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ABSTRACT 

The burden of managing and utilizing Pervasive Computing 

Environments (PCEs) comprising a collection of devices on users and 

devices embedded in the environment (e.g. user’s comprehension of 

PCE capabilities, system configurations, service compositions, and 

management of system failures) currently falls on users. Users might 

be overwhelmed by information and capabilities that an environment 

might offer – for example, there could be thirty to a hundred computers 

within a living room of the future, each providing various 

functionalities which the user should then learn how to use (some 

functionalities perhaps provided by a combination of such devices). 

Even if the user has a mobile device through which task requests can 

be issued to this collection of devices, the user would still need to 

know what are feasible/possible tasks s/he could perform here. Our 

research aims to minimise this overhead by proposing a task 

recommender system named TASKREC that manages the PCEs (e.g. 

services, resources, and context information) where the user is located 

and suggests to users (via his/her mobile device) tasks that are relevant 

to them and which can be accomplished by the PCE in which the user 

is located. Via reasoning with knowledge about current environment 

capabilities, context information, and user intention, the system 

recommends to the user possible and relevant tasks when he/she asks 

for it. In this position paper, we present a formal problem of task 

recommendation. We propose a conceptual architecture for TASKREC 

and then provide a scenario for the vision of TASKREC. 

Categories and Subject Descriptors 
D.2.11 [Software Architectures]: Domain-specific architectures. 

H.3.3 [Information Search and Retrieval]: Selection process. 

H.3.4 [Systems and Software]: User profiles and alert services. 

General Terms 
Measurement, Design, Human Factors 

Keywords 
Task Computing, Recommendation Systems, Context-Awareness, Pervasive 

Computing. 

1. INTRODUCTION 
The world is moving towards universally connected information spaces 

where ‘technologies weave themselves into the fabric of everyday 

life’ [11]. Spaces in such a world are called pervasive computing 

environments (PCEs) [9]. They are collaborative spaces consisting of 

mobile users, software services, interconnected electronic devices (e.g. 

set-top boxes, smart-phones, PDAs, laptops, displays, cameras, 

speakers), and pervasive networks (e.g. HomeRF, Bluetooth, cellular 

network, Wi-Fi, WiMAX, mobile broadband). 

Although PCEs enable us to access information and services anytime 

and anywhere, they are overwhelming us with an overload of 

information, services, and complex configurations [2, 4, 10, 12]. This 

is leading towards a heavy burden to users when they want to 

accomplish a computing task. Moreover, because of the increasingly 

sophisticated and feature-rich software applications and computing 

devices, controlling even one of these devices or applications is 

increasingly difficult. As a result, controlling and exploiting a PCE 

which consists of a dynamic range of high-tech devices, feature-rich 

applications is even more difficult. To exploit a given PCE, the users 

must (1) recognise feasible tasks in the environment in order to issue 

feasible tasks; (2) map their high-level goals of tasks to the low-level 

operational vocabularies of capabilities of devices and functionalities 

of applications embedded in the environment; and (3) properly specify 

the constraints for their tasks subject to the context information of their 

surroundings. These requirements may be beyond ordinary users as the 

complexity, diversity and sheer number of devices (as well as well 

different combinations of ways they might work together for the user) 

continually rises and the amount of information in their surroundings 

increases exponentially – the user is surrounded by a proliferation of 

devices in the immediate environment but might not know what tasks 

the user can perform through these devices in the environment. Also, 

there is a need for solutions which free users from system 

managements and configurations so that they just focus on their 

intended tasks. 

To address the problem of information overload, there have been 

research efforts that aim to recommend information and services. 

However, users are still required to manually integrate the 

recommended information and services in order to achieve their goals. 

This calls for task recommender systems. Few efforts (e.g. [1, 6, 7, 8]) 

have focused on task recommendation. However, the existing systems 

do not take the capabilities of a PCE as a whole into their 

recommendation processes. This is critical because accomplishing a 

task in a PCE often involves a range of services, devices, and context 

information; the environment capabilities should be utilised in 

recommending feasible tasks. 

We present a context-aware task recommender system (TASKREC) 

which aims to recommend or even automatically accomplish ‘relevant’ 

tasks. Our approach proposes to use three similarity measurements in 

the task ranking process for recommendation: the similarity of user 

intention to task objective, the feasibility of tasks, and the autonomy of 

task performance. TASKREC can help a user make decisions on the 

question: given the current situation (including the current 

environment, the current context, and the current user’s intentions) 

what tasks can and should be performed? And how much 

distraction/attention/obtrusiveness do the selected tasks effect on the 

user? Further, our proposed system can be integrated into context-

aware applications which can adapt their behaviours to changes in the 

environment and user intention. 

 

 

 



The rest of the paper is organised as follows. Section 2 presents a 

motivating scenario to which our solution is applied. Section 3 defines 

concepts in our approach. Section 4 presents an overview of our 

solution for task recommendation and elaborates on the three similarity 

measurements used by the process of task ranking. We describe a 

general architecture for TASKREC in Section 5. Section 6 outlines the 

related work. Finally, a conclusion and an ongoing research agenda are 

given in Section 7. 

2. A MOTIVATING SCENARIO 
In this section, we demonstrate the applications of the proposed 

TASKREC with some aspects of a scenario. 

“At a university, a seminar room named ‘SEMS room’ comprises 

software-controlled appliances (such as a projector, a large plasma 

display, a web camera, IP speakers), a desktop computer with 

presentation applications (such as Microsoft Power Point and Acrobat 

Reader), and a wireless Ethernet. These facilities are functioning 

properly and currently provide users the capabilities such as 

‘slideshow’, ‘video conference’, and ‘video playing’. 

Bob working at another university is invited to present a seminar on 

‘Industry-based Learning: Principles and Practices’ at the ‘SEMS 

room’ at ‘3pm next Monday’. While preparing for the seminar, he 

would like to integrate some video clips into the presentation and his 

colleague, Alice, at a Japanese university is asking him about remotely 

attending the seminar. However, he may not anticipate the capabilities 

of the SEMS room so that he would not properly make decisions on 

these intentions. Fortunately, TASKREC installed on his personal 

computer infers his intentions and the capabilities of the SEMS room, it 

recommends to him ‘Embedding video clips into his presentation’ and 

‘Accepting his colleagues’ request for ‘video conference’. 

On the day of the seminar, when Bob is driving his car and about to 

approach the car park for guests at the university where he is giving 

his seminar, TASKREC on his PDA infers that Bob wants to find a free 

parking spot (this is because TASKREC uses a collaborative filtering 

based recommendation method which recommends a solution 

according to observing previous behaviours of other similar people 

whose contexts are similar to Bob's context). It detects and 

recommends the service provided by the university which guides him 

quickly to a free parking spot. 

Fifteen minutes before the seminar, Bob tries to contact Alice to 

remind her of his seminar. However, he does not know Alice is in a 

meeting which is finishing in ten minutes. TASKREC on his PDA infers 

his intention and Alice's situation. It also recognises that her 

preference for receiving communication at this moment is by ‘voice 

message’, ‘text message’, ‘email’, and ‘contact later’. Hence, TASKREC 

recommends to him to ‘Leave a voice message’. 

Before Bob steps into the SEMS room, because TASKREC on his laptop 

detects the services provided by the Manager System of the room and 

determines a familiar situation, instead of recommending something, it 

automatically invokes these services to turn the music off, dim the 

lights, load his presentation onto the local computer, warm the 

projector up, and setup the video conference.” 

3. CONCEPTS AND MODELS 

3.1 Task Modelling 
A task is a computer-supported human activity which is performed by 

collaborative interactions among the user and devices located in the 

environment. We conceptualise a task as a human activity, not device 

functionality. For example, ‘Presenting seminar' or ‘Watching movie’ 

are tasks but ‘Displaying slideshow’ or ‘Playing movie’ are not tasks; 

they should be called services instead. This is because ‘Presenting 

seminar’ or ‘Watching movie’ are carried out by humans while 

‘Displaying slideshow’ or ‘Playing movie’ are carried out by machines. 

We propose that each task is specified in a structured document called 

task specification which describes task objective, capability 

requirement, and task flow. Task flows define a sequence of actions 

and/or sub-tasks sufficient to achieve the task objective. There are 

three levels of autonomy of an action/task: manual, semi-autonomous, 

and autonomous. A manual action/task is accomplished by the user 

only. At the semi-autonomous level, the action/task is accomplished by 

collaboration between users and devices. At the autonomous level, the 

environment automatically performs the entire action. The level of an 

action/task is determined subject to the current environment 

capabilities. 

A task space of a PCE is a repository containing specifications of 

possible tasks in this environment. The task space can be updated (e.g. 

add, modify, and remove task specifications) at runtime. Learning 

techniques should be used to update the task space. The following is an 

example of adding a new task. The system initially recognises that the 

seminar room is only used for seminar tasks. However, it observes that 

the room has been operated as follows: during a session, there is no 

light on; the video player is connected to the projector; the speakers are 

turned up; there is no presenter but a large audience; and some video 

disks are used instead of presentation files or pens. Sure enough, 

compared to the operation of a movie theatre, a new task perhaps 

called ‘Watching movie’ should be added to the task space of this 

room. 

3.2 Environment Modelling 
We model a PCE with its current capabilities (hereafter called 

environment capabilities) as one single virtual device. We propose to 

use a virtual device service gateway such as VDSG [3] for discovering 

and composing device capabilities. 

We term a master device as one which is carried by or near the user. It 

is the display of recommended tasks, the initiator of task invocations, 

and the controller to manipulate all involved secondary/auxiliary 

devices in accomplishing the task. 

It is assumed that the requested capabilities of a task and the provided 

capabilities of the environment are specified using the same ontology. 

Therefore, the concepts of the requested capabilities are directly 

mapped to the concepts of the provided capabilities. 

Formally, environment capabilities can be defined as a vector of 

variables 1( ,..., )nc c=C , where , (1,..., )ic i n∈ represents a particular 

capability of the environment. ( )idom c is the space of possible values 

of 
ic . The current value of 

ic  is denoted as
iv . For example,  

(VideoConference, SlideShow, ColourPrinting)

(True,True,  False).

=

=

C
 

That is, the current environment can exhibit slideshows with the video 

conference support. 

3.3 User Intention Modelling 
The current user intention (hereafter called intention) is the user's 

instantaneous expectation which is inferred from the user context such 

as activity, calendar, situation, feedback, profile (e.g., roles, habits, and 

preferences), location, and time. 

Roughly, the description of an intention at a particular point of time 

defines a goal desired by the user and how these goals should be 

achieved (i.e. ‘constraints’). For example, one of Bob's intentions is to 

present a seminar on ‘Industry-based Learning: Principles and 

Practices’ at the SEMS room at 3pm next Monday. There are some 

video clips in his presentation. In this example, the task is ‘Presenting a 

seminar’ while the constraints of the task are the presentation file 

‘IBLseminar.ppt’, the location ‘SEMS room’, the time ‘3pm next 

Monday’, and the video clip files. 

We model an intention as a tuple 

of , , , , ,doAct onTarget useTool atPlace atTime withPerson . doAct 

expresses the activity the user desires to perform; onTarget is the target 



object(s) which is the content of or influenced by the task; useTool is 

the device(s) hosting the task or the service(s) to be employed; atPlace 

is place the task occurs in; atTime is the moment(s) of the beginning of 

the task; and withPerson is person(s) involved in the task. 

4. TASK RECOMMENDATION PROBLEM 
TASKREC attempts to be aware of the user’s intention and environment 

capabilities. Therefore, our approach of ranking tasks for the user u in 

the environment e with the task space T is based on three factors: the 

intentions
uI , the environment capabilities

eC , and the task 

specifications of each task t (t∈T) including task objective
tO , 

requested capabilities
1( ,..., )t nr r=R , and task flows

tP . If we 

define , ,t u eW  as the rating of a task t for the user u in the environment e, 

then 

, ,t u e u t t t e= × × × ×W I O R P C  

    We introduce three measurements as foundations for our task 

ranking algorithm. First, task relevancy is to measure the similarity of 

intentions with task objectives. Second, task feasibility is the similarity 

of requested capabilities of a task with provided capabilities of the 

environment. Finally, task autonomy expresses the autonomy of 

performance of a task. It is a percentage of the task (comprising sub-

tasks) which can be automatically carried out by the environment. Task 

autonomy is measured based on the task flow of a task which is 

determined depending on the current environment capabilities and the 

objective of the task. 

4.1 Assumptions 
To prioritise tasks, we use the three measurements above together with 

the following assumptions: 

• Users always prefer the task which optimally satisfies their 

intention in any case; 

• If there are many tasks which bring users the same degree of 

satisfaction, the more feasible the task is, the more preferred the 

task is; 

• If two tasks are equally feasible, then the task which is more 

autonomous has a higher priority. 

4.2 Definitions 

4.2.1 Task Feasibility 
The task feasibility of a task t, called

tF , is the feasibility degree of 

performing the task in a given environment e. It is calculated by 

measuring the similarity between requested capabilities of the 

task
t

R with the environment capabilities
e

C : 

1

( , )

1

n

i i

i
t

dis r v

n

=
= −

∑
F , 

where
i tr ∈ R  and

i tv ∈ C be values of the concept of a particular 

capability 
i ec ∈ C , respectively. Also, ( , )i idis r v is the distance between 

two values 
ir  and

iv . Here we assume that the importance of a 

requested capability is equal to another (i.e. their importance weights 

are all assigned to one). 

4.2.2 Task Autonomy 
The task autonomy of a task t called

tA  is the percentage of task 

performance which can be automatically carried out by the 

environment. For example, the autonomy of the task ‘Present seminar’ 

using a video projector and a desktop computer for showing slides 

would be greater than the autonomy of the same task in the 

environment only supporting an overhead projector for showing 

transparencies. 

As mentioned previously, the task flow of a task defines actions or/and 

sub-tasks sufficient to complete the task. We call 1 2, , , ma a a…  (where m 

is the number of actions/sub-tasks within a task flow) the autonomy 

degrees of these actions/sub-tasks, then the autonomy degrees of the 

entire task is: 

1

m

t i

i

a
=

=∑A . 

Note that, a feasible task may not be an autonomous task while an 

autonomous task must be a feasible. 

4.2.3 Task Relevancy 
The task relevancy of a task t denoted

tS  indicates the relevance of the 

task for the current user u. It is measured as the similarity between the 

task objective 1 2{ , , , }t ko o o= …O , and the user 

intention 1 2{ , , , }u ki i i= …I : 

1

( ,

1

)
k

j j

j

t

dis o i

k

=
= −

∑
S . 

Note that, oj and ij are values of the same concept representing a 

particular objective/goal. Here, we assume that the importance weights 

of all intentions/objectives are equal. ( , )
j j

dis o i is the distance of two 

values oj and ij. 

4.2.4 Task Rating 
Let , ,t u e

W and ', ,t u e
W be the ratings of tasks t and t' for the user u in the 

environment e. We say that , , ', ,t u e t u e
≥W W if one of the following 

clauses is true: 

(1).

(1) is false and (2).

(2) is false and (3).

t t

t t

t t

′

′

′

≥

≥

≥

S S

F F

A A

 

4.2.5 The Most Relevant Task 
A task t is called the most relevant task for the user u in the 

environment e if 

, , ', ,
max .{ }

t u e t u e
t′= ∀ ∈W W T∣  

This section has presented an algorithm for task recommendation based 

on three measurements: task feasibility, task autonomy, and task 

relevancy. The next section describes a general architecture for 

TASKREC. 

5. SYSTEM ARCHITECTURE 
The main purpose of TASKREC is to rank tasks and recommend to the 

user the relevant tasks based on their ratings. The ranking process is 

performed once the system detects the changes of the environment and 

the user intention or once the user asks for recommendation. The result 

of the ranking process is a minimal number of the relevant tasks which 

is initially displayed on the master device (e.g., a smartphone or a large 

public display near the user) for the user to choose. However, some of 

these recommended tasks may be performed automatically without 

asking the user if their relevancy, autonomy, and feasibility degrees are 

high enough or the user may establish their preference to allow these 

tasks to be automatically invoked when he is in the similar contexts. 



 

Figure 1. The conceptual architecture for TASKREC. 

As indicated in Figure 1, the system consists of five components. 

Context Manager captures contextual information and distributes it to 

Environment Capability Manager, User Intention Reasoner, and Task 

Manager.  Task Recommender uses information about environment 

capabilities, user intention, and task specifications provided by 

Environment Capability Manager, User Intention Reasoner, and Task 

Manager for its recommending process. Task Manager is able to learn 

new task specifications from the environment. User feedbacks and user 

profiles are captured and managed by User Intention Reasoner. Task 

Manager executes tasks chosen manually or automatically from 

recommended tasks. 

6. RELATED WORK 
There have been much research on task computing [4, 5, 12]. However, 

little work has been done in recommending tasks given the user and a 

PCE in which the user is currently situated. 

Cheng et al. [1] propose an application recommendation system which 

learns latent situations from usage history and compares them to the 

current situation to find similar situations. The applications typically 

performed in these similar situations are ranked and recommended. 

This approach actually recommends applications while our approach is 

to recommend tasks which would require multiple applications and 

devices to be accomplished. 

Messer et al. [6] propose a middleware called InterPlay for seamless 

device integration and task orchestration in a networked home. The 

users express their tasks using a pseudo-English interface and the 

system will achieve these tasks with minimal user intervention. This 

approach requires users having in their minds feasible tasks to be 

accomplished while our approach can recommend to users relevant and 

feasible tasks in new environments which they can invoke to achieve 

their intentions based on current environment capabilities. 

Ni et al. [7] propose an algorithm to discover ‘active’ tasks in the 

current context of the user. Their solution can find out feasible tasks 

but not relevant tasks. 

Rantapuska and Lähteenmäki [8] develop a system named Homebird 

which discovers features of other devices automatically and suggests to 

the user certain tasks that can be performed together with those 

devices. Because this approach does not consider current user 

intentions and current context, its suggestions would disturb users 

rather than help them. In other words, Homebird can recommend 

feasible tasks which may be not relevant tasks. 

7. CONCLUSION AND FUTURE WORK 
In this paper, we introduced the problem of task recommendation in 

PCEs. Our solution for task recommendation uses user intention, 

environment capabilities, and task specifications for predicting relevant 

tasks. As a result, we proposed an algorithm for ranking tasks based on 

three measurements: task feasibility, task autonomy, and task 

relevancy. We illustrated the architecture for the task recommender 

system called TASKREC. The system can benefit users even in 

unfamiliar environments without pre-training the system. 

TASKREC consists of components such as Task Manager, Context 

Manager, User Intention Reasoner, and Environment Capability 

Manager. We are currently investigating optimal solutions for 

implementing these components. In addition, as indicated in the 

application scenario, a TaskRec client installed on user’s mobile 

devices needs to talk to the local services, retrieve local context 

information captured by local sensors, and discover local environment 

capabilities. To enable the system to access such locally unfamiliar 

environments, we plan to propose a ‘cloud infrastructure’ which plays 

the role of a universal middleware for managing and sharing the local 

knowledge about environment context and capabilities. 
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