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Abstract

A smart environment includes a rich set of computers, digital appliances, sen-

sors, actuators, and Web services. When a smart environment is added with more

devices and features, its complexity of use will increase. Task-driven computing,

which allows users to interact with smart environments in terms of tasks instead of

separate applications on different devices, aims to reduce this complexity. Existing

task-driven computing systems often develop their own language or adopt an existing

language for representing user tasks which are supported by the systems.

A number of languages for representing user tasks have been developed in differ-

ent application domains. In this paper, we present our review on the applicability

and extensibility of the major languages for representing user tasks in smart envi-

ronments and in other domains. Our review is based on a set of desirable language

properties. We propose these properties based on our analysis of existing task-driven

computing systems and of our envisaged generic task-oriented computing system for

future smart environments. We propose a categorisation of the languages and then

describe representative languages from each family. A comparison among the lan-

guages is also given. The survey shows the large extent of common features and key

differences among the languages in different domains. It also shows that while the

existing languages have been developed for different domains and meet a majority of

the desirable properties, there is no language that completely satisfies the proposed

set of the desirable properties for representing tasks in smart environments. In this

paper, we propose common operators, constructs, and task attributes that a new task

representation language for smart environments would provide.

1 Introduction

Mark Weiser [1] described a smart environment (or a smart space [2]) as “a physical world
that is richly and invisibly interwoven with sensors, actuators, displays, and computa-
tional elements, embedded seamlessly in everyday objects of our lives, and connected
through a continuous network”. On one hand, adding smart technologies into a smart
environment will obviously enable more new tasks (i.e., more tasks become feasible due
to adding smart technologies), provide more ways to achieve the same task, and simplify
the accomplishment of existing tasks [3]. On the other hand, when a smart environment
is embedded with hundreds of services and digital devices, users often spend more time
and effort in understanding and configuring the entire environment including devices [4].
Many people find new technologies (e.g., new digital devices with their added features
plus the features enabled by different combinations of these devices) too complicated to
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operate [5]. It is even much more complicated for users to combine available devices and
services to achieve their high-level goals [6].

Task-driven computing [7, 8] aims to reduce this complexity as it shifts users’ focus
to what they want to do (i.e., focusing on the tasks at hand) rather than on the means
for accomplishing those tasks. Let’s consider the following example of how task-driven
computing can support users in achieving their goals within a smart environment.

Assume that a user is in a public library and wants to contact a friend to discuss about
a new book. To accomplish this task in the current practice (i.e., without the support of
task-driven computing), she/he will need to decide whether she/he should make a video
call, send an MMS message, send an email, or post a message on the friend’s Facebook
wall. This process of decision making requires her/him to process a large amount of
information about the current context (e.g., the feasibility of each method, the friend’s
status, the urgency, the privacy, and the data type of communication). Once she/he
has decided a method for communication (e.g., send an email), she/he needs to think of
devices (e.g., a PC) and applications (e.g., Outlook) to use. In this case, she/he needs to
know how to use Outlook for sending an email with attached images/videos. She/he also
needs to know how to configure Outlook with her/his email account.

To accomplish the same task above in a task-driven smart environment (we could call
it a taskable space [9]), she/he ‘tells’ the smart environment (perhaps via a personal mobile
device or a user interface nearby) something like “I want to contact my friend”. Next, the
smart environment will load a representation of the task (labelled “Contact someone”);
and based on the current context, it guides the user to accomplish the task. The input
for these steps could be provided by either a context information manager or the user.

We envisage ubiquitous future smart environments (e.g., home, library, shopping mall,
factory, and city centre) where the users should not handle directly functionalities pro-
vided by individual applications, services, and devices but rather their high-level tasks [9],
e.g., ‘watch a movie’, ‘borrow a book’, ‘contact someone’, and ‘present a seminar’. One
of the first steps towards this vision is a language for representing tasks in smart environ-
ments. We call such a language a task representation language (TRL). A TRL provides
a formal syntax and semantics for specifying how a task can be achieved. A pragmatic
task representation–a document written in a TRL–includes the activities involved in com-
pleting a task, including both activities carried out by humans and those performed by
machines.

Given the numerous ways of representing tasks in different domains, the obvious ques-
tion is whether such existing languages meet the needs for this relatively recent notion
of smart environments, and we aim to address this question in this paper. We compare
candidate languages for representing tasks in smart environments. We analyse and discuss
their similarities and differences based on a set of desirable language properties. Two main
aspects of the languages, including their design principles and expressive power, are anal-
ysed. The design principles involve application domains and languages’ characteristics.
The expressive power includes language constructs (e.g., tasks, goals, sub-tasks, events,
and data), temporal operators and inter-task operators for representing relationships be-
tween (sub-)tasks, and task attributes for representing descriptive aspects of tasks such as
task name, task goal, task type, and trigger conditions. Our selection of languages aims
to be representative of different kinds of languages and to be comprehensive - clearly, we
cannot be exhaustive.

The existing languages have been developed for representing tasks in different domains
(e.g., interactive systems design, multi-agent systems, robotics, network protocols, and
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business processes), and meet some of the desirable properties. However, there is no lan-
guage that completely satisfies our proposed set of the desirable properties (e.g., runtime
executability and context-awareness). That is, the tasks represented in these languages
are too coarse to support the context-aware runtime executions of the tasks. In this
paper, we propose common operators, constructs, and task attributes that a new task
representation language should provide, and elaborate how the languages we reviewed
incorporated some of these attributes. Our criteria for task representation languages for
smart environments are based on a general vision of task-oriented computing. Instead of
just one language, we envisage a family of languages for representing tasks for the ubiqui-
tous smart environments of the future, and this paper aims to outline what features such
languages might need. While our perspective is to find suitable representation of tasks
for smart environments, we also make importance observations about how the notion of
task has been conceived and represented across application domains.

The paper is organised as follows. In Section 2, we first present notions of tasks,
task-driven computing, task-driven computing systems. Then we present reasons why we
need a language for representing user tasks in smart environments. Next, in Section 3, we
presents our envisioned generic task-oriented computing system for smart environments.
According to this system, Section 4 proposes a set of desirable properties of a language
for representing tasks in smart environments. Section 5 presents a review of the existing
popular languages for representing tasks in general; we classify these languages based on
their application domains. A discussion and a comparison between these languages are
given in Section 6. In this section, we also summarise common language elements that a
new task representation language should provide, together with guidelines for selecting
such a language. Finally, Section 7 presents future work and conclusion.

2 Introduction to Task Computing

2.1 Tasks in Smart Environments

The notion of task is informally intuitive but can be hard to formally defined. There
have been many definitions for tasks in smart environments (e.g., [7, 9–12]). Generally,
our definition for tasks in smart environments as follows: “A task is a collection of other
relevant tasks (we call them sub-tasks). A task that cannot be decomposed further or
that is unnecessary to be decomposed further in the current smart environment is called
a primitive task or an action.” A task is related to some goals that may be different for
different users in different situations. For example, a task of contacting someone can be
a collection of sub-tasks including looking up a number, pressing the call button, holding
the conservation, and pressing the end call button. Some of these sub-tasks (e.g., look
up a number) can then be further decomposed. The task of contacting someone could be
related to different goals, e.g., to tell a story, to inform a situation, or to send a signal
(e.g.. I’ve arrived).

We draw a distinction between task and service for the purpose of our discussion. A
task is essentially different from a service. Services (e.g., Web services) are means to ac-
complish tasks. They are the performance of associated tasks [9]. A task is a user-oriented
and high-level term, which is associated with what a user wants to accomplish, while a
service is a system-oriented and low-level term, which describes what functionalities the
system provides [13].
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2.2 What is Task Computing?

Task-driven computing [7] (or also called task computing [14], task-oriented computing [9],
Task-Centric Computing, or plan-driven computing [15]) allows users to focus on the tasks
they want to accomplish rather than how to accomplish them. In other words, task
computing aims to transfer users’ focus from the computer to the task at hand, to help a
person “to forget that he/she is using a computer while actually interacting with one” [16].
Task computing is computation to fill the gap between tasks (what the user wants to be
done), and services (functionalities that are available to the user) [8, 9]. The fundamental
objective of task computing is to present to the user the tasks that are possible/applicable
in the user’s current context and to guide the user through the execution of those tasks.
Tasks may span over multiple applications and multiple computing platforms (not a single
device).

One of the approaches to task computing is to re-orient the user interface (called task-
based user interface for user interactions with the smart environment) around the tasks
for the user, rather than the functionalities of individual devices or applications within the
environment [17]. This notion has been made popular by the Apple Siri application1 and
also the Windows task-centric user interfaces2. In other words, there is a transition from
a function-oriented interaction with devices (i.e., menu-based dialogue structures with
a fixed interaction vocabulary) to a task-oriented interaction with lower larger intercon-
nected systems (i.e., conversational dialogue structures with an unrestricted interaction
vocabulary) [18].

2.3 What is a Task Representation?

A task representation (others may call it a task model, task description, task specification,
task formalism, task expression, situated flow [19], or pervasive workflow [20]) is a plan to
achieve the goal of the task. It is a document written in a task representation language,
which includes the steps involved in completing the task, the resources needed by each
step, the causal, and data flow relations between those steps [10, 12, 15]. A representation
of a task usually decomposes the task into sub-tasks. When we reach a sub-task which
cannot be further decomposed we have a basic (atomic or primitive) task. In some cases,
a basic task requires one single physical action or one service to be performed.

We should make a distinction between a task representation and a task instance.
A task representation defines a generic task (called task class) with types of required
data and services. A task instance is a parameterised representation of a generic task. It
corresponds to an actual or hypothetical occurrence of a task class [12]. ‘Contact someone’
is an example of a generic task. But ‘Bob makes a phone call to Alice’ is an instance of
this generic task.

2.4 The Need for a Standardised Task Representation Language

Selecting a suitable language for representing tasks in smart environments has been seen
as an important challenge when designing task-oriented systems [9]. Separating task rep-
resentations from the system implementation can provide the following benefits:

• From the perspective of application developers, this separation of concerns allows

1http://www.apple.com/iphone/features/siri.html
2http://www.winsupersite.com/article/product-review/how-it-works-inductive-user-interfaces
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for the independent modification (e.g., extension) of the systems and task repre-
sentations. If task representations are written in a standard language, they can be
reused with different systems in different smart environments or inter-environments.

• Task representations also provide a higher level of abstraction in communicating
the “intent” between systems and end users [15]. End users can present the system
with the task they want to achieve, instead of the individual devices or applications
that they will use. The system could then use the task representation to guide its
interaction with the user to accomplish the task. Moreover, by knowing what task
the user wants to do, the system could automatically reserve necessary resources and
configure devices the user may soon need as identified in the task representation.

• Given an explicit representation of a particular task, the system could guide users
through the steps of that task if they are unfamiliar with it. If the system detects a
failure of a service, it can use the representation of the task to suggest an alternate
course of action that would still achieve the intended goal.

• Task representations enable sharing, composing, extending, and executing abstract
task representations in different smart environments by useful abstractions provided
by the language (e.g., we can compose a representation of a task “borrow a book”
once but it can be used or extended for different libraries).

• With a formal language, it is possible to develop an analytical theory and tools for
automatic verification, validation, and conformance testing of task representations.

3 An Envisaged Generic Task-Oriented System for

Smart Environments

Before we present a set of desirable properties of a language for representing tasks in
smart environments, we clarify what the task-oriented system for smart environments
that we will be developing. This section presents a generic conceptual architecture for our
envisaged task-oriented system (TaskOS [21]), which is a common software base for future
smart environments ranging from kiosks, personal offices, meeting rooms, shopping malls,
to city centres. TaskOS operates at the level of tasks which are supposed to be commonly
supported within the smart environments, rather than individual resources (e.g., devices,
applications, and services) which are available in the environments. This architecture
generalises from our own earlier prototyping and other task-oriented systems [5, 11, 12,
14, 22–24].

The main feature of TaskOS is to select a task representation from its task library and
generate a parameterised task representation (i.e., task instance) which is likely to best
achieve the task in light of users’ preferences, context and the current resource availability.
Once the task instance is generated, it guides the user and monitors the execution of the
task instance. In particular, TaskOS provides two main features: context-aware task
recommendation and context-aware guidance of task execution.

3.1 Context-Aware Task Recommendation

What is context-aware task recommendation? TaskOS recommends possible, relevant
tasks for users based on their current context and the environment’s capabilities (e.g.,
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device and service availability in the environment) [25]. For example, Bob is attending a
conference. When he is approaching a smart conference room, TaskOS for this conference
room recommends him several tasks such as ‘register as a presenter’, ‘publish presenta-
tion slides’, ‘print a document’, ‘view conference agenda’, and ‘make a slide-show’. This
recommendation is generated based on his context such as location and role. When he
points his mobile device at an air-conditioner in the room, there are tasks recommended
for him such as ‘set temperature’ and ‘set fan’. When he is in the proximity of a coffee
machine, tasks such as ‘make coffee’ and ‘make tea’ are recommended for him. These two
examples of task recommendations are pointing-direction and proximity awareness

Why context-aware task recommendation? Users in smart environments are perhaps sur-
rounded by hundreds of services and devices including sensors, actuators, appliances, and
computers. This would result in an overload of information hindering the users from
getting to know what tasks are possible and relevant to their current context within a
smart environment. When smart technologies vanish into everyday objects, users may not
recognise extra features these objects can provide beyond their normal functions. Medi-
aCup [26] is an example of such an object. It is a cup augmented with sensing, processing
and communication capabilities to offer some advanced features while preserving its nor-
mal appearance, purpose, and use. Moreover, devices and services in a smart environment
are frequently added and removed (e.g., due to the movement of users with their mobile
devices or the upgrading of existing stationary devices and services). This does not allow a
user to make an assumption that a task which was possible yesterday is possible today, or
a task was impossible yesterday is impossible today. In other words, the tasks supported
by a smart environment can vary over time. As a result, the users may not be aware of
what tasks are currently supported by a smart environment, especially for an environment
which is unfamiliar to the users. This is why context-aware task recommendation can be
useful.

3.2 Guidance and Management of Task Execution

In current practice, to accomplish a task, a user may need to decompose the task into sub-
tasks recursively and map the sub-tasks with appropriate features supported by individual
services and/or devices within the environment [5]. This requires the users to learn how
to operate each device and how the functions of a device can be integrated with the
others. This learning task is time consuming, especially for the environments where the
users may come for a short time and leave, such as a conference room. TaskOS provides
proactive task guidance for the user to accomplish an intended task. The user may not
need to know which devices and services to use before s/he starts the task. TaskOS is
also able to deal with task interruption, task migration, multi-tasking, resource conflicts,
and adaptation to the variation in availability of resources in smart environments.

3.3 A Generic Conceptual Architecture of TaskOS

Figure 1 illustrates an architecture for TaskOS. In this architecture, Service & Device
Manager (SDM) manages devices and services of the smart environment. Context Infor-
mation Manager (CIM) manages context information and answers context queries to other
components of the system. Context-Aware Task Recommender (TaskRec) [25] suggests
to users possible and relevant tasks based on their context and environment capability.
Task-Based User Interface (TaskUI) is an interface for users to interact with TaskOS.
Task Execution Engine (TEE) loads, verifies, and executes task representations. During
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Figure 1: A component architecture for TaskOS.

executing a task, if TEE needs input from users or wants to present them with informa-
tion or instructions, it sends an interface request to TaskUI. How TaskUI presents this
request depends on the current interface modality being used; it may be visual, spoken,
tactile, or multimodal. If the users perform manual operations on devices, TaskUI will
simply present them necessary instructions.

Because task representations are fundamental inputs to TaskOS, a language is hence
required for formally representing tasks. In the next section, we propose a set of desirable
properties that such a language may provide in order to realise the features of TaskOS

aforementioned.

4 Properties of a Task Representation Language for

Smart Environments

Towards a task-oriented system for smart environments aforementioned, we propose prop-
erties of a desirable language for representing tasks in smart environments.

• Abstraction/Genericity : Task representations can be reusable in different smart
environments (i.e., the smart environments differ in devices, services, and underlying
technologies). For example, the same representation of a task of “showing photos on
a (large) display” can be reused either in a seminar room for showing photos from
a digital camera on a projector screen or in a home theatre showing photos from a
mobile phone on a TV display. In other words, task representations do not need to be
bound to any specific devices or services. They can be platform-independent, device-
independent, service-independent, and infrastructure-independent. Consequently,
creators of task representations do not need to be aware of specific devices and
services which will be involved in execution of these tasks. The abstraction of task
representations also enables a task execution engine to adapt to the availability of
devices and services at runtime.

• Hierarchical structure: With TaskOS, we would like to re-orient interactions be-
tween users and smart environments around tasks rather than individual devices
(including individual applications on each device as iOS or Android do) and ser-
vices. Organising a task and its subtasks in a hierarchical structure is a natural
solution for generating task-oriented interactions. A hierarchical structure also en-
ables development of mechanisms for navigating, activating, suspending, resuming
task steps, and generating instructions during task execution.
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• Support for semantics : To support for executing abstract task representations at
runtime, a task representation language should provide mechanisms for resolving
concepts, functions, services, resources, expressions, and devices which are specified
abstractly within a task representation. These mechanisms are to semantically map
abstract concepts into real objects provided by a smart environment. The semantic
richness of a language allows reasoning about tasks so that tasks can be instantiated
dynamically, giving the possibility to query and compare task descriptions. One way
to achieve this would be to develop an ontology that captures domain concepts and
relationships among them.

• Interpretability : Task representations must be interpretable/executable. A task
execution engine can go through a task representation, automatically interpreting
the representation, executing described actions (perhaps in collaboration with the
user), and actually carry out the task.

• Markup language: Markup languages such as XML-based languages are recently
preferred because of their ease of incremental updating, inheritance, and name-
space standardisation. They offer a means for structuring representations in a way
that tradeoffs between human-readability and machine-processibility.

• Support for context-aware task recommendation: Task representations should in-
clude descriptive information which is used for evaluating the feasibility and rele-
vancy of tasks based on the capabilities of a smart environment and user’s context.
For example, adding/removing appliances to/from a smart environment may change
the feasibility of tasks. The tasks then can be ranked and recommended for the user
according to their feasibility and relevance.

• Support for proactive task guidance: TASKOS does not only execute task repre-
sentations, it also needs to explain and reason about its decisions. Therefore, task
representations should include information which can be used at runtime to guide
the user through the accomplishment of tasks and to answer the user the following
questions [12]:

– What task to do next?

– How to do it?

– What are the inputs/outputs?

– Did the task succeed?

– Why did the task failed? How to fix the problem?

Task guidance also involves mixed initiative dialog, context-sensitive explanation,
progress indicator, and a special “undo” function. The system can assist the user
by suggesting options (e.g., default actions and parameters) and explaining their
implications.

• Support for task scheduling : Inter-dependencies among (sub)tasks are often required.
For example, a certain task A has to be performed before task B can be started.
Hence, a language should provide a set of temporal operators for scheduling task
performance. Examples of such operators are sequence and concurrency. The former
denotes constraints that tasks must be performed in a specific order whereas the
latter defines a possibility for tasks to be performed concurrently.
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<!-- Play Movie Task -->

<iplay:Task>

<taskVerb>PLAY</taskVerb>

<taskSubject>

<Subject rdf:ID="Movie">

<requires rdf:resource="#AudioRenderer"/>

<requires rdf:resource="#VideoRenderer"/>

</Subject>

</taskSubject>

</iplay:Task>

Figure 2: An InterPlay representation of a Play Movie task.

• Formal definition: Syntax and semantics of a language should have a complete
and formal definition. In particular, the formal definition–on which the semantics
of a language is based–should support the development of a theory for automatic
verification, validation, and conformance testing of task representations.

5 An Overview of Task Representation Languages

In this section, we review a number of languages that were developed with different
objectives in mind, but that have all been used to represent tasks. These languages may
be more or less formal, depending on their intended use and audience. There is no easy way
of categorising these languages along a single dimension, as they often cut across several
dimensions. According to their application domains, we categorise the languages into
groups: smart environments and task computing, interactive systems design, multi-agent
systems and robotics, and business processes and workflows. For each of the categories,
we review the languages in chronological order.

5.1 Smart Environments and Task Computing

5.1.1 InterPlay

InterPlay [23] is a system for home environments that allows users to issue multimedia
tasks in pseudo sentences without having to consider where a particular content is located
and how to achieve those tasks. The minimal pseudo sentence representation for a task
consists of a verb, a subject (content-type or, content), and target device(s). An example
of such pseudo sentence would be: ‘Play’ (verb), ‘The Matrix’ (subject), ‘Living Room
DTV’ (target device), which means “Play the DVD ‘The Matrix’ onto the DTV in the
Living Room”. A more elaborated pseudo sentence can include additional information,
such as device location and device settings such as “wide screen”. A user composes a
pseudo sentence by choosing the verb, the subject, and the target device from the three
predefined lists. For example, to play a movie on TV, the user can first select the TV,
next select the “Play” verb, and finally selects the “Movies” as the content type.

An InterPlay’s task representation consists of three types of information: sentence
description on what the user can do, what functionalities are needed, and the mapping
to how to the task is done. A sample representation for the ‘Play Movie’ task is shown in
Figure 2. InterPlay can only execute single-step tasks where all inputs are pre-determined
before task execution. It cannot support complex tasks composing of multiple subtasks
and temporal relationships between them (e.g., ordered and parallel). Also, it does not
have features for specifying pre-conditions and post-conditions for steps in a task decom-
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Operator Description

inOrder Tasks must occur in specified order.
anyOrder Tasks can occur in any order, but all must occur.
Optional Tasks may or may not occur.
oneOrMore One or more of tasks may occur.
zeroOrMore Zero or more of tasks may occur.
repeatExactly Tasks must occur a given number of times.
Choice Exactly one of the tasks may occur.

Table 1: Operators available in PETDL.

position.

5.1.2 ANSI/CEA-2018 Task Model Description (CE-TASK)

CE-TASK [27] is a standard language specifically designed for representing tasks relevant
to consumer electronics devices. CE-TASK represents tasks in terms of subtasks and
steps. Steps are can be grounded to actual device functions via JavaScript. Other ele-
ments in a CE-TASK task representation are input and output parameters, pre-conditions,
post-conditions, grounding scripts, user intent concepts, data flow between subtasks (data
bindings), applicability conditions, and initialisation scripts. An applicability condition
helps the system choose an appropriate decomposition when there is more than one. An
initialisation script is not associated with any tasks and is intended to be executed ex-
actly once when the containing task is loaded. User intent concepts can be specified
in an OWL ontology which describes semantic concepts and their relationships support
for reasoning about types, values, and functions declared within a task representation.
To control steps sequencing, CE-TASK provides temporal operators such as Ordered,
Requires, Min-Occurs, and Max-Occurs. However, CE-TASK doesn’t provide a parallel
operator and a mechanism for synchronisation between parallel tasks. Figure 3 shows a
CE-TASK representation for the task of borrowing a book from the library.

5.1.3 Context-Adaptive Task Model

The context-adaptive task model[28] (CATM) breaks down a task hierarchically into sub-
tasks. The root of the hierarchy represents the task and is associated with a context
situation which defines the context conditions whose fulfilment enables the execution of
the task. Subtasks inherit the context conditions of their parent task. Figure 4 shows the
sample representation of the WakingUp task. This model provides some temporal oper-
ators: Exclusive (i.e., only one subtask will be executed-disabling the others), Enabling,
Concurrency, and Enabling with condition.

5.1.4 Pattern-based Event and Task Description Language (PETDL)

PETDL [29] is an XML mark-up task representation language that is based on GOMS[30].
Its main purpose is to facilitate monitoring of task execution by matching events generated
from the system with events declared in a task representation. Although the language
is not designed for the purpose of representing tasks which can be executed to change
the state of the physical world, it does provide some significant temporal operators as
summarised in Table 1. Figure 5 shows how a calendaring task in Microsoft Outlook
could be specified in PETDL.
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[fontsize=,samepage=true]
<taskModel about="urn:computer.org:cetask:library"

xmlns="http://ce.org/cea-2018"

<task id="Borrow">

<input name="book" type="Book"/>

<subtasks id="borrowing">

<step name="go" task="GoToLibrary"/>

<step name="choose" task="ChooseBook"/>

<step name="check" task="CheckOut"/>

<binding slot="$choose.input"

value="$this.book"/>

<binding slot="$check.book"

value="$choose.output"/>

</subtasks>

</task>

<task id="GoToLibrary"/>

<task id="ChooseBook">

<input name="input" type="Book"/>

<output name="output" type="Book"/>

<subtasks id="initial">

<step name="lookup"

task="LookupInCatalog"/>

<step name="take" task="TakeFromShelf"/>

<binding slot="$lookup.book"

value="$this.input"/>

<binding slot="$take.book"

value="$this.input"/>

<binding slot="$take.location"

value="$lookup.location"/>

<binding slot="$this.output"

value="$this.input"/>

</subtasks>

<subtasks id="alternative">

<step name="search"

task="UseSearchEngine"/>

<step name="take" task="TakeFromShelf"/>

<applicable>

$this.success == false

</applicable>

<binding slot="$take.book"

value="$search.book"/>

<binding slot="$take.location"

value="$search.location"/>

<binding slot="$this.output"

[fontsize=,samepage=false]
value="$search.book"/>

</subtasks>

</task>

<task id="LookupInCatalog">

<input name="book" type="Book"/>

<output name="location" type="string"/>

<postcondition>

$this.location != undefined

</postcondition>

<script>

$this.location = lookup($this.book);

</script>

</task>

<task id="TakeFromShelf">

<input name="book" type="Book"/>

<input name="location" type="string"/>

</task>

<task id="UseSearchEngine">

<input name="query" type="string"/>

<output name="book" type="Book"/>

<output name="location" type="string"/>

<postcondition>

$this.book != undefined

</postcondition>

<script>

$this.book = search($this.query);

if ( $this.book != undefined )

$this.location = lookup($this.book);

</script>

</task>

<task id="CheckOut">

<input name="book" type="Book"/>

<script>

print("["+$this.book+" checked out!]");

</script>

</task>

<script init="true">

<!- initialisation script ->

</script>

</taskModel>

Figure 3: A CE-TASK representation of a Borrowing Book task.

<org.pros:TaskModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

...

<Task xsi:type="org.pros:SystemTask" name="turn on bathroom heating" ID="WakingUp_TOBAHC"

isChildOf="//@Task.0">

<ContextPrecondition ContextPreconditionString="BathroomTemperature<28">

<TemporalRelationship TemporalRelationshipType=">>[10 min]>>"

TemporalRelationshipTo="//@Task.2" TemporalRelationshipFrom="//@Task.1"/>

<service href="SmartHomeServices.serviceModel#//@Service.3"//@Method.switchOnHeating"/>

</Task>

<Task xsi:type="org.pros:SystemTask" name="turn on the radio" ID="WakingUp_TOR"

isChildOf="//@Task.0">

<TemporalRelationship TemporalRelationshipType="|||"

TemporalRelationshipTo="//@Task.3" TemporalRelationshipFrom="//@Task.2"/>

<service href="SmartHomeServices.serviceModel#//@Service.2"//@Method.turnOnRadio"/>

</Task>

...

</org.pros:TaskModel>

Figure 4: A CATM representation of a WakingUp task.

5.1.5 Other task-oriented systems

A task computing system called Task Computing Environment [8] (TCE) is designed for
smart environments to assist users in completing every tasks such as exchanging e-business
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<task name="Manage Schedule">

<task name="Schedule Appointment From Email">

<inOrder>

<event name="OpenMailItem"/>

<optional>

<event name="SwitchFocus"/>

</optional>

<anyOrder>

<task name="AddAppointment">

<inOrder>

<event name="OpenAppointmentItem"/>

<oneOrMore>

<event name="ChangeAppointmentItemProp"/>

</oneOrMore>

<event name="SaveAppointmentItem"/>

<event name="CloseAppointmentItem"/>

</inOrder>

</task>

<event name="CloseMailItem"/>

</anyOrder>

</inOrder>

</task>

</task>

Figure 5: A PETDL representation of a Calendaring task.

cards and showing presentation. The system represents tasks as web services using OWL-S
which is discussed later in this paper.

The Aura system [22] supports the migration of user tasks (i.e., task instances) between
smart environments. Because the main aim of Aura’s task representation language is to
capture the status of task instances for the purpose of task migration, Aura lacks features
for representing envisaged tasks (i.e., task classes). Importantly, we could not find a
completed publication on their language.

The task execution framework [11, 31] focuses on the adaptation of task executions in
smart environments to the changing contexts and resource availabilities. In this frame-
work, developers first develop primitive activities that perform actions like starting, mov-
ing or stopping components, changing the state of devices, services, or applications. They
then develop workflows that compose a number of primitive activities into a task. These
primitive activities and workflows are written in the C++ language.

5.2 Interactive Systems Design

Most of these languages provide graphical notations for graphically representing human-
machine interactions of interactive systems. The representations are mainly used for
communication among user interface designers, system implementers, and consumers.
Therefore, they are often not machine-interpretable and executable. However, it is useful
to review what aspects of tasks are represented in these languages.

5.2.1 UAN

The User Action Notation[32, 33] (UAN) is a textual notation which is used to represent
the dynamic behaviour of a graphical user interface relevant to completion of a task. UAN
was initially intended as a communication mechanism between user interface designers and
system implementers. In UAN, a task is represented in a quasi-hierarchical structure of
user’s actions performed on the user interface. Pre-conditions and post-conditions can also
be included in a task representation. UAN also provides operators to express temporal
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Attribute Description

Name Symbols represent for the task identification.
Prototype A prototype task from which the newly defined task inherits information.
Task-type There are five types of tasks. User tasks are tasks that the user performs.

Presentation tasks are to present information to the user. Application tasks

are tasks that the application performs without user involvement. Interaction
tasks represent low-level actions such as mouse clicks. Undetermined tasks a
way to delay committing to a specific task type.

Goal Specifying what a task does.
Effects The actions to be performed when the task is executed. They include method

invocation, parameter setting, task status, and data representation.
Parameters The input/output data that the task consumes/produces.
Precondition The conditions that must be true before the task can be executed.
Is-optional Whether the task is optional, and does not need to be performed.
Is-resumable Whether the task can be resumed after it is interrupted.
Is-interruptible Whether the task can be interrupted once it is started.
Is-loop Whether the task can be performed multiple times, provided that the precon-

ditions remain true.
Is-reentrant Whether separate instances of a task can be spawned at run-time. If the task

is not reentrant, only one instance of the task is used.
Sub-tasks Specify the sub-tasks of a task and in what order they need to be executed.

Table 2: Attributes of a task in MASTERMIND.

relationships among tasks (e.g., Sequence, Iteration, and Concurrency). Again, UAN task
representations are not machine-executable.

5.2.2 ADEPT

ADEPT[34] is a design environment for prototyping user interfaces based on task models.
ADEPT has adopted a modified version of Task Knowledge Structure[35] (TKS) as the
technique for representing tasks both textually and graphically. A TKS task represen-
tation describes a sequence of actions to be performed on the user interface to achieve
the goal. In ADEPT, there are four types of temporal operators: Sequence, Interleaved,
Parallel, and Choice.

5.2.3 MASTERMIND

MASTERMIND [36] is a model-based user interface development environment. It was
developed based on HUMANOID [37] and UIDE [38], two model-based systems. HU-
MANOID is based on presentation models whereas UIDE is based on dialogue models. In
MASTERMIND, a task representation contains a goal, pre-conditions, effects, informa-
tion requirements, and sub-tasks. It provides four types of temporal operators: Sequence,
Parallel, Unrestricted, and One-of. A task representation also contains a set of flags that
controls subtasks sequencing. Table 2 summarises available attributes for representing a
MASTERMIND task.

5.2.4 DIANE+

DIANE+[39] aims to facilitate automatic generation of user interfaces for interactive sys-
tems. It provides a graphical notation to represent tasks. The language has two main
concepts which are operation and precedence. An operation is either a process or a set
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Operator Description

Enabling One task enables the other when it terminates.
Disabling The first task is deactivated once the first action of the second task has been

performed.
Concurrent Tasks can be concurrently executed in any order.
Choice It is possible to choose from a set of sub-tasks and once the choice has been

made, the task chosen can be performed and other sub-tasks are not available
at leat until it has been terminated.

Suspend-Resume It is possible for the second task to interrupt the first task and when the second
task is terminated, the first task can be resumed.

Order independence Both sub-tasks have to be performed but when one is stared it has to be finished
before starting the second one.

Order dependence Both sub-tasks have to be performed in a specified sequence.
Concurrency with in-

formation exchange

Two sub-tasks can be executed concurrently but they have to synchronise in
order to exchange information.

Enabling with infor-

mation passing

One task provides some information to the other tasks other than enabling it.

Recursion Nesting the task itself in its decomposition.

Table 3: Temporal operators in ConcurTaskTrees.

of sub-operations. A precedence is a sequencing link between operations. DIANE+ de-
fines a rich set of attributes of an operation: Type (e.g., automatic, interactive, manual),
Mandatory (e.g., required, optional, constrained–the mandatory depends on a condition),
Trigger (e.g., user-triggering, system-triggering), Pre-condition, and Post-condition. DI-
ANE+ defines two types of entities: Task and Event. The temporal operators in DIANE+
are Ordered, Unordered, Loop, Required choice, Free choice, Parallel, Default operations,
and Optionality.

5.2.5 ConcurTaskTrees

ConcurTaskTrees [40] (CTT) is a diagrammatic notation for representing tasks. Its main
aim is to support user interface design for interactive systems. CTT represents a task as
a hierarchical structure. It defines three main types of entities in a task representation:
Task, User role, and Object. CTT specifically concentrates on user interface related tasks.
It lacks concepts of physical tools including devices and services which are often required
for execution of tasks in smart environments. CTT extends LOTOS[41] and provides
several temporal operators as described in Table 3. CTT also defines a number of elements
and attributes for a task as described in Table 4 and Table 5.

5.2.6 Teallach

Teallach [42] is a task-based user interface development environment for object database
systems. Teallach’s task representation language provides support for modelling both the
structure of tasks and the flow of information between them. A task Teallach is a goal-
oriented hierarchy, with its leaf nodes representing interaction tasks. Specifically, in the
Teallach language, all tasks have an option of being cancellable which specifies that a task
can be cancelled while being executed. The language also allows specifying the passing of
information into and out of tasks and the state associated with any none-primitive tasks.
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Element Description

Name Extended name associated with the task
Type Task type
Description Explanation of what the task stands for
Platform Set (possibly empty) of platforms supporting the task
Precondition A possible condition that has to be valid in order to perform the task
TemporalOperator The temporal relationship existing between the concerned task and its sibling

right (if the latter exists)
TimePerformance An estimation of the amount of time (min/max/average) needed for performing

the task
Parent Reference to the parent task (if the latter exists)
SiblingLeft Reference to the sibling left task (if the latter exists)
SiblingRight Reference to the sibling right task (if the latter exists)
Object Set (possibly empty) of objects manipulated by the task
Subtask It referres to a task which is represented, in turn, by a high level task
Access rights User access rights to perform the task

Table 4: Elements of a task in ConcurTaskTrees.

Attribute Description

Identifier The identifier associated with the task
Category The category associated with the task, which could be one of the following

values: abstraction–tasks that have subtasks belonging to different categories,
user, interaction, and application

Iteration A flag indicating whether or not the performance of the task could be repeated
until it is terminated by other tasks.

Finite Iteration Specify how many times the task will be performed.
Optional It indicates if the performance of the task is mandatory (false) or not (true)
PartOfCooperation It indicates whether or not the task is involved in a cooperative task
Frequency The estimated frequency associated with the task (low/medium/high)

Table 5: Attributes of a task in ConcurTaskTrees.

5.2.7 TaskMODL

TaskMODL [43] is a graphical language which supports design of user interfaces by us-
ing task models. The language represents a task in terms of sub-tasks, a set of re-
quired resources (e.g., actors–who perform the task, tools, and data), pre-conditions,
post-condition, output, and task cardinality (i.e., how many times the task must be re-
peated). The language consists of four operators for controlling the sequence of sub-tasks:
Unconstrained, Non-overlapping, Sequence, and Choice.

5.2.8 TOMBOLA

TOMBOLA [44] is another graphical language for modelling tasks in support for user
interface design. The language provides several temporal operator: Sequential (i.e., the
sub-tasks must be executed in a fixed sequence), Serial (i.e., the sub-tasks can be executed
in an arbitrary sequence), Parallel (i.e., the sub-tasks can start and end at random),
Simultaneous (i.e., all sub-tasks must start in an arbitrary sequence before any task can
end, hence at least one moment exists where all sub-tasks are running simultaneously),
Alternative (i.e., exactly one randomly selected sub-task must be executed); Optional
(i.e., one or no sub-task at all must be executed), and Loop (i.e., a single task is repeatedly
executed while a given condition is true).
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Attribute Description

Priority A level of priority (very, rather, not very)
Frequency A task is characterised by a frequency (high, medium, low)
Executant Can be user, system, interactive, abstract, or unknown. When the executant

is a user, the task is characterised by methods (e.g., sensorimotor, cognitive).
The user who is associated with the task is characterised by a name, a level of
experience (beginner, average, expert) and skills

Objects A set of objects used by a task (including Event and User)
Effects The description of the effects observable (or desirable) by the user during the

task. It is the system response to the user.
Modality The nature of the action of the executant “User”. Two values are possible:

Sensorimotor–it is about a physical action (for example, to fill the printer with
paper); Cognitive–it is about a mental action (for example, mental calculation
of travel expenses)

Optional Indicates if the task is mandatory or optional
Interruptible Indicates if the task is interruptible or not
Trigger event Indicates that the execution of the task is forced by an event
Actor This characteristic contains the list of the users authorised to carry out the

task
Iteration Specifies the iterative aspects of a task which be carried out several times

and/or until the completion of a condition. This condition relates to the objects
handled by the user.

Events The events that will be generated by the execution of the task
Pre-condition Specify a condition that must be true before the task can be executed
Post-condition Specify a condition that must be true once the task has finished. Otherwise,

the task is seen unsuccessfully finished

Table 6: Attributes of a task in K-MAD.

5.2.9 useML

useML [45] is a language that can be used to represent human-machine interfaces. The
following binary temporal operators are provided in the useML version 2.0: Choice (i.e.,
exactly one of the tasks will be fulfilled), Order Independence (i.e., two tasks can be
accomplished in an arbitrary order, however when the first task has been started, the
second one has to wait for the first to be finalised or aborted), Concurrency (i.e., two
tasks can be accomplished in an arbitrary order, even parallel at the same time), Sequence
(i.e., two tasks must be accomplished in the given order. The priorities (i.e., the order of
temporal execution) are defined as follows: Choice > Order Independence > Concurrency
> Sequence.

5.2.10 K-MAD

K-MAD [46] is a graphical tool for modelling tasks. In K-MAD, a task is defined by a
name, a ID number, a goal, a performance duration, feedback information (observable
effects by the user), multi-media (associating the task to multi-media information such as
video or sound). Besides, a task may have attributes as described in Table 6. K-MAD also
provides scheduling operators: Sequencing, Enabling, Choice, Concurrency, and No-order.

5.3 Multi-Agent Systems and Robotics

In multi-agent systems & robotics, tasks are assigned to autonomous software agents and
robots. The agents and robots are able to negotiate about their tasks with each other
so that they can maximise the quality of the task accomplishment. Task specification
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languages in these systems hence provide a rich set of operators that allow us to specify
communication and synchronisation between agents/robots. Most of them are akin to
programming languages.

5.3.1 TÆMS

The TÆMS language [47, 48] was designed for representing tasks assigned to software
agents. A TÆMS task representation is an annotated task decomposition tree. The
tree consists of a sequence of sub-tasks and methods which describe how the task may
be performed. Sub-tasks can be further decomposed in the same manner. Methods, on
the other hand, are terminal, and represent primitive actions that an agent can perform
to produce some output. Sub-tasks may have interrelations which describe how their
executions will affect other sub-tasks in the tree. Interrelations may also span different
task trees assigned to multiple agents.

5.3.2 APEX Procedure Definition Language (PDL)

PDL [49, 50] aims for representing agents’ tasks in multiple-task environments. The lan-
guage has a central construct called procedure. A procedure consists of a goal followed by
one or more steps. The steps primarily describe activities needed to accomplish the goal.
The steps can be concurrently executed. Some constraints can also be specified in PDL
such as a pre-condition for starting a step.

To resolve the problem of resource conflicts in multiple-task environments, tasks are
associated with a priority. A priority declaration specifies a numeric value ranging from
1 to 10 for urgency and importance of a task. PDL allows us to specify how these
values should be computed and under what circumstances they should be recomputed
at runtime. Another interesting feature of PDL is that, to decide which ongoing tasks
should be interrupted in cases of failure or resource conflict, each task is assigned with
an interrupt-cost. The task with the least interrupt-cost will be interrupted first when a
resource conflict occurs.

A PDL extension [51] adds three constructs to PDL: Repeat-until for representing
certain repetitive steps, Repeat-times to repeat an action a specified number of times, and
Repeat-At-Interval to cause an action to repeat after a specified amount of time.

5.3.3 COLLAGEN

COLLAGEN [52, 53] is a collaboration manager for users and software agents. The com-
munication between the user and the agent is constructed based on task models. In COL-
LAGEN, a specification of a task model is called a recipe. A recipe contains a sequence
of steps to achieve a given goal (the objective of the recipe). Each of the non-primitive
steps is further decomposed into sub-steps until primitive actions are reached. The COL-
LAGEN language also supports a number of features, including optional and repeatable
steps, temporal order and constraints, parameters, pre-conditions, and post-conditions.
COLLAGEN task models are defined in an extension of the Java language which is auto-
matically processed to create Java class definitions for recipes. Figure 6 gives an example
recipe for the Recording TV Program task using a VCR.
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public recipe RecordRecipe achieves RecordProgram {

step DisplaySchedule display;

step AddProgram add;

optional step ReportConflict report;

constraints {

display precedes add;

add precedes report;

add.program == achieves.program;

report.program == achieves.program;

report.conflict == add.conflict;

}

}

Figure 6: A example task described in COLLAGEN.

Operator Description

Enable Specify that a node cannot become enabled until some specified event occurs.
The event can be either the passage of time, a specific state transition of another
node, or some external event.

Sequential Specify that a node execution is blocked until the executions of other specified
nodes are completed.

Serial One of the two task components is performed (the user has a choice in the
execution of the task).

Parallel Indicate that some tasks can be executed concurrently.
Wait This constraint makes the task execution blocking until the specified condition

have been satisfied.
Terminate Specify that a node and all its children are to be terminated when some specified

event occurs.

Table 7: Operators available in TDL.

5.3.4 TDL

TDL [54] is an extension of C++ that is used to represent tasks assigned to robots. Such
a task once executed at runtime will dynamically generate task decompositions. A task
decomposition includes sub-tasks (nodes) as well as synchronisation constraints between
sub-tasks and between parent and children tasks. In a TDL task decomposition, each
node has an action associated with it, which is essentially a parameterised piece of code.
This action can perform computations, or dynamically add child nodes to that node, or
perform some physical action in the world. Hence, the task decompositions are generated
dynamically. The TDL operators are described in Table 7.

5.3.5 Little-JIL

Little-JIL [55, 56] is a language for representing processes assigned to agents. A process
is represented as a hierarchy of steps. Each of these steps can be multiply instantiated
at runtime according to the cardinality attribute expressing the optionality or repetition
of a step. A step may require some resources which are representations of entities. Re-
sources may include agents, tools, and various physical artifacts. A step may include
post-conditions and pre-conditions to ensure that all of the conditions needed to begin a
step are satisfied and that the step has been executed correctly when it is completed. A
step may have a deadline that is a point in time by which a step must have completed.
Non-leaf steps consist of one or more sub-steps whose execution sequence is determined
by one of the step kinds such as Sequential, Parallel, Try, and Choice.

Little-JIL also allows us to specify exceptions and handlers attached to steps. Excep-
tions and handlers are used to catch and fix up exceptional conditions or errors during
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executing steps. Handling an exception determines whether the step will continue its
execution, successfully terminate, restart the execution at the beginning, or throw other
exceptions. Finally, parameters passed between steps for exchanging information can also
be specified in a Little-JIL task representation.

5.3.6 ECO

The ECO language [57] is means to organise digital devices (each device acts as an agent)
working together in an orchestrated way. Consider the following representation of a
composite task, expressed in ECO: “make coffee; dim lights; wait for lights; download

news; wait for news; show news on TV;”, an ECO task representation consists of sub-tasks
and dependency statements. The sub-tasks are executed concurrently subject to explicit
prerequisites which are represented by “wait for” statements. ECO uses verb-object phrases
to represent sub-tasks. Because of its simplicity, ECO lacks features for representing task
attributes and data types. Although ECO allows end-users to easily specify their high-
level tasks, the system must have a more sophisticated language processor to understand
phrases written in a natural language. Currently, there is no such a language processor
for ECO.

5.4 Business Processes and Workflows

Workflows define the sequence of tasks to execute in order to achieve some goals. They are
used to automate business processes, in whole or in part, and allow passing documents,
information, or tasks from one participant to another for action, according to a set of
procedural rules. Languages such as YAWL [58] and BPEL3 are used to define workflows
(in terms of invocations of web services). The first limitation of most workflow systems
is that workflow representations are static in nature and cannot adapt dynamically to
changing resource availabilities or different contexts [59]. The second limitation is that
while the languages often focus on representing automated processes, interactions between
humans and devices are not much considered. In this section, we only review some popular
business process languages.

5.4.1 The Business Process Execution Language

The Business Process Execution Language4 (BPEL) is a standard language for represent-
ing business processed based on web services. A business process is a collection of related,
structured activities that achieve a particular business goal. In BPEL, the activities of a
business process are represented by web services. BPEL provides several operators such
as Sequencing, Loop, Choice, Concurrency, Pre-condition, and Post-condition. Because
BPEL only focuses on automated processes (i.e., invocations of web services), interactions
between humans and machines are not considered.

5.4.2 The Ontology Web Language for Services

The Ontology Web Language for Services5 (OWL-S) is a markup language for represent-
ing web services’s properties and capabilities. A representation of a web service has three

3http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
4http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
5http://www.w3.org/Submission/OWL-S/
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parts: service profile, process model, and grounding. The service profile describes a ser-
vice’s functional attributes such as input parameters, output parameters, pre-conditions
and effects. The process model describes how a service works. It contains either an atomic
process that can be directly executed or a composite process that is a combination of sub-
processes. Sub-processes are either atomic processes or composite processes connected by
a set of control constructs including Sequence, Unordered, Choice, If-Then-Else, Iterate,
Repeat-Until, Repeat-While, Split, and Split+Join. The grounding contains the details of
how to access a service by specifying a communication protocol, parameters to be used
in the protocol and the serialisation techniques to be employed for the communication.

6 Comparison and Discussion

In this section, we summarise and compare the expressive power of the languages which we
have reviewed. The expressive power of a language defines its capability to express a wide
range of aspects of a task. The aspects can be divided into two parts. The task definition
part contains informational attributes and characteristics of a task. Some examples of
such the attributes are such as task name, unique identifier, description, goal, executor
(i.e., who performs the task), significance (i.e., the importance of the task), and location,
to name some. The other part specifies temporal operators of a task in relation to other
tasks and/or to other sub-tasks. Examples of the operators are Choice, Sequence, and
Concurrency.

6.1 Expressive Power of Task Attributes

Table 8 presents a dictionary of common task attributes covered by the reviewed lan-
guages. An attribute may be represented by different names in different languages. For
example, Post-condition is named Effect in Little-JIL [55]. A task attribute can be one
or both of two types: descriptive attribute (e.g., Frequency and Time-performance) and
operational attribute (e.g., Applicability condition), denoted by D and O respectively
in Table 8. B denotes that an attribute can be both descriptive and operational (e.g.,
Access-right).

ConcurTaskTrees [40] and CE-TASK [27] support most of the attributes. While CE-
TASK mainly covers operational attributes necessary for executing a task at runtime,
CTT typically covers descriptive attributes which are often useful prior to executing a
task. Iteration, Optionality, Pre-condition, and Post-condition are the most common
attributes supported by the languages. Some attributes (e.g., Access-right, Applicability-
condition, Deadline, and Platform) are supported by only one or two language. This can
be understood as these languages were designed for different specific-purposes.

6.2 Expressive Power of Operators

Table 9 presents a dictionary of common temporal and inter-task operators. Similar to
the task attributes, some different words are used in different languages for representing
the same meaning of one operator such as Concurrency and Parallel.

Table 10 summarises the presence of operators in each language. Some of the languages
(e.g., InterPlay [23] and COLLAGEN [53]) are not considered in this comparison because
we could not find any publications that describes the operators they support. Some
operators allow specifying of information exchange between sibling tasks. However, this
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Attribute Synonym Common meaning Type

Access-right Role Specify roles or actors who can perform a task. B

Applicability A condition that helps the system choose an appropriate decomposi-
tion of a task when there is more than one.

O

Cancellable Specify whether a task can be cancelled. O

Concept The semantics of concepts declared within a task representation. O

Data-flow Binding Specify the data flow between sub-tasks of a task. O

Deadline End-time A point in time by which a task must be completed. B

Exception-handler Specify a handler to catch and fix up exceptions and errors during
executing a task.

O

Frequency The estimated frequency of a task (e.g., low, medium, high). D

Grounding script Binding

script

Specify a script that binds a primitive task to actual devices’ functions
or service.

O

Initialisation-script A script that is not associated with any sub-tasks within in a task,
and is intended to be executed exactly once when the task is loaded.

O

Input Object Input data (object) manipulated when performing a task. O

Iteration Loop Indicates the time a task must be performed repeatedly. B

Interruptible Whether a task is interruptible. B

Interrupt-cost A cost of interrupting a task. B

MaxOccurs A task should occur a maximum of the given MaxOccurs time. B

MinOccurs A task should occur a minimum of the given MinOccurs time. B

Optionality Elementary Indicates if the task is mandatory or optional. B

Output Object Output data (object) of a task. O

Platform Set (possibly empty) of platforms supporting a task. B

Post-condition Effect It is a necessary condition for success of a task. A task should not be
executed if its post-condition is already true.

O

Pre-condition A task is executable only if its pre-condition associated is satisfied. O

Priority Represent the urgency and/or importance of a task. O

Reset Restart Specify a condition when to restart a task. O

Resources Specify resources (e.g., executers and tools) needed by a task. O

Start time A task should be executed after this time. B

State Execution state associated with a task during its performance. O

Suspend Specify what to do when a task is interrupted. O

System-feedback The feedback the system should present to the user at a point of time
during task performance.

O

Task-Identifier Unique identifier of a task. B

Task-Type Specify the type of a task (e.g., automatic, interactive, or manual). B

Termination Specify a condition or events for terminating a task. O

Time-Performance Duration An estimated amount of time needed for performing a task. D

Trigger Initiator What will trigger a task to start (i.e., user and system). O

Table 8: Common task attributes covered by the reviewed languages.

Operator Synonym Meaning

AnyOrder Serial Tasks can be performed in any order.
Cancel The completion of task A cancels the execution of task B.
Cause The completion of task A causes the execution of task B completed.
Choice Alternative One of the given tasks must be performed.
Concurrency Parallel Task A and task B can be performed concurrently.
Disabling Exclusive The execution of task A disables task B.
Enabling Require Specify that a task cannot begin until another task has completed.
Facilitate The completion of a task may increase the quality of other tasks.
Free-Choice ZeroOrMore Any (including zero and all) of the given tasks can be performed.
Hinder The completion of a task may decrease the quality of other tasks.
Oneway-Interleave Interrupt The execution of task A interrupts the execution of task B, but not

vice versa.
Mutual-Interleave Non-

overlap

The execution of task A interrupts the execution of task B, and vice
versa.

Race Try Tasks in a race are executed in parallel. When one of them completes,
the rest are forced to completion (aborted).

Sequence inOrder Tasks must be performed in a specific order.
Waiting Wait-for Specify the strategy of delaying a step until specified events occur.

Table 9: Common operators provided by the reviewed languages.

indication is an informative element that does not modify the global executing sequence
(e.g., two tasks linked by a concurrent-with-information-exchange operator have the same
behaviour as two tasks linked by a concurrent operator). Therefore, we do not consider
these types of operators in our comparison.

As can be seen from Table 10, the Sequence operator is supported by all the languages
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AnyOrder X X X X X X X X X X X X X

Cancel X

Cause X

Choice X X X X X X X X X X X X X X

Concurrency X X X X X X X X X X X X X X X X X

Disabling X X X

Enabling X X X X X X

Facilitate X

Free-Choice X X X X X X

Hinder X

Oneway-Interleave X X

Mutual-Interleave X X

Race X X

Sequence X X X X X X X X X X X X X X X X X X X X

Waiting X X X X X

Smart Spaces Interactive Systems Design Multi-agent Systems Workflows

Table 10: Expressive power of operators by each language.

while Choice, Free-choice, Concurrency, AnyOrder, Enabling, andWaiting are the “should
supported” operators. Some operators (e.g., Cancel, Cause, Facilitate, and Hinder) are
supported by small number of the languages (e.g., TÆMS). TÆMS is a language for
describing agents’ tasks, hence it offers special operators that enable negotiation and
collaboration between agents. There is no dominating language that seems to support
most of the operators.

6.3 Satisfying Proposed Properties
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Abstraction − X − − − − − + − − − − − − − X − X − −

Hierarchy X X X − X X X X X X X X X X X X X − X X

Semantics − X − − − − − − − − − − − − − − − − − X

Interpretable X X X − − − − + − − − − − X X X X X X X

Markup language X X X − − − − X − − − − − − − − − − X X

Context-aware − − + − − − − − − − − − − − − − − − − −

Task guidance − X − − − − − − − − − − − − − − − − − −

Task scheduling + + + + + + + + + + + + + + + + + + + +
Formal definition X X + − − − − X − − − − − X X X X − X X

Smart Spaces Interactive Systems Design Multi-agent Systems Workflows

Table 11: Comparison between the languages in terms of satisfying our proposed proper-
ties. −: not meet; +: partially meet; X: fully meet.

According to our proposed properties (see Section 4) for a language that is applicable
to represent user tasks in smart environments, Table 11 provides a comparison between
the languages against these properties. Accordingly, many of the properties are not sat-
isfied by the languages in the user interface design domain except CTT. Even as CTT
provides a markup language called TERESAXML, TERESAXML task representations
are interpretable but only intended for simulation of the execution of tasks. The lan-
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guages for multi-agent systems are like-programming languages, hence interpretable but
they are not markup languages and do not support for representing semantics.

As can be seen in Table 11, there is no language that support all operators for task
scheduling as discussed in Section 6.2 (hence, they are marked as “partially meet” in
the table). There is also no language that provides elements for representing context
information which is useful for task recommendation and execution except CATM. Only
CE-TASK provides the task guidance.

CE-TASK can be seen as a candidate when it meets most of the proposed properties
of a language for smart environments. One of the notable features of CE-TASK is that
it allows us to semantically and abstractly specify user-intended concepts within a task
representation by the use of ontologies of concepts. This enables reasoning about concepts
such as functionalities, input/output data, and any objects involved in executing a task at
runtime. However, CE-TASK is lacking of several operators such as Parallelism, Enabling,
and Try that can be borrowed from CTT and the other languages. CE-TASK also need
elements for including context information in task representations.

7 Conclusion & Future Work

In this paper, we have surveyed representative task languages from different domains and
considered their applicability for representing user tasks in smart environments. Specifi-
cally, according to advances of pervasive computing technologies and problems faced by
users in exploiting these technologies for achieving their routine tasks, we have presented
our envisioned task-oriented system (we have called it ToS) for future smart environ-
ments in which the user will interact with their environments in terms of their intend
goals, not in terms of functions provided by devices or applications within the environ-
ments. We have set out requirements for a language that will be used to specify user
tasks in smart environments. The survey has focused on two main metrics for comparison
between the languages. The metrics are the expressive powers of the languages in terms
of task attributes and temporal operators.

Our analysis has shown that while there is no language that satisfies all the proposed
set of language properties, a combination of some languages will produce a powerful task
description language for our task-oriented system. Because CE-TASK meets most of the
requirements, we would like to keep CE-TASK as the core for our future language. Then,
we will extend it by: (1) reusing descriptive task attributes from user interface design’s
languages (especially CTT), (2) reusing operators of multi-agent systems’ languages be-
cause of the rich set of operators provided by these languages, (3) adding other task
attributes and operators on demand during development of real tasks for several common
smart places. While there is no dominating language that seems to support most of the
operators and attributes, we’ve also observed the following:

• Iteration, Optionality, Pre-condition, and Post-condition are the most common task
attributes supported by the languages.

• Sequence, Choice, Free-choice, Concurrency, AnyOrder, Enabling, and Waiting are
the “should supported” operators.

We have described an vision of advanced smart environments, and based on this vision,
we outlined properties of a desirable language to be used for representing tasks in smart
environments. We noted that while not all properties is satisfied by the languages we
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reviewed, several languages such as CE-TASK do satisfying a majority of these properties.
Hence, extensions or combinations of these languages could provide a promising solution
for smart environments. A standardised task representation language with the described
properties would enable task-based smart environments to be ubiquitous–different smart
environments can interoperate and task representations can be re-used across different
smart environments.
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