
Redefining Requirements of Infrastructure for
Pervasive Computing Systems

Authors
Institutions

Email addresses

Abstract—To enable the vision of invisible computing, an
infrastructure for pervasive computing systems is required. This
infrastructure is successful if it meets requirements assigned to
it. Hence, it is extremely essential to correctly determineits
requirements. Much research has endeavoured to figure out these
requirements. However, it seems that the research on realising the
potential of invisible computing is encountering with difficulties
and falls far short of the expectation of the user community.
We argue that the reason for this is the lack of an appropriate
fundamental model of pervasive computing environments (PCEs).
In this paper, we see real world computing objects (including
local and global) as universal multi-modal interfaces for users
and other computing objects to interact with. These objectsare
universally networked interactive interfaces while the network
capability becomes a trivial concern and computational pro-
cessing, decision making, and data management are placed on
powerful central computers. According to this view, the paper
redefines the correct requirements of infrastructure for pervasive
computing which must be addressed to realise the potential of
invisible computing.

I. I NTRODUCTION

Making computing invisible is an inarguable expectation
of a knowledge-based and technology-rich modern society.
For this vision, computing is able to be a truly intelligent
tool supporting user daily life activities. Moreover, beyond a
passively supporting tool (i.e. computing only appears when
asked), embedding computing into surroundings environments
and objects makes them become intelligent and active tools
(i.e. computing appears automatically and distraction-freely
without asked). This can contribute to the computerisationof
human daily life activities and the change of the way people
own and use knowledge especially general knowledge (e.g.
where is the museum? How to get there?). Computing can
help them to achieve their desired tasks without this kind of
knowledge.

[2]–[7]
We argue that researchers are encountering with difficulty

implementing the objectives of pervasive computing. De-
spite of the fact that there have been many efforts aim-
ing to achieve these objectives, for two last decades (since
the view of invisible computing initially appeared), those
endeavours still remain as individually models or domain-
specified applications which are hard or even impossible to
apply/extend/develop/deploy in large scale applications. As a
result, those projects are still mostly remaining in research labs
while applying them in the practices is seen as long time fiction
stories. It is clear that the implementation and application of

pervasive computing in reality have not matched to our current
expectation and potentially existing technologies.

Much work has been conducted to find out the reasons of
this contradiction. Some have supposed that we are lacking of
a theoretically foundation for development/deployment ofap-
plications in pervasive computing environments. Some others
have concluded that because pervasive computing is a multi-
discipline that covers the areas of such as artificial intelligence,
data mining, network communication, pattern recognition,and
distributed software architecture, ones who would like to
success with applications of pervasive computing must own
and have an ability of applying those areas of knowledge
for their applications. But there are not many of such these
researchers.

Other reasons of the failures of bring the vision of pervasive
computing to the reality [4]:

• Hiding distribution and relying on technologies such as
RPC or distributed file systems;

• Using single-node programming methodologies;
• Hide remote interaction.

We add to these another reason:

• Using single-modal design methodologies.

We, while adopt the second hypothesis presented above,
are finding the resolution to the first one, i.e., the underlying
fundamental for pervasive computing. As an initial step, this
work aims to redefine a general model of pervasive computing
environments as presented in Section 2. Our approach derives
from the principles of user-centred design in the field of
human-computing interaction. Based on our model, in Section
3, we re-identify the requirements of infrastructure for perva-
sive computing environments. Then, we discuss and evaluate
our model in Section 4. Section 5 presents the related work
while Section 6 concludes the paper and outline directions for
future research.

II. OUR PROPOSED MODEL OF PERVASIVE COMPUTING

ENVIRONMENTS

A. Assumptions of future computing

• Computing devices (not completely computers) are em-
bedded anywhere and powerfully inter-networked among
them and between them and central stations. Applications
are hosted and managed by powerful computers at cen-
tres.

• Storage is huge.



• Processors are extremely powerful.

- an underlying service-based distributed architecture - the
emphasis is on task enablement, rather than support for device-
specific application such as high-end work processors or
games.

B. Advances in technologies

This Section outlines and presents our prediction about ad-
vances of technologies regarding to pervasive computing. We
are interested in multi-functionalities integrated computing de-
vice which is embedded pervasively in daily life environments.
This leads to multi-modal interfaces of pervasive applications.
Our second consideration is the increasing achievement of
addressing the bottleneck problem in centralised computing
architectures thank to incessantly rapid development of more
powerful processors, greater and more reliable storages, and
wider and more powerful networks. These considerations will
form a foundation of our model.

Norman [8] asserted that computing devices are more and
more specified in functionality and their sets of features
becomes limited. This vision is no longer acceptable. As
clear proofs for this, it is obvious that today a mobile phone
is not merely used for human-human communication as its
originally designed function; instead it becomes a multi-
function device. Similarly, a printer is not just used for usual
printing, it can email, photocopy, scan, make a call, fax, and
so forth. Consequently, pervasive computing models based on
this vision are not appropriate any more.

The greater advantages of centralise computing model com-
pared to decentralised one are unrefutable. The problems and
limitations of this model such as extendibility, scalability, and
bottleneck are successfully addressed benefited from rapidim-
provements of processing power, storage capacity, and network
bandwidth and reliability. Much research has tried to develop
applications for pervasive computing environments based on
decentralised models. However, there are difficulties encoun-
tered due to heterogeneity of these environments. To open a
path for successful development of pervasive applications, it
is essential to re-examine the application of the centralised
model for pervasive environments as its inherent potentiality.
We do not argue that the decentralised model is completely
failed. This model should be suitable in infrastructure-less
environments such as disasters, open seas, deep forests, or
between cars on roads. Even in such these cases, we still
have infrastructures located elsewhere for a centralised model
thanks to such as satellite networks and WiMAX.

One of the benefits of the peer-to-peer model is its ad hoc
feature which enables elements in an environment to enter or
disjoin at any time. However, this feature can be perfectly
remained in the centralised model by providing the elements
a plus and play mechanism through local/global networks.

Multi-modal interaction is seen as new paradigm of user
interface design for pervasive applications with which the
user is able to interact with applications (which may involve
a range of computing elements such as users, devices, and

locations of interests) through the interaction with thesecom-
puting elements embedded in the surrounding. Note that, each
computing element provides a various capability of interaction.
We argue that these computing elements should play a simple
role being user interfaces for interactions similar to desktops,
keyboards, and mouses of the second generation of human-
computing interaction rather than the hosts for the entire
application or parts of the application. Migrating applications
onto devices just makes difficulties for us while it would more
straightforward if we host applications on powerful computers
in the centralised model. Powerful networks and powerful
computers in the future will enable our vision.Cloud comput-
ing has initial steps toward this view as an evidence for our
argument. Cloud computing suggests that instead of buying,
installing, configuring, and maintaining applications on your
own computers, we rent them and use them through networks
such as Internet. In this case, your powerful computers are
even purely interface units rather than processing units.

Based on above analysis of the advances in technologies,
we introduce our high-level conceptual model of pervasive
computing environments in the following section.

C. A high-level conceptual model

Our model of pervasive computing environments is a two-
layered and centralised model. The first layer is the interaction
layer and the second is the processing layer.

The interaction layer is responsible for computing-
computing, computing-human interaction (i.e. interfacesbe-
tween human and computing or computing and computing)
as well as computing-environment interaction (i.e. computing
impacts on environments which otherwise provide computing
context information which is sent back to the processing layer
for processing). Elements of the interaction layer are users,
computing devices. The computing devices of interest of a
particular application form a logically star network in which
the elements of the processing layer play a role of central
station of the star.

The processing level consists of powerful computer with
supporting hardware and software tools. They are the centre
system of database, processing, decision making, adaptation,
knowledge interpretation, and communication with elements
of other processing levels of other applications. Communica-
tion between the two layers relied on network infrastructures
which allow on-the-fly formed logically star networks for a
specific application.

Elements of the interaction layer are seen as peripherals of
a centre system (i.e. the processing layer) which is similar
to the traditional computing paradigm (a desktop PC has its
keyboard, mouse, and monitor). The diffidence here is that the
peripherals are distributed pervasively in the environment.

III. C HALLENGES

- boos sung theem: khong con hop li de chugn nghi rang
thiet bi di dong la mini-desktops va ung dung la nhung chuong
trinh chay tren cac thiet bi do. - chuyen huong tu quan niem:
devices phai co kha nang kham pha mot cach tu dong dich



vu, tai nguyen san co [2] sang quan niem: he thong tu dong
kham pha dich vu, tai ngueyn, thong tin va thiet bi san co de
hoan tat tac vu trong moi truogn da cho de adapt app cho phu
hop voi nhung gi dang co. - thay doi quan diem ung dung in
it physical vicinity, ung dung any where in terms of virtually
vicinity meaning apps of interest located elsewhere in powerful
computer but we can see them through networks. - trong nhieu
truong hop, chung ta khong can gan them computing vao thiet
bi nhu dien thoai ban hay may in de cac thiet bi computing
khac (mobile phone, PDA) co the phat hien ra no, mo chi can
trung tam biet va dieu khien duoc no, khi do thiet bi se duco
ket noi den trung tam va nho trung tam de su dung theit bi
may in hay dien thoai do. - thay doi quan diem: developers
must phat trien cac ung dung co kha nang constantly adapt
to a highly dynamic computing environment [4] thanh quan
diem: he thong infrastructure phai cho giup cac apps de adapt
to ... - Chung toi argue that, mot ung dung thanh cong trong
tuong lai kong chi su dung thong han hep co duoc trong moi
truong hien thoi ma can phai truy xuat vao kho thong tin chang
han internet. thong tin ma thiet bi so huu co the khong dap
ung nhu cau de thuc thi tot mot task. do vay, du muon du
khong thi device cung phai connect to wide network chang
han internet hoac cac may trung tam manh me de khai thac
thong tin khong can thiet bo sung.

- co kha nang giai quyet su tang dan len cua cac thiet bi
moi trong moi truong. - dap su hop tac lan nhau khong biet
truoc (impromptu) adaptation to situation ma ta khong luong
truoc. - quan li moi truong ma khong can su ho tro hoac
administrators. - anh uong xa hoi cua thiet bi va cong nghe
moi cua pc. - dam bao tinh reliability de ho tro su tin cay/su
uy thac cua nguoi dung vao he thong. - suy luan khi doi mat
voi su toi nghia ambiguity.

Chung ta phai lam the nao de tranh ra duoc cac vien canh
sau:

- nguoi dung bi lu lut voi thong tin; - user bi frustrate khi ho
truy cap hang hoa, dich vu, thong tin ma le ra ho de dang su
dung. - doi hoi, yeu cau, kiem tra mot cach cung nhac khong
can thiet hay trong nhung trong hop ngoai le.

De lam duoc dieu do, cac thach thuc sau day phai dc giai
quyet:

- understandability cong nghe phai transparent to user. tuy
nhien phai co cac giao dien truc giac cho nguoi su dung dieu
khien. ontologies and natural language processing - tich hop:
cong nghe phai lam viec voi nhau, va ho tro nhau, nhung
khong doi lai nguoi dung. agent - adaptivity: phai dap ung tot
mong muon cua nguoi dung va khong yeu cau qua nhieu su
can thiep cua nguoi dung: learning machine.

IV. REQUIREMENTS

V. A NEW APPLICATION MODEL A PROGRAMMING MODEL

• Identifying abstract interaction elements
• Specifying an abstract service description language: A

means is needed to express the expected function of a
service, allowing for different services to provide this
function when the application is running. This must allow
for services to be declared optional as well.

• Creating a task-based model for program structure. The
application should be delineated into tasks and sub-
tasks. A task includes the abstract interaction and the
application logic, including the use of the services. The
structure is used by the system to generate device specific
”presentation units”; e.g., screens.

• Creating a navigation model. The navigation specifies
what causes a task to begin and end (e.g., a user action),
and what tasks precede and follow it. This information is
complementary to the task structure, and is used by the
system to automate the flow of the ”presentation units”
when the application is running.

Program structure: - abstract user interfaces, abstract services
needed, abstract resources needed. - tasks and subtasks and
which tasks are presented to users? –¿ context, how task can
be done –¿ context. pre-conditions and post-condition, what
tasks truoc va sau mot tasks. - moi task co its requirements,
thiet bi, moi truong, ngu canh se kiem chung lieu no co the
thuc hien duoc khong va thuc hien theo cach nao la tot nhat.
- what task does the user want to accomplish? if the task is a
composite of many subtasks, how are these defined to assist
the user in his overall task? - what is the flow through the
tasks? How does each task begin? how does it end? how does
a subtask initiate another in a dynamic framework? - what
is the user interaction for each task? what user actions are
needed to perform the task and how actions can be identified?
- what information needed? where it come from? - how task
performance adapt itself to the given environment? - how deal
with fails? how user manage the task performance? - design-
time - ung dung ma giai dien cua no tuy vao cac thiet bi ngoai
vi co san. khong phu thuoc vao thiet bi- device-natural. - dich
vu ma ung dung su dung khong nen duoc gan voi mot cai ten
cu the. - load-time - run-time

VI. D EVELOPMENT METHODOLOGY

This methodology would allow a programmer to build an
application by answering questions such as:

1) What task does the user want to accomplish? If the task
is a composite of many subtasks, how are these defined
to assist the user in his/her overall task?

2) What is the ”flow” through the tasks? How does each task
begin? How does it end? How does one subtask initiate
another in a dynamic framework?

3) What is the user interaction for each task? What user
actions are needed to perform the task? How are user
actions a reflection of user intent?

4) What information does the user need to perform the task?
Where does this information come from?

5) What logic does the system perform for each (sub)task?
Is it possible for the (sub)task logic to adapt itself to a
given environment?

6) An application must be specified in terms of its require-
ments

7) Modelling device characteristics and application require-
ments: The characteristics that axe relevant for differen-
tiating between devices must be codified, and a metric



for each of these characteristics must be developed. The
application requirements must be specified in the same
terms.

8) Developing negotiation protocols. Such protocols are
necessary for a device to ascertain what subset of ap-
plications and services can be hosted within the bounds
of its resource limitations.

9) it may be desirable to split the execution burden between
the device and available servers. This split, which we
call apportioning, uses information about the currently
available resources and the resource demands of the
application. Incorporating fast and efficient apportioning
algorithms.

10) it may be desirable to have multiple abstract representa-
tions of the application interface, one for each combina-
tion of interface modality and form factor.

11) The system needs to support dynamic selection of an
appropriate application interface from a set of available
interfaces, based on the device’s resources and form-
factor. The presentation selected in this manner will be
specific to an interface modality and form factor. Further
adaptation may be necessary for the characteristics of a
particular device.

12) The system needs to seamlessly integrate the applications
and services found in the environment. This involves
composing the functionality as well as the user interface.
The composition is subject to the constraints and resource
limitations of the device and the composition restrictions
of the discovered entities.

13) the run-time must monitor the resources for the currently
active portal, or portal set, and appropriately adapt the
application to those resources.

14) the run-time must respond to changes initiated by the
user. For example, the user may choose a different set of
portal devices.

15) The run-time should support handoff of task context
from one environment (e.g., office) to another (e.g., car),
possibly through a disconnected state.

16) the run-time must be able to take advantage of services
provided by the environment and the physical resources
available within it.

17) The run-time must handle unexpected failures, such as
exhausting batteries or a service crash. Existing failure
detection and recovery mechanisms

18) requires the run-time to detect changes in the resourcesof
any portal device or environment hosts that participate in
application execution. Resource changes include changes
in available network bandwidth, introduction of new
devices into the environment, introduction of new users
and/or applications, etc. In response to detected changes,
the run-time must initiate a reapportionment and/or relo-
cation of application components. Resource changes may
impact the user’s interaction with the application.

19) Transient resource changes should be recognised as such
and should not impact the application. When changes
are significant and long-lived, the application should be

automatically re-apportioned, with minimal impact on the
user.

20) User initiated re-apportioning. The user may initiate
re-apportionment of the application. Reasons for reap-
portionment may range from anticipated change in the
connectivity of devices to a mobile user entering the
proximity of new devices. In the latter case, the user
should be given a choice of whether to use the new
devices or not.

21) If the network connection between client and server is
detected to degrade via run-time monitoring, the ap-
portioner may react by (1) migrating code from the
server to the client to reduce the application’s demand
for communication, (2) lower quality service; (3) change
devices,...

22) explicit support for disconnected operation needs to be
added to the model.

23) The run-time should prepare for disconnection without a
user’s intervention whenever possible.

24) Failure Detection and Recovery

By answering these questions, the programmer will have
specified an application at a high level of abstraction. Given
the programming model explained above, the implementation
will be made up of a task structure annotated with navigation
flow, an abstract user interface for each task, and scripting
logic that details the task function. The major challenge here
is to build a development environment that supports the above
methodology.

VII. TECHNOLOGIES ENABLING THIS MODEL

• User Interface Management Systems [1]
• Client-Server computing model
• Java computing model
• web technology
• service technology

VIII. A DVANTAGES

• eliminating the synchronisation problem. When the user
updates a phone number, that phone number is the same
regardless of the device through which it is accessed.

• the application is built to be run on any device.
• the concept of “upgrading” software may quickly become

anachronistic.

IX. PRODUCTS

- development environment (IDE) - a algorithm for generat-
ing device-specific renderings of an abstract interface specifi-
cation - a layer to allow uniform access to distributed services -
a mechanism to be introduced to dynamically vary application
apportionment between client and service at run time [9].
- support for failure, disconnection, recovery - develop the
interfaces and mechanisms needed to allow an application to
identify and use a service at runtime that was unanticipated
when the application was written.



X. D ISCUSSION AND EVALUATION

Nhung diem moi trong mo hinh cua chung toi:
1. chung toi khong xem cac thiet bi tin hoc trogn vai tro

vua la interface vua thuc hien cac chuc nang xu li va dua ra
cac quyet dinh. Cac theit bi tin hoc cua chung toi hoan toa
chi la giao dien va/hoac sensor tuong tu nhu man hinh, ban
phim, chuot, may in, speaker. chung dong vai tro tuong tac va
thuc hien cac actions hoac bieu dien thong tin den nguoi dung
hoac ket noi voi cac thiet bi khac de lam nheim vu nay. Nhu
vay, cac thiet bi khong can thiet chua cac modul phan mem
tren no, no cung khong can nhieu cac thanh phan phan can
nhu bo nho, bo vi xu ly, trong nhieu truong hopj, no co the
co nhu may in co the co bo nho cache hay co mot bo vi xu li
don gian (tuy nhien chung ta khong goi chung la computer).

Su phan biet hai levles nhu vay la rat quan trong. No giup
cho cac nha design thiet bi va cac nha phat trien phan mem
co the tap trung vao linh vuc da duoc chuyen mon hoa cho
ho. Dieu nay de dang thay rang se giup cho su phat trien cac
he thong se nhanh chong hon. Tuong tu nhu su phan biet giua
cac nha san xuat may in, ban phi, man hinh, loa va cac nha
san xuat phan mem su dung cac thiet bi do. Chung toi su dung
cach tiep can ma chung ta da dung do la su dung cac package
ma ta goi la driver de cho may tinh trung tam co the dieu
khien duoc cac thiet bi ngoai vi. Cac drivers giup cho he thon
trung tam biet duoc kha nang cua cua thiet bi ngoai vi lien
ket voi no va lam the nao dieu khien cac thiet bi ngoai vi do.
Nhiem vu cua nguoi phat trien phan mem la lam the nao de
tich hop cac chuc nang cua cac thiet bi ngoai vi de tao ra cac
ung dung ma ho quan tam. Cac thiet bi duoc bao gom trong
mot ung dung cu the nao do thanh lap nen mot mang cach
thiet bi ma ta goi la a logically/virtually local network. Chung
ta goi la logical boi vi thuc te , cac thiet bi trogn mang nay
co the o khap noi tren the gioi chu khong phai la trong mot
pham vi vat li cu the nao do.

XI. RELATED WORK

Nghien cuu cua Henricksen et al. mo hinh PCEs bao gom
thiet bi, nguoi dung, thanh phan phan mem, va giao dien nguoi
dung. Trong cach tiep can nay, tac gia cho rang cac thanh phan
phan mem co the duoc hosted va thuc thi ngay tren cac thiet
bi nhung cai von yeu ve kha nang xu li cung nhung nho hep
ve bo nho luu tru. vi the, tac gia cho rang, doi hoi can co mot
co che adaption to nhung thay doi trong qua trinh du nhap va
thuc thi cac component. Quan diem chua chung toi khong bac
bo mo hinh phat trien ung dung huong thanh phan, nhung mo
hinh cua chung toi khong cho phep cac thanh phan phan mem
hosted tren cac thiet bi yeu. Thay vao do, chung duoc hosted
va xu li tren cac may tinh trung tam powerful, ket qua se tra
ve cho cac thiet bi ngoai vi de chung tuong tac voi nguoi dung
hoac thuc thi tac vu nao mong muon.

By [2]:Devices, applications, and environments.
• A device is a portal into an application/data space, not a

repository of custom software managed by the user.
• An application is a means by which a user perform a

task, not a piece of software that is written to exploit a
device’s capabilities. app as task.

• The computing environment is the user’s information-
enhanced physical surroundings, not a virtual space that
exists to store and run software.

By [4]: - A framework for building apps, not an infrastruc-
ture hosting apps and help them in terms of adaptation dieu
nay de lai cho cac nha phat trien ung dung nhung nhiem vu
nang ne.

XII. C ONCLUSION AND FUTURE WORK

REFERENCES

[1] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal,
Stephen M. Williams, and Jonathan E. Shuster. Uiml: an appliance-
independent xml user interface language. InWWW ’99: Proceedings
of the eighth international conference on World Wide Web, pages
1695–1708, New York, NY, USA, 1999. Elsevier North-Holland, Inc.

[2] Guruduth Banavar, James Beck, Eugene Gluzberg, Jonathan Munson,
Jeremy Sussman, and Deborra Zukowski. Challenges: an application
model for pervasive computing. InMobiCom ’00: Proceedings of the 6th
annual international conference on Mobile computing and networking,
pages 266–274, New York, NY, USA, 2000. ACM.

[3] Nigel Davies and Hans-Werner Gellersen. Beyond prototypes: Challenges
in deploying ubiquitous systems.IEEE Pervasive Computing, 1(1):26–35,
2002.

[4] Robert Grimm, Janet Davis, Eric Lemar, Adam Macbeth, Steven Swan-
son, Thomas Anderson, Brian Bershad, Gaetano Borriello, Steven Grib-
ble, and David Wetherall. System support for pervasive applications.
ACM Trans. Comput. Syst., 22(4):421–486, 2004.

[5] T. Gu, X. Wang, H. Pung, and D. Zhang. An ontology-based context
model in intelligent environments. InProceedings of Communication
Networks and Distributed Systems Modeling and Simulation Conference,
2004.

[6] Yong-Bin Kang and Yusuf Pisan. A survey of major challenges and future
directions for next generation pervasive computing, 2006.

[7] Philip Moore, Bin Hu, and Jizheng Wan. Smart-context: A context
ontology for pervasive mobile computing.The Computer Journal, pages
bxm104–, March 2008.

[8] D. Norman. The invisible computer: why good products can fail, the
personal computer is so complex, and information applicances are the
solution. MIT Press, 1998.

[9] H.S. Stone and S.H. Bokhari. Control of distributed processes.Computer,
11(7):97–106, July 1978.


