
Towards a System for Recommending Tasks to Users
based on User Intentions and Environment Capabilities

Chuong Vo, Seng W. Loke and Torab Torabi
Department of Computer Science and Computer Engineering, La Trobe University, Australia

ccvo@students.latrobe.edu.au, s.loke@latrobe.edu.au, t.torabi@latrobe.edu.au

ABSTRACT

The burden of managing and utilizing Pervasive Computing

Environments (PCEs) comprising a collection of devices on users and

devices embedded in the environment (e.g. user’s comprehension of

PCE capabilities, system configurations, service compositions, and

management of system failures) currently falls on users. Users might

be overwhelmed by information and capabilities that an environment

might offer – for example, there could be thirty to a hundred computers

within a living room of the future, each providing various

functionalities which the user should then learn how to use (some

functionalities perhaps provided by a combination of such devices).

Even if the user has a mobile device through which task requests can

be issued to this collection of devices, the user would still need to

know what are feasible/possible tasks s/he could perform here. Our

research aims to minimise this overhead by proposing a task

recommender system named TASKREC that manages the PCEs (e.g.

services, resources, and context information) where the user is located

and suggests to users (via his/her mobile device) tasks that are relevant

to them and which can be accomplished by the PCE in which the user

is located. Via reasoning with knowledge about current environment

capabilities, context information, and user intention, the system

recommends to the user possible and relevant tasks when he/she asks

for it. In this position paper, we present a formal problem of task

recommendation. We propose a conceptual architecture for TASKREC

and then provide a scenario for the vision of TASKREC.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific architectures.

H.3.3 [Information Search and Retrieval]: Selection process.

H.3.4 [Systems and Software]: User profiles and alert services.

General Terms
Measurement, Design, Human Factors

Keywords
Task Computing, Recommendation Systems, Context-Awareness, Pervasive

Computing.

1. INTRODUCTION
The world is moving towards universally connected information spaces

where ‘technologies weave themselves into the fabric of everyday

life’ [11]. Spaces in such a world are called pervasive computing

environments (PCEs) [9]. They are collaborative spaces consisting of

mobile users, software services, interconnected electronic devices (e.g.

set-top boxes, smart-phones, PDAs, laptops, displays, cameras,

speakers), and pervasive networks (e.g. HomeRF, Bluetooth, cellular

network, Wi-Fi, WiMAX, mobile broadband).

Although PCEs enable us to access information and services anytime

and anywhere, they are overwhelming us with an overload of

information, services, and complex configurations [2, 4, 10, 12]. This

is leading towards a heavy burden to users when they want to

accomplish a computing task. Moreover, because of the increasingly

sophisticated and feature-rich software applications and computing

devices, controlling even one of these devices or applications is

increasingly difficult. As a result, controlling and exploiting a PCE

which consists of a dynamic range of high-tech devices, feature-rich

applications is even more difficult. To exploit a given PCE, the users

must (1) recognise feasible tasks in the environment in order to issue

feasible tasks; (2) map their high-level goals of tasks to the low-level

operational vocabularies of capabilities of devices and functionalities

of applications embedded in the environment; and (3) properly specify

the constraints for their tasks subject to the context information of their

surroundings. These requirements may be beyond ordinary users as the

complexity, diversity and sheer number of devices (as well as well

different combinations of ways they might work together for the user)

continually rises and the amount of information in their surroundings

increases exponentially – the user is surrounded by a proliferation of

devices in the immediate environment but might not know what tasks

the user can perform through these devices in the environment. Also,

there is a need for solutions which free users from system

managements and configurations so that they just focus on their

intended tasks.

To address the problem of information overload, there have been

research efforts that aim to recommend information and services.

However, users are still required to manually integrate the

recommended information and services in order to achieve their goals.

This calls for task recommender systems. Few efforts (e.g. [1, 6, 7, 8])

have focused on task recommendation. However, the existing systems

do not take the capabilities of a PCE as a whole into their

recommendation processes. This is critical because accomplishing a

task in a PCE often involves a range of services, devices, and context

information; the environment capabilities should be utilised in

recommending feasible tasks.

We present a context-aware task recommender system (TASKREC)

which aims to recommend or even automatically accomplish ‘relevant’

tasks. Our approach proposes to use three similarity measurements in

the task ranking process for recommendation: the similarity of user

intention to task objective, the feasibility of tasks, and the autonomy of

task performance. TASKREC can help a user make decisions on the

question: given the current situation (including the current

environment, the current context, and the current user’s intentions)

what tasks can and should be performed? And how much

distraction/attention/obtrusiveness do the selected tasks effect on the

user? Further, our proposed system can be integrated into context-

aware applications which can adapt their behaviours to changes in the

environment and user intention.

The rest of the paper is organised as follows. Section 2 presents a

motivating scenario to which our solution is applied. Section 3 defines

concepts in our approach. Section 4 presents an overview of our

solution for task recommendation and elaborates on the three similarity

measurements used by the process of task ranking. We describe a

general architecture for TASKREC in Section 5. Section 6 outlines the

related work. Finally, a conclusion and an ongoing research agenda are

given in Section 7.

2. A MOTIVATING SCENARIO
In this section, we demonstrate the applications of the proposed

TASKREC with some aspects of a scenario.

“At a university, a seminar room named ‘SEMS room’ comprises

software-controlled appliances (such as a projector, a large plasma

display, a web camera, IP speakers), a desktop computer with

presentation applications (such as Microsoft Power Point and Acrobat

Reader), and a wireless Ethernet. These facilities are functioning

properly and currently provide users the capabilities such as

‘slideshow’, ‘video conference’, and ‘video playing’.

Bob working at another university is invited to present a seminar on

‘Industry-based Learning: Principles and Practices’ at the ‘SEMS

room’ at ‘3pm next Monday’. While preparing for the seminar, he

would like to integrate some video clips into the presentation and his

colleague, Alice, at a Japanese university is asking him about remotely

attending the seminar. However, he may not anticipate the capabilities

of the SEMS room so that he would not properly make decisions on

these intentions. Fortunately, TASKREC installed on his personal

computer infers his intentions and the capabilities of the SEMS room, it

recommends to him ‘Embedding video clips into his presentation’ and

‘Accepting his colleagues’ request for ‘video conference’.

On the day of the seminar, when Bob is driving his car and about to

approach the car park for guests at the university where he is giving

his seminar, TASKREC on his PDA infers that Bob wants to find a free

parking spot (this is because TASKREC uses a collaborative filtering

based recommendation method which recommends a solution

according to observing previous behaviours of other similar people

whose contexts are similar to Bob's context). It detects and

recommends the service provided by the university which guides him

quickly to a free parking spot.

Fifteen minutes before the seminar, Bob tries to contact Alice to

remind her of his seminar. However, he does not know Alice is in a

meeting which is finishing in ten minutes. TASKREC on his PDA infers

his intention and Alice's situation. It also recognises that her

preference for receiving communication at this moment is by ‘voice

message’, ‘text message’, ‘email’, and ‘contact later’. Hence, TASKREC

recommends to him to ‘Leave a voice message’.

Before Bob steps into the SEMS room, because TASKREC on his laptop

detects the services provided by the Manager System of the room and

determines a familiar situation, instead of recommending something, it

automatically invokes these services to turn the music off, dim the

lights, load his presentation onto the local computer, warm the

projector up, and setup the video conference.”

3. CONCEPTS AND MODELS

3.1 Task Modelling
A task is a computer-supported human activity which is performed by

collaborative interactions among the user and devices located in the

environment. We conceptualise a task as a human activity, not device

functionality. For example, ‘Presenting seminar' or ‘Watching movie’

are tasks but ‘Displaying slideshow’ or ‘Playing movie’ are not tasks;

they should be called services instead. This is because ‘Presenting

seminar’ or ‘Watching movie’ are carried out by humans while

‘Displaying slideshow’ or ‘Playing movie’ are carried out by machines.

We propose that each task is specified in a structured document called

task specification which describes task objective, capability

requirement, and task flow. Task flows define a sequence of actions

and/or sub-tasks sufficient to achieve the task objective. There are

three levels of autonomy of an action/task: manual, semi-autonomous,

and autonomous. A manual action/task is accomplished by the user

only. At the semi-autonomous level, the action/task is accomplished by

collaboration between users and devices. At the autonomous level, the

environment automatically performs the entire action. The level of an

action/task is determined subject to the current environment

capabilities.

A task space of a PCE is a repository containing specifications of

possible tasks in this environment. The task space can be updated (e.g.

add, modify, and remove task specifications) at runtime. Learning

techniques should be used to update the task space. The following is an

example of adding a new task. The system initially recognises that the

seminar room is only used for seminar tasks. However, it observes that

the room has been operated as follows: during a session, there is no

light on; the video player is connected to the projector; the speakers are

turned up; there is no presenter but a large audience; and some video

disks are used instead of presentation files or pens. Sure enough,

compared to the operation of a movie theatre, a new task perhaps

called ‘Watching movie’ should be added to the task space of this

room.

3.2 Environment Modelling
We model a PCE with its current capabilities (hereafter called

environment capabilities) as one single virtual device. We propose to

use a virtual device service gateway such as VDSG [3] for discovering

and composing device capabilities.

We term a master device as one which is carried by or near the user. It

is the display of recommended tasks, the initiator of task invocations,

and the controller to manipulate all involved secondary/auxiliary

devices in accomplishing the task.

It is assumed that the requested capabilities of a task and the provided

capabilities of the environment are specified using the same ontology.

Therefore, the concepts of the requested capabilities are directly

mapped to the concepts of the provided capabilities.

Formally, environment capabilities can be defined as a vector of

variables 1(,...,)nc c=C , where , (1,...,)ic i n∈ represents a particular

capability of the environment. ()idom c is the space of possible values

of
ic . The current value of

ic is denoted as
iv . For example,

(VideoConference, SlideShow, ColourPrinting)

(True,True, False).

=

=

C

That is, the current environment can exhibit slideshows with the video

conference support.

3.3 User Intention Modelling
The current user intention (hereafter called intention) is the user's

instantaneous expectation which is inferred from the user context such

as activity, calendar, situation, feedback, profile (e.g., roles, habits, and

preferences), location, and time.

Roughly, the description of an intention at a particular point of time

defines a goal desired by the user and how these goals should be

achieved (i.e. ‘constraints’). For example, one of Bob's intentions is to

present a seminar on ‘Industry-based Learning: Principles and

Practices’ at the SEMS room at 3pm next Monday. There are some

video clips in his presentation. In this example, the task is ‘Presenting a

seminar’ while the constraints of the task are the presentation file

‘IBLseminar.ppt’, the location ‘SEMS room’, the time ‘3pm next

Monday’, and the video clip files.

We model an intention as a tuple

of , , , , ,doAct onTarget useTool atPlace atTime withPerson . doAct

expresses the activity the user desires to perform; onTarget is the target

object(s) which is the content of or influenced by the task; useTool is

the device(s) hosting the task or the service(s) to be employed; atPlace

is place the task occurs in; atTime is the moment(s) of the beginning of

the task; and withPerson is person(s) involved in the task.

4. TASK RECOMMENDATION PROBLEM
TASKREC attempts to be aware of the user’s intention and environment

capabilities. Therefore, our approach of ranking tasks for the user u in

the environment e with the task space T is based on three factors: the

intentions
uI , the environment capabilities

eC , and the task

specifications of each task t (t∈T) including task objective
tO ,

requested capabilities
1(,...,)t nr r=R , and task flows

tP . If we

define , ,t u eW as the rating of a task t for the user u in the environment e,

then

, ,t u e u t t t e= × × × ×W I O R P C

 We introduce three measurements as foundations for our task

ranking algorithm. First, task relevancy is to measure the similarity of

intentions with task objectives. Second, task feasibility is the similarity

of requested capabilities of a task with provided capabilities of the

environment. Finally, task autonomy expresses the autonomy of

performance of a task. It is a percentage of the task (comprising sub-

tasks) which can be automatically carried out by the environment. Task

autonomy is measured based on the task flow of a task which is

determined depending on the current environment capabilities and the

objective of the task.

4.1 Assumptions
To prioritise tasks, we use the three measurements above together with

the following assumptions:

• Users always prefer the task which optimally satisfies their

intention in any case;

• If there are many tasks which bring users the same degree of

satisfaction, the more feasible the task is, the more preferred the

task is;

• If two tasks are equally feasible, then the task which is more

autonomous has a higher priority.

4.2 Definitions

4.2.1 Task Feasibility
The task feasibility of a task t, called

tF , is the feasibility degree of

performing the task in a given environment e. It is calculated by

measuring the similarity between requested capabilities of the

task
t

R with the environment capabilities
e

C :

1

(,)

1

n

i i

i
t

dis r v

n

=
= −

∑
F ,

where
i tr ∈ R and

i tv ∈ C be values of the concept of a particular

capability
i ec ∈ C , respectively. Also, (,)i idis r v is the distance between

two values
ir and

iv . Here we assume that the importance of a

requested capability is equal to another (i.e. their importance weights

are all assigned to one).

4.2.2 Task Autonomy
The task autonomy of a task t called

tA is the percentage of task

performance which can be automatically carried out by the

environment. For example, the autonomy of the task ‘Present seminar’

using a video projector and a desktop computer for showing slides

would be greater than the autonomy of the same task in the

environment only supporting an overhead projector for showing

transparencies.

As mentioned previously, the task flow of a task defines actions or/and

sub-tasks sufficient to complete the task. We call 1 2, , , ma a a… (where m

is the number of actions/sub-tasks within a task flow) the autonomy

degrees of these actions/sub-tasks, then the autonomy degrees of the

entire task is:

1

m

t i

i

a
=

=∑A .

Note that, a feasible task may not be an autonomous task while an

autonomous task must be a feasible.

4.2.3 Task Relevancy
The task relevancy of a task t denoted

tS indicates the relevance of the

task for the current user u. It is measured as the similarity between the

task objective 1 2{ , , , }t ko o o= …O , and the user

intention 1 2{ , , , }u ki i i= …I :

1

(,

1

)
k

j j

j

t

dis o i

k

=
= −

∑
S .

Note that, oj and ij are values of the same concept representing a

particular objective/goal. Here, we assume that the importance weights

of all intentions/objectives are equal. (,)
j j

dis o i is the distance of two

values oj and ij.

4.2.4 Task Rating
Let , ,t u e

W and ', ,t u e
W be the ratings of tasks t and t' for the user u in the

environment e. We say that , , ', ,t u e t u e
≥W W if one of the following

clauses is true:

(1).

(1) is false and (2).

(2) is false and (3).

t t

t t

t t

′

′

′

≥

≥

≥

S S

F F

A A

4.2.5 The Most Relevant Task
A task t is called the most relevant task for the user u in the

environment e if

, , ', ,
max .{ }

t u e t u e
t′= ∀ ∈W W T∣

This section has presented an algorithm for task recommendation based

on three measurements: task feasibility, task autonomy, and task

relevancy. The next section describes a general architecture for

TASKREC.

5. SYSTEM ARCHITECTURE
The main purpose of TASKREC is to rank tasks and recommend to the

user the relevant tasks based on their ratings. The ranking process is

performed once the system detects the changes of the environment and

the user intention or once the user asks for recommendation. The result

of the ranking process is a minimal number of the relevant tasks which

is initially displayed on the master device (e.g., a smartphone or a large

public display near the user) for the user to choose. However, some of

these recommended tasks may be performed automatically without

asking the user if their relevancy, autonomy, and feasibility degrees are

high enough or the user may establish their preference to allow these

tasks to be automatically invoked when he is in the similar contexts.

Figure 1. The conceptual architecture for TASKREC.

As indicated in Figure 1, the system consists of five components.

Context Manager captures contextual information and distributes it to

Environment Capability Manager, User Intention Reasoner, and Task

Manager. Task Recommender uses information about environment

capabilities, user intention, and task specifications provided by

Environment Capability Manager, User Intention Reasoner, and Task

Manager for its recommending process. Task Manager is able to learn

new task specifications from the environment. User feedbacks and user

profiles are captured and managed by User Intention Reasoner. Task

Manager executes tasks chosen manually or automatically from

recommended tasks.

6. RELATED WORK
There have been much research on task computing [4, 5, 12]. However,

little work has been done in recommending tasks given the user and a

PCE in which the user is currently situated.

Cheng et al. [1] propose an application recommendation system which

learns latent situations from usage history and compares them to the

current situation to find similar situations. The applications typically

performed in these similar situations are ranked and recommended.

This approach actually recommends applications while our approach is

to recommend tasks which would require multiple applications and

devices to be accomplished.

Messer et al. [6] propose a middleware called InterPlay for seamless

device integration and task orchestration in a networked home. The

users express their tasks using a pseudo-English interface and the

system will achieve these tasks with minimal user intervention. This

approach requires users having in their minds feasible tasks to be

accomplished while our approach can recommend to users relevant and

feasible tasks in new environments which they can invoke to achieve

their intentions based on current environment capabilities.

Ni et al. [7] propose an algorithm to discover ‘active’ tasks in the

current context of the user. Their solution can find out feasible tasks

but not relevant tasks.

Rantapuska and Lähteenmäki [8] develop a system named Homebird

which discovers features of other devices automatically and suggests to

the user certain tasks that can be performed together with those

devices. Because this approach does not consider current user

intentions and current context, its suggestions would disturb users

rather than help them. In other words, Homebird can recommend

feasible tasks which may be not relevant tasks.

7. CONCLUSION AND FUTURE WORK
In this paper, we introduced the problem of task recommendation in

PCEs. Our solution for task recommendation uses user intention,

environment capabilities, and task specifications for predicting relevant

tasks. As a result, we proposed an algorithm for ranking tasks based on

three measurements: task feasibility, task autonomy, and task

relevancy. We illustrated the architecture for the task recommender

system called TASKREC. The system can benefit users even in

unfamiliar environments without pre-training the system.

TASKREC consists of components such as Task Manager, Context

Manager, User Intention Reasoner, and Environment Capability

Manager. We are currently investigating optimal solutions for

implementing these components. In addition, as indicated in the

application scenario, a TaskRec client installed on user’s mobile

devices needs to talk to the local services, retrieve local context

information captured by local sensors, and discover local environment

capabilities. To enable the system to access such locally unfamiliar

environments, we plan to propose a ‘cloud infrastructure’ which plays

the role of a universal middleware for managing and sharing the local

knowledge about environment context and capabilities.

8. REFERENCES
[1] D. Cheng, H. Song, H. Cho, S. Jeong, S. Kalasapur, and A.

Messer. Mobile situation-aware task recommendation application.

In The Second International Conference on Next Generation

Mobile Applications, Services, and Technologies, 2008.

[2] G. Fischer. Articulating the task at hand and making information

relevant to it. Human-Computer Interaction, 16(2):243–256,

2001.

[3] R. Y. Fu, H. Su, J. C. Fletcher, W. Li, X. X. Liu, S. W. Zhao, and

C. Y. Chi. A framework for device capability on demand and

virtual device user experience. Journal of Research and

Development, 48(5-6):635–648, September-November 2004.

[4] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project

aura: toward distraction-free pervasive computing. Pervasive

Computing, IEEE, 1(2):22–31, Apr-Jun 2002.

[5] R. Masuoka, B. Parsia, and Y. Labrou. Task computing – the

semantic web meets pervasive computing. The SemanticWeb -

ISWC 2003, pages 866–881, 2003.

[6] A. Messer, A. Kunjithapatham, M. Sheshagiri, H. Song, P.

Kumar, P. Nguyen, and K. H. Yi. Interplay: A middleware for

seamless device integration and task orchestration in a networked

home. In PERCOM’06, pages 296–307, Washington, DC, USA,

2006. IEEE Computer Society.

[7] H. Ni, X. Zhou, D. Zhang, and N. Heng. Context-dependent task

computing in pervasive environment. Ubiquitous Computing

Systems, pages 119–128, 2006.

[8] O. Rantapuska and M. Lähteenmäki. Homebird–task-based user

experience for home networks and smart spaces. In PERMID

2008, 2008.

[9] M. Satyanarayanan. Pervasive computing: Vision and Challenges.

Personal Communications, IEEE [see also IEEE Wireless

Communications], 8(4):10–17, 2001.

[10] S. G. Thompson and B. Azvine. No pervasive computing without

intelligent systems. BT Technology Journal, 22(3):39–48, July

2004.

[11] M. Weiser. The computer for the 21st century. Scientific

American, 3(265):94–104, 1991.

[12] D. G. Zhenyu Wang. Task-driven computing. Technical report,

School of Computer Science, Carnegie Mellon University, 2000.

