Task prediction can be called goal prediction or user’s desires prediction.

2.1 Using History of User’s Actions

Naeem and Bigham (2007) A Comparison of Two Hidden Markov Approaches to Task
Identification in the Home Environment
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2.2 Using Commonsense Reasoning

Lieberman and Espinosa (2007) described the use of commonsense knowledge base to
predict tasks automatically.

2.3 Using Case-Based Reasoning

Ni et al. (2009)...

2.4 Using Sensor Data Bouarfa et al. (2010)

It presents a Markov-based approach for inferring high-level tasks from a set of low-level
sensor data.

3 Media Recommendation

3.1 xPod Dornbush et al. (2005)

xPod keeps track of the music a user is listening along with their mood and activities,
and uses machine-learning algorithms for recommending music based on the user’s
current activity.

3.2 CoMeR Yu et al. (2006)

The CoMeR system uses a hybrid approach comprising a Bayesian classifier and a rule
based method to recommend media on mobile phones. The Naive Bayes classifier is to
determine an item’s relevance to the situation context and the rule based scheme is to
check the presentation suitability of a media item against device-capability context.

3.3 SCAMREF Zhang and Yu (2007)

Context is classified into three categories: Preference Context, the context about
user’s taste or interests for media content, e.g. user requirements, user preference;
Situation Context, the context about a user’s spatio-temporal and social situation,
e.g. location, time; and Capability Context, the context of physical running infras-
tructure, e.g. terminal capability, network condition.

They define user preference, terminal capability, location, time, etc., as context dimen-
sions, and define modality, format, frame rate, frame size, score (similar to rating), etc.,
as QoS (Quality of Service) dimensions, which constitute the recommendation output.

Let CD1, CD2, . . . , CDN−1 be context dimensions, QD1, QD2, . . . , QDM be output QoS
dimensions, the recommendation model is defined as:

R : MediaItem × CD1 × CD2 × . . .× CDN−1 → QD1 ×QD2 × . . .×QDM .

The recommendation process consists of four steps:
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1. They model both the media item and preference context as vectors. The cosine
value of the angle between the two vectors is adopted as similarity measure be-
tween media item and preference context. The larger the similarity is, the more
relevant between the media item and preference context.

2. They group the values of each situation context dimension into classes. For
example, a user’s home location can be divided into three classes: Living room,
Bed room, and Dining room; social activities into four classes: At party, At date,
Accompanying with parents, and Alone. They evaluate the probability of a media
item belonging to a class of a context dimension or a combined situation context,
e.g. how much probability of the movie Gone With the Wind is viewed by the user
in Bed room, P(Bed room|Gone With the Wind). Suppose C1, C2, . . . , Cj, . . . , Ck

are k classes of situation context considered, the probability of media item −→x
belonging to class Cj , that is, P (Cj|

−→x ), can be calculated through statistical
analysis of user viewing history. Given a class Cj, only the media items that
have a high degree of P (Cj|

−→x ) would be recommended.

3. The modality, format, frame rate, frame size, etc., of the recommended item must
satisfy the capability context. They use rule-base approach to infer appropriate
form from capability context.

4. The recommendation output consists of two parts: appropriate form and score.
The score is composed of the similarity between a media item and the preference
context and the probability of the media item belonging to the situation context
P (Cj|

−→x ). They use a weighted linear combination of these two sub-scores to
calculate the overall score as:

Score = Wp ∗ Similarity +Ws ∗ P (Cj|
−→x ),

where Wp and Ws are weighting factors reflecting the relative importance of
preference context and situation context.

Although the evaluation of this approach is rubbish but the method may be reasonable.

4 Context-Aware Information/Content Provision-

ing

4.1 Contextually Aware Information DeliveryMillard et al.

(2005)

The authors adopt a semantic model for context sensitive message delivery. They model
task, domain, location and devices using semantic language. The use of semantic based
language gives their system inferencing capability, which is useful to understand the
user’s task context in a logical manner.

4.2 Context-Aware Content Provisioning Yu et al. (2008)

The approach provides the right educational content in the right form to the right
student, based on a variety of contexts and QoS requirements. They use knowledge-
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based semantic recommendation to determine which content the user really wants and
needs to learn. Then They apply fuzzy logic theory and dynamic QoS mapping to
determine the appropriate presentation according to the user’s QoS requirements and
device/network capability.

They designed three ontologies: a context ontology, a learning content ontology, and
a domain ontology. The context ontology depicts the content already mastered by
the student, along with his or her learning goals, available learning time, location,
learning style, and interests. It also describes the hardware/software characteristics and
network condition of the student’s client devices. The learning content ontology defines
educational content properties as well as the relationships between them. The relation
hasPrerequisite describes content dependency information–that is, content required for
study before learning the target content. The domain ontology is to integrate existing
consensus domain ontologies such as computer science, mathematics, and chemistry.
The domain ontologies are organised as a hierarchy to reflect the topic classification.

The content recommendation procedure consists of four steps:

Calculating Semantic Relevance Rank content according to how much it satisfies
the student’s context. The semantic relevance between the student’s goal and
content is the ranking criteria. Semantic relevance is calculated via the following
steps:

1. Map the student’s learning goal to the domain ontology.

2. Locate the content’s subject in the domain ontology.

3. Estimate the conceptual proximity between the mapped element and the
content’s subject node. The conceptual proximity S(e1, e2) is defined ac-
cording to the following rules (e1 and e2 are two elements in the hierarchical
domain ontology):
Rule 1 : The conceptual proximity is always a positive number.
Rule 2 : The conceptual proximity has the property of symmetry–that is,
S(e1, e2) = S(e2, e1).
Rule 3 : If e1 is the same as e2, then S(e1, e2) = Dep(e1)/M . M denotes the
total depth of the domain ontology hierarchy; Dep(e) is the depth of node
e in the hierarchy (the root node always has the least depth, say, 1).
Rule 4 : If e1 is the ancestor or descendant node of e2, then S(e1, e2) =
Dep(e)/M , where

e =

{

e1 if e1 is the ancestor node of e2,

e2 if e1 is the descendant node of e2.

Rule 5 : If e1 is different from e2 and there is no ancestor/descendant rela-
tionship between them, then S(e1, e2) = Dep(LCA(e1, e2))/M . LCA(x, y)
means the least common ancestor node for nodes x and y.

Figure 1 shows the computer science domain ontology.
M = 5;
LCA(MISD, SISD) = SingleDataStreamArchitecture;
Dep(LCA(MISD, SISD)) = 4; hence,
S(MISD, SISD) = Dep(LCA(MISD, SISD)) = 4/5 = 0.8.
It is intuitive that two subjects with more detailed contents and closer an-
cestors are more relevant to each other–for example, two subjects under
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Figure 1: Computer Science Domain Ontology
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“SingleDataStreamArchitecture” are known to be more relevant than two
subjects under “ProcessorOrArchitecture”.

Refined Recommendations Students can refine recommendation results according
to the specialty or difficulty of contents.

Specialty If the recommendation contains few items and the student wants more
generalised content, the system can provide all contents whose subject is one
level higher than the LCA in the hierarchy. Similarly, if the recommendation
includes many items and the student wants more specialised ones, the system
can return those contents whose subject is one level lower than the LCA in
the hierarchy.

Difficulty Students can refine the recommendation by choosing easier or more
difficult contents through the hasDifficulty property applying to each con-
tent. Each content segment is assigned a difficulty level when authored,
such as “very easy”, “easy”, “medium”, “difficult”, and “very difficult”.

Generating Learning Paths Learning paths are to guide the learning process and
suggest prerequisites that a student must complete before tackling the target
content. When the student selects an item from the recommendation list, the
system generates a learning path that connects prerequisite contents with the tar-
get content. It does this by recursively adding prerequisite content until the path
reaches the content that has no prerequisites, and then it prunes the path based
on the student’s prior knowledge. The hasPrerequisite relation of a particular
content provides the prerequisite course information.

Augmenting Recommendations Recommendation Augmentation is references to
examples, exercises, quizzes, and examinations related to the main course the
student is studying. It does this by aggregating the course contents through
“hasExample”, “hasExercise”, “hasQuiz”, and “hasExamination”.

5 Service/Application Recommendation

5.1 Domain-, place-, and generic task-based methods Fukazawa
et al. (2006); Naganuma and Kurakake (2005)

Tasks are categorised based on domain ontology, place ontology, and generic task on-
tology. Generic tasks are actions such as watch, view, drink, and so on. The users
needs to provide information about where they currently are (e.g. at home), what the
action (abstract task) they want to do (e.g. watch), what the object on which they will
action (e.g. movie), and where they want the task happen (e.g. theatre). For example,
“I am at home, I want to watch movie at a theatre”.

The approaches requires that domains and generic tasks are pre-defined. Moreover,
the selected tasks is assumed to be feasible. The users need to explicitly express their
intents. The approach does not resolve with the issue of task feasibility and the user’s
situations.
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5.2 Context-aware service discoveryMokhtar et al. (2005)

Matching context requirements of user tasks against context requirements of services.
Semantic-aware service discovery is based on the matching algorithm proposed by Paolucci
et al. (2002).

5.3 Task-Oriented Navigation of Services Sasajima et al. (2007)

In the task-oriented service navigator, the users seek for services by specifying a task
they are involved, for example, “Move to station X”, “Draw cash to buy a ticket”,
“Get on the next bus”. The services which are associated which a task are offered to
the users. Tasks are organised in a task ontology.

5.4 Gain-based Selection of Media Services Hossain et al. (2008)

Gain refers to the extent a media service is satisfying to a user in a particular context.
The gain is computed by adopting user’s context, profile, interaction history, and the
reputation of a service. The computed gain is used in conjunction with the cost of using
a service (e.g., subscription and energy consumption cost) to derive the service selection
mechanism. A combination of greedy and dynamic programming based solution is
adopted to obtain a set of services that would maximise the user’s overall gain in the
ambient environment by minimising the cost constraint.

The objective is to dynamically compute the gain from the media services in different
contexts and to obtain a subset of services such that the overall gain of a user is
maximised subject to the total cost constraint specified by the user.

User’s context A particular context can be defined in terms of the user’s location
(where), the time of presence (when), the current activity of the user (what),
the companion of the user (with whom) and the mood of the user (psychological
status).

User’s profile The user’s profile stores some static user-specific information (e.g., sex,
age), as well as their preferences for different media-related attributes (e.g. movie
genre, actor, actress, preferred news types, sources, singer, and subject prefer-
ence). The user’s media-related preference attributes is a set of 〈media type,
attribute, score〉 tuple, which is called AMP. The media type in AMP refers to
the type of media, for example, movie, music, and news feed. The attribute refers
to the metadata of the particular media type. The score refers how much a user
likes the media service corresponding to the attribute’s data item. For example,
if 〈movie, genre, score〉 refers to a movie attribute that has two data items as
〈movie, action, 70%〉 and 〈movie, comedy, 30%〉, this reflects the fact that the
user likes action movie more than that of comedy movie. These preferences can
be either explicitly provided by the user or implicitly collected by the system.
During the system initialisation phase, the user may choose to provide few en-
tries of these preference attributes while the system can later use their interaction
history to automatically update the initial scores provided by the user.
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Figure 2: The different context parameters

Interaction history It is used to update the scores of the data items for different
attributes in the AMP. Additionally, it is used to obtain different patterns of ser-
vice usage. For example, frequent service sets can be obtained from the historical
data Agrawal et al. (1993). The frequent service sets may provide the recur-
rent patterns of service usage information where two or more services co-occur
together frequently.

Media reputation It often refers to how good or bad a service is in terms of content,
delivery and other factors.

But finally, this paper is rubbish.

5.5 Location-Aware Service Selection Mechanism Loke et al.
(2005)

In this approach, the geographical area of a target environment is divided among several
service domains, where a set of services can be bounded with a service domain, such
as specific library services while within a library. Service domains can be overlapping.
The service selection mechanism is based on considering similarity, precedence, and
restrictions among the services and on defining some aggregation rules.

5.6 MoBe Coppola et al. (2005)

MoBe allows the most relevant applications are selected by matching context and ap-
plication descriptors. The applications, called MoBeLets, reside on the MoBe MoBeLet
Server. Each MoBeLet is described by a MoBeLet descriptor that holds information
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Figure 3: A partial context ontology

related to the application (e.g., the type of task carried out, information about the
minimal CPU/memory requirements, the kind of needed peripherals/communication
media).

5.7 Spontaneous Service Provision (Qin et al., 2008)

The authors are based on the similarity degrees between the current user profiles and
situation contexts with services’ contexts to rank services. For computing similarity,
they use Pearson’s correlation coefficient.

Context Modelling The authors build an ontology-based context model using Re-
source Description Framework and Web Ontology Language. In the model, the
context ontology is divided into two sets: core context ontology for general con-
ceptual entities in smart environment and extended context ontology for domain-
specific environment. The core context ontology investigate seven basic concepts
of User, Location, Time, Activity, Service, Environment, and Platform. Figure 3
shows a partial context ontology.

They define context (including user profile, situation context, and service) as a
n-dimension vector: C = (c1, c2, . . . , cn), where ci, (i ∈ 1..n) is quantified as a
context attribute (e.g., Activity, Location) ranging from -1 to 1. The similarity
of context C1 and C2 is defined as,

Similarity(C1, C2) =
C1 · C2

||C1|| × ||C2||
=

∑n

i=1 αiβi
√

∑n

i=1 α
2
∑n

i=1 β
2
,

where C1 = (αi), C2 = (βi), (i ∈ 1..n).

Service Description The service description includes a important set of Dependency
attributes. Each Dependency has two properties Feature and Value. The former
is to describe a context attribute, and the latter one is to measure the semantics
relevance degree of that context attribute to the service.

This work has not provided an evaluation the system usability.
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Table 1: Fuzzy-variable-based rules

5.8 CASUP Hong et al. (2009)

CASUP can provide users with personalised services using context history. Each in-
stance in context history database consists of user’ profile, high-level context and the
service selected by the user in the given context (e.g., Smith, Male, 25, Dinner Con-
text, Family restaurant Service). Context history is used to extract user preferences
using classification such as decision tree algorithm. Association rules representing the
relationship among the services or service sequences are extracted for recommending
the next service. They apply the Apriori algorithm (Agrawal and Srikant, 1994) to
locate association rules.

5.9 Personalised Service Discovery (Park et al., 2009)

This aims to provide mobile users only services that fit their preferences and are appro-
priate to their context. Their framework was based on Virtual Personal Space (VPS)–a
virtual administrative domain of services managed for each user.

The framework operates as follows. Services automatically send their advertisements
to an appropriate directory (how to discover an appropriate directory?). The adver-
tisements carry services’ contextual attributes such as name, category, physical posi-
tion, popularity, quality, service load, and required services. Directories can propagate
queries to adjacent directories if they don’t have appropriate services for the queries.

When a user moves into a new place, a service crawler automatically finds available
directories and retrieves service advertisements. Then the services that suit the user’s
context and preference are added into the VPS. The services that do not suit the user’s
context and preference are dropped from the VPS. When a user inputs a service query,
the system first searches the VPS. If it fails to find any appropriate services, it sends
the query to a local service directory.

To find personalised services, they employed the adaptive-network-based fuzzy infer-
ence system (Jang, 1993). Each service is represented by a service vector that includes
location, distance, necessity, popularity, quality, service load, and user rate. These
parameters are directly obtained from the service advertisement or calculated using
service information and user context. Necessity is the number of services in the VPS
that require the service. Use rate represents how often the user employs this class of
services.
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The service vector is used to calculate a value denoting the contextual distance, which
describes the service’s contextual proximity to the user. The system uses a set of fuzzy
rules, as Table 1 shows, and makes a decision by applying these rules on a service
vector.

To accommodate the differences of users’ preferences, the system uses feedbacks to
reflect user preferences. When the user employs a suggested service, the feedback is
immediate; if the service is already included in the VPS, the feedback is positive; if the
service isn’t included in the VPS, the feedback is negative; if the service is not used, the
feedback is negative. The learning affects each fuzzy variable’s membership function.
The system can learn the fuzzy meanings as it repeatedly performs personalisation
and receives feedbacks. Thus, the system starts with a set of general rules defined by
system developers, but it gradually reflects the user’s personal preferences.

To evaluate, they compared their system to other management models such as the
location model, the quality model, the least recently used model, the rule-based model
(which manages services that satisfy the rules). They compared their hit ratios. In
the their model, 70% of the discovery queries found an appropriate service, but other
models had only 30% to 50% hit ratios.

5.10 Situation-Aware Applications Recommendation on Mo-

bile DevicesCheng et al. (2008)

Cheng et al. (2008) use unsupervised learning (Minimum-Sum Squared Residue Co-
clustering (Cho et al., 2004)) to extract patterns from user usage history. A pattern
contains a situation and applications frequently performed in the situation. The system
periodically senses the user’s current situation, finds similar situations it has learned
from the history, ranks the applications typically performed in the similar situations,
and recommends applications by their ranks. Situation similarities are identified by
computing the Euclidean distances between the current situation and the situation
part of every co-cluster centroid. The application part of the centroids of the identified
similar situations are then ranked for recommendation.

This approach using the unsupervised learning technique, specifically co-clustering, to
derive latent situation-based patterns from usage logs of user interactions with the
device and environments and use the patterns for task and communication mode rec-
ommendations.

Some advantages

• No need for predefined situations;

• No need for user-defined profiles;

• Do not require users to proactively train the system;

• Able to adapt to user habit changes;

• Accounts for many context variables.
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Definition of “situation” Situation is a set of relevant context values that are
frequently associated with a pattern of user usages of a mobile device Cheng et al.
(2008).

Patterns of usage Patterns of usage are patterns from user usage history. The
history contains interactions between user and his/her mobile device along with the
context in which the interactions occurred. A pattern contains a latent situation and
tasks frequently performed in the situation.

The operation of the system

1. Periodically recognises the user’s current situation;

2. Finds similar situations it has learned from the history;

3. Ranks the tasks typically performed in the similar situations;

4. Recommends matching tasks by their ranks when the user asks for recommenda-
tions.

Some limitations

• Requires the user usage history data. Hence, for the first time of use, the system
may behave inappropriately because it has not enough history data for recognising
situations.

• Memory restriction may limit the usability of the system which requires a large
of history data.

• Do not verify the feasibility of the tasks.

6 Task Recommendation

6.1 Why do we need task recommendation systems?

• Help users to find services which they may not know in advances;

• Help users to carry out their tasks effectively, automatically, or semi-automatically
thanks to support from the computation-embedded surroundings;

• Suggest users tasks they are intent to do and help them to do the selected tasks.

6.2 Context-dependent task discovery Ni et al. (2006)

The authors introduces a concept of active task which is exactly determined by the
current context. A task is described by a 5-tuple

〈Task−ID, Task−Name, Condition, Priority, Task−Contract〉
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In order to discover an active task in a particular context, an active task discovery
mechanism is proposed. The idea is to match the Conditions of individual tasks T
with the current context values using Condition’s similarity:

dis
(

T (c), T ′(c)
)

=
n

∑

j=1

wj ∗ dis
(

v(cj), v
′(cj)

)

where cj , j =
−−→
1..n is a context attribute of the Condition and v(cj) is its expected value

while v′(cj) is its current value. wj is the attribute weight of cj where
∑n

j=1wj = 1.
The attribute weights are explicitly specified in task descriptions. And

dis
(

v(cj), v
′(cj)

)

=
|v(cj)− v′(cj)|

dom(cj)

where dom(cj) means the maximal difference of two values v(cj) and v′(cj).

The range of dis
(

T (c), T ′(c)
)

is [0, 1], a value of zero means perfect match and 1

meaning complete mismatch.

Some limitations

• Fixedly assigning task priority may be unappropriate in PCEs because the prior-
ity of tasks is often dynamic time by time and user by user depending on user’s
intention. Moreover, user’s intention may change over time depending on their
situation.

• The work provides a method for negotiation between condition of individual task
and context information. But they do not mention about discovery of concurrent
tasks. In fact, there may be multiple tasks needed to be concurrently performed
in a context in which they may sharing some resources.

• In reality, when the Condition’s similarity is often not a zero value, how the
system should behave to help the user instead of saying the system cannot do
the tasks. Moreover, in the case that the Condition’s similarity is ideally a zero
value (e.g. perfectly matching), but the task does not meet the user’s intention,
how the system trade-off between the relevance and the possibility of tasks?

6.3 Homebird Rantapuska and Lähteenmäki (2008)

Homebird can discover features of other devices automatically and suggests to the user
that certain tasks can be performed together with those devices. The set of available
tasks can be triggered to change by arbitrary events–for example, a newly discovered
network device. The logic of tasks is encapsulated in modules called plug-ins that can be
written separately. Homebird automatically loads plug-ins found in the environment.
When a task is selected, the control is handed back to the respective plug-in that can
then show its own UI customised for that task. All the plug-ins use the UPnP protocol
for communicating with other networked devices. the user study shows that users
wanted to be able to customise which tasks appear.
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6.4 Situation-Based Task Recommendation Luther et al. (2008);

Weissenberg et al. (2006)

The system reasons about a user’s current situation based on a predefined situation
ontology. Tasks which are associated with the inferred situation (found in a pre-
specified task ontology) are retrieved. Then, the corresponding services that may be
helpful for the retrieved task are recommended.

This work introduces a situation-sensitive task navigation system which expose only
those tasks that are relevant to user’s inferred situation. To do so, situational rea-
soning, which applies classification-based inference to qualitative context elements, is
integrated in to the system. High-level qualitative context elements are formulated in
the Web Ontology Language (OWL).

The system operates as follows. The current situation is inferred from the current
context information and the situation ontology (see an example in Figure 4). A list of
abstract tasks inferred from this situation using ontology-based task categorisation is
shown to the user. Now, the user can select their desired task, then a corresponding
sub-task list is displayed. Repeatedly, in a final step, associated services can be invoked
to carry out the selected task.

Private

Private place ⊔

(Public place ⊓

Leisure time)

Private meeting

Private ⊓Meeting ⊓

∃ company (Relative ⊔

Friend)

Family meeting

Private meeting ⊓

∀ company Relative

Situation Meeting

company > 1

Business meeting

Business ⊓Meeting ⊓

∃ company (Colleague ⊔

Business partner)

Important meeting

Business meeting ⊓

∃ company Superviser

Business

Public place ⊔

(Business place ⊓

Office hour)

Figure 4: Situation ontology fragment

The task ontology is hence required. A part of the task ontology is shown in Figure 5.
Tasks are categorised according to the high-level situation concepts such as ‘Busi-
ness meeting ’, defined within the situation ontology. The enabling context conditions
are encoded as corresponding OWL-S service profiles.

Some limitations

• Requires that the situation ontology and the situation ontology-based task on-
tology are pre-defined. However, what defines each situation and what services
are preferred in the inferred situation not only vary from user to user but also
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Go to watch movie

Decide movie title

Check movie story URI

Check movie evaluation URI

Check academy awards URI

Check movie ranking URI

Decide movie theatre

Look for nearby theatre URI

Check movie schedule URI

Move to movie theatre

Move by train

... URI

Check fares URI

Move by bus URI

Wait movie show

Have a meal ... URI

Go to book store URI

Enjoy after seeing movie

Join fan club URI

Look for CD/DVD store URI

Figure 5: Task ontology fragment

change over time. Therefore, this assumptions are impractical for ordinary con-
sumers Cheng et al. (2008).

• Do not verify the feasibility of the tasks. It may assume that all required services
and resources are somehow available for the tasks to be completed. However,
in an ever-changed and dynamic pervasive environments, this assumption is not
suitable.

7 Activity Recommendation

Chen (2005) presents a context-aware collaborative filtering system which could rec-
ommend activities customised for a user for the given context (e.g., weather, location,
and travelling companion(s), based on what other people like him/her have done in a
similar context. To incorporate context into the recommendation process, the approach
weights the current context of the active user against the context of each rating with
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respect to their relevance in order to locate ratings given in a similar context. One
major problem of this approach is the availability of ratings in comparable contexts.
The sparseness of ratings is an issue in collaborative filtering in general and further
aggravated when integrating context.

7.1 Personalised Daily-Life Activity Recommendation Wang
et al. (2008)

By using a flexible concept hierarchy and a dynamic clustering method, the authors
provide a recommendation service highly related to the users’ context, based on the
multidimensional recommendation model. Users can request for activity recommen-
dations by providing their personal profile data and contextual information through
access devices. Name, age, gender, single/married, location, and some registered infor-
mation are used as users’ original profile data. Users are dynamically clustered based
on contextual information, before making activity recommendations to users. At the
same time, users can rate the recommendations and help to modify the accuracy of
recommendations.

The approach uses the multidimensional model (MD model) proposed by Adomavicius
and Tuzhilin Adomavicius et al. (2005) to store the information related to user, activ-
ity, and context factors, where each factor can be represented as a concept hierarchy.
The MD model extends the concept of data warehousing and OLAP application in
databases. This approach uses time, location, weather, and companions as the contex-
tual information dimensions, and the recommendation space is defined as:

S = User ×Activity × Time × Location ×Weather × Companion

In the MD model, a dimension Di is the Cartesian product of attributes and can be
expressed as Di ⊆ Ai1 × Ai2 × . . .× Aij . Each attribute Aij defines a set of attribute
values of one particular dimension. For example, the User dimension is defined as:
User ⊆ Name × Age × Gender × IsMarried . Similarly, the Location dimension is
defined as: Location ⊆ Country×City×Place. For each dimension, the attributes can
be represented as a concept hierarchy which consists of several levels of concepts. The
top-down view of a concept hierarchy is organised from generalisation to specialisation;
i.e., the higher the layer, the more generalised the layer. Take Time for example, its
concept hierarchy can be expressed as Figure 6.

Given dimensions: D1, D2, . . . , Dn, ratings are the Ratings domain which represents
the set of all possible rating values under the recommendation space D1×D2×. . .×Dn.
The rating function R is defined as: R : D1 ×D2 × . . .×Dn → Ratings . Based on the
recommendation space User × Activity × Time × Location ×Weather × Companion,
the rating prediction function R(u, a, t, l, w, c) specifies how much user u likes activity
a, accompanied by c at location l and time t under weather w, where u ∈ User , a ∈
Activity , t ∈ Time, l ∈ Location, w ∈ Weather , and c ∈ Companion. The ratings are
stored in a multidimensional cube and the recommendation problem is to select the
maximum or top-N ratings of R(u, a, t, l, w, c).

The computation of recommendations grows exponentially with the number of dimen-
sions. The reduction-based approach can reduce the multidimensional recommendation
space to the traditional two-dimensional recommendation space by fixing the values of
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Figure 6: Time Concept Hierarchy

context dimensions, and improve the scalability problem Adomavicius et al. (2005).
Assume that RD

User×Activity×T ime : U × A× T → Ratings is a three-dimensional rating
estimation function supporting Time and D contains the user-specified rating records
(user, activity, time, rating). It can be expressed as a two-dimensional rating estima-
tion function:

∀(u, a, t) ∈ U ×A× T,RD
User×Activity×T ime(u, a, t) = R

D[T ime=t](User,Activity,Rating)
User×Activity (u, a),

where D[Time = t](User ,Activity ,Rating) is a set of rating records by selecting Time
dimension which has value t and keeping the values of User and Activity dimensions.

Another problem is rating estimation that D[Time = t](User ,Activity ,Rating) may
not contain enough ratings for recommendation computation. This approach uses the
rating aggregations of time segment St that expresses the superset of the time t when
insufficient ratings are found in a given time value t. The rating ofR(u, a, t) is expressed
as:

RD
User×Activity×T ime(u, a, t) = R

D[T ime∈St](User,Activity,AGGR(Rating))
User×Activity (u, a),

where AGGR(rating) is the rating aggregations of time segment St. For example, the
rating prediction function for weekend afternoon might be presented as the formula:

RD
User×Activity×T ime(u, a, t) = R

D[T ime∈weekend](User,Activity,AGGR(Rating))
User×Activity (u, a).

For evaluating the quality of the recommender system, they use predictive accuracy
metrics to examine the prediction accuracy of recommendations. Predictive accuracy
metrics are usually used to evaluate the system by comparing the recommender sys-
tem’s predicted ratings against the actual user ratings. Generally, Mean Absolute Error
(MAE) is a frequently used measure for calculating the average absolute difference be-
tween a predicted rating and the actual rating. In addition, Normalised Mean Absolute
Error (NMAE) represents the normalisation of MAE which can balance the range of
rating values, and can be used to compare the prediction results from different data
sets. According to related research, the predictive accuracy of a recommender system
will be acceptable when the value of NMAE is below 18%. The approach uses the
AllButOne method Cho et al. (2006) as the data set selection strategy.
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8 Recommending Mobile Applications

The recommender system Woerndl et al. (2007) recommends mobile applications to
users derived from what other users have installed and rated positively in a similar
context (location, currently used type of device, etc.). When making a recommenda-
tion, the system retrieves the current user position, determines POIs in the vicinity
and generates a recommendation based on this context information. The approach uses
collaborative filtering to rank found items according to user ratings of applications in
a second step. User ratings are collected implicitly by automatically recording when a
user installs an application. The ratings are stored together with context information
(time, location, used device etc.) to capture the situation when a rating was made.

9 Others

CityVoyager Takeuchi and Sugimoto (2009) can find and recommend shops that
match each user’s preferences. The procedure for finding shops that match user
preferences is based on a place learning algorithm that can detect users’ fre-
quented shops. They use the unavailability in 5 minutes of GPS signals as evi-
dence that the user has gone indoors.

Gas Stations Recommendation (Woerndl et al., 2009) uses a hybrid, multidi-
mensional recommender system which takes driver preferences (user-specified),
ratings of other users, the current location, and fuel level of a car into account.
The approach first filters items based on preferences and context, and takes rat-
ings of other users and additional information into account.

10 Best Recommendation for the whole group

10.1 Let’s Browse Lieberman et al. (1999)

Let’s Browse recommends web pages to a group of users who are browsing the web.

10.2 MusicFX McCarthy and Anagnost (2000)

MusicFX used in a fitness center to adjust the selection of background music to best
suit the preferences of people working out at any given time. A special feature found
in this system is that a group is composed by people who happen to be in the place at
the same time. MusicFX uses explicit preferences of all participants to make a music
selection that will be listen by everyone who is present. In this case, the group is
composed by strangers rather than family members or friends.

10.3 Intrigue Ardissono et al. (2003)

Intrigue recommends attractions and itineraries by taking into account preferences
of heterogeneous groups of tourists (such as families with children) and explains the
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recommendations by addressing the requirements of the group members. Attractions
are separately ranked by first partitioning a user group into a number of homogeneous
subgroups with the same characteristics. Then each subgroup may fit one or more
stereotypes and the subgroups are combined to obtain the overall preference, in terms
of which attractions to visit for the whole group.

10.4 Travel Group Recommendation Lorenzi et al. (2008)

The recommender system performs the travel group recommendation task based on
the formalism of distributed constraint optimisation problem.

11 Conclusion
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